NanoSIMS mapping and LA-ICP-MS chemical and U–Th–Pb data in monazite from a xenolith enclosed in andesite (Central Slovakia Volcanic Field)

  • A. DidierEmail author
  • V. Bosse
  • J. Bouloton
  • S. Mostefaoui
  • M. Viala
  • J. L. Paquette
  • J. L. Devidal
  • R. Duhamel
Original Paper


In this study, we use NanoSIMS element and isotope ratio mapping and LA-ICP-MS trace element measurements to elucidate the origins of monazites from a restitic xenolith enclosed in a 13.5 ± 0.3 Ma andesitic lava (Slovakia). The xenolith/lava interaction is mainly characterized by the growth of a plagioclase-bearing corona around the xenolith and magmatic garnet overgrowths on primary metamorphic garnets within the xenolith. NanoSIMS images (89Y, 139La, 208Pb, 232Th and 238U) and trace element analyses indicate that variations of HREE, Y and Eu contents in the monazite are correlated with the resorption and the following overgrowth of garnet and plagioclase in the xenolith. Three domains are distinguished in the monazite grains: the inherited Variscan core at ca. 310 Ma (M1 domain) characterized by low Y and HREE contents and a weak negative Eu anomaly; the inner rim (M2 domain) crystallized during the growth of the plagioclase magmatic corona (large negative Eu anomaly) and the resorption of metamorphic garnet (high HREE and Y contents); and the external rim (M3 domain) crystallized during the growth of the plagioclase corona (large negative Eu anomaly) and during the crystallization of magmatic garnet (low Y, HREE contents) at ~13 Ma, i.e. the age of the andesitic lava. The age and chemical zonation of the monazites attest to the preservation of primary monazite in the xenolith despite the interaction with the andesite lava. NanoSIMS imaging provides high-quality sub-µm scale images of the monazite that reveals chemical domains that were not distinguishable on WDS X-ray maps, especially for depleted elements such as U and Pb. Owing to its small size, the M2 domain could not be accurately dated by the LA-ICP-MS method. However, NanoSIMS isotopic maps reveal that the M2 domain has similar 208Pb/232Th isotope ratios to the M3 domain and thus similar ages. These results support the hypothesis that melt-assisted partial dissolution–precipitation in monazite efficiently records chemical and mineralogical changes during xenolith/lava interaction.


NanoSIMS mapping Monazite Trace elements Melt-assisted dissolution and precipitation LA-ICP-MS dating 



Thanks are due to Jean-Marc Hénot for his help in the use of SEM, Emily Mullen for English corrections and O. Laurent for fruitful discussion. The paper has been greatly improved by the critical and constructive comments of Alexander Stepanov and an anonymous reviewer. This work is supported a posteriori by CNRS-INSU.

Supplementary material

410_2015_1200_MOESM1_ESM.xlsx (23 kb)
Supplementary material 1 (XLSX 23 kb)
410_2015_1200_MOESM2_ESM.xlsx (14 kb)
Supplementary material 2 (XLSX 14 kb)
410_2015_1200_MOESM3_ESM.xlsx (12 kb)
Supplementary material 3 (XLSX 13 kb)
410_2015_1200_MOESM4_ESM.xlsx (15 kb)
Supplementary material 4 (XLSX 14 kb)


  1. Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Mineral Petrol 157:541–558CrossRefGoogle Scholar
  2. Appel K, Appel P, Martinez-Criado G, Mocek B, Möller A (2010) Elemental nano-imaging of monazite and zircon using SR XRF. Acta Mineral Petrogr Abstr Ser 6:674Google Scholar
  3. Ayers JC, Miller C, Gorisch B, Milleman J (1999) Textural development of monazite during high-grade metamorphism: hydrothermal growth kinetics, with implications for U, Th–Pb geochronology. Am Mineral 84:1766–1780Google Scholar
  4. Ayers JC, DelaCruz K, Miller C, Switzer O (2003) Experimental study of zircon coarsening in quartzite ± H2O at 1.0 GPA and 1000 °C, with implications for geochronological studies of high-grade metamorphism. Am Mineral 88:365–376CrossRefGoogle Scholar
  5. Berger A, Gnos E, Janots E, Fernandez A, Giese J (2008) Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chem Geol 254:238–248CrossRefGoogle Scholar
  6. Berger A, Rosenberg C, Schaltegger U (2009) Stability and isotopic dating of monazite and allanite in partially molten rocks: examples from the Central Alps. Swiss J Geosci 102:15–29CrossRefGoogle Scholar
  7. Bingen B, Demaiffe D, Hertogen J (1996) Redistribution of rare earth elements, thorium, and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: the role of apatite. Geochim Cosmochim Acta 60:1341–1354CrossRefGoogle Scholar
  8. Bohlen SR, Wall WJ, Boettcher AL (1983) Experimental investigation and application of garnet granulite equilibria. Contrib Mineral Petrol 83:52–61CrossRefGoogle Scholar
  9. Bosse V, Boulvais P, Gautier P, Tiepolo M, Ruffet G, Devidal JL, Cherneva Z, Gerdjikov I, Paquette JL (2009) Fluid-induced disturbance of the monazite Th–Pb chronometer: in situ dating and element mapping in pegmatites from the Rhodope (Greece, Bulgaria). Chem Geol 261:286–302CrossRefGoogle Scholar
  10. Bouloton J, Paquette JL (2014) In situ U–Pb zircon geochronology of Neogen garnet-bearing lavas from Slovakia (Carpatho-Pannonian region, Central Europe). Lithos 184(187):17–26CrossRefGoogle Scholar
  11. Catlos EJ, Gilley LD, Harrison TM (2002) Interpretation of monazite ages obtained via in situ analysis. Chem Geol 188:193–215CrossRefGoogle Scholar
  12. Cherniak DJ, Watson BE, Grove M, Harrison TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Acta 68:829–840CrossRefGoogle Scholar
  13. Crowley JL, Ghent ED (1999) An electron microprobe study of the U–Th–Pb systematics of metamorphosed monazite: the role of Pb diffusion versus overgrowth and recrystallization. Chem Geol 157:285–302CrossRefGoogle Scholar
  14. Cruz MJ, Cunha JC, Merlet C, Sabaté P (1996) Dataçao pontual das monazitas da regiao de Itambe, Bahia, através da microssonda electronica. XXXIX Congresso Brasileiro de Geologia, pp 206–209Google Scholar
  15. Didier A, Bosse V, Boulvais P, Bouloton J, Paquette JL, Montel JM, Devidal JL (2013) Disturbance versus preservation of U–Th–Pb ages in monazite during fluid–rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France). Contrib Mineral Petrol 165:1051–1072CrossRefGoogle Scholar
  16. Didier A, Bosse V, Cherneva Z, Gautier P, Georgieva M, Paquette JL, Gerdjikov I (2014) Syn-deformation fluid-assisted growth of monazite during renewed high-grade metamorphism in metapelites of the Central Rhodope (Bulgaria, Greece). Chem Geol 381:206–222CrossRefGoogle Scholar
  17. Eggler DH (1972) Water-saturated and undersaturated melting relations in a Paricutin andesite and an estimate of water content in the natural magma. Contrib Mineral Petrol 34:261–271CrossRefGoogle Scholar
  18. Ellison AJG, Hess PC (1988) Peraluminous and peralkaline effects upon “monazite” solubility in high-silica liquids. EOS Trans 69:498Google Scholar
  19. Erickson TM, Pearce MA, Cavosie AJ, Timms NE, Reddy SM, Taylor RJ, Clark C (2014) Resolving shock features in monazite using EBSD and their effects on SHRIMP U–Pb systematics. Goldschmidt 2014 conference abstractGoogle Scholar
  20. Fletcher IR, McNaughton NJ, Davis WJ, Rasmussen B (2010) Matrix effects and calibration limitations in ion probe U–Pb and Th–Pb dating of monazite. Chem Geol 270:31–44CrossRefGoogle Scholar
  21. Foster G, Kinny P, Vance D, Prince C, Harris N (2000) The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth Planet Sci Lett 181:237–340CrossRefGoogle Scholar
  22. Gardés E, Jaoul O, Montel JM, Seydoux-Guillaume AM, Wirth R (2006) Pb diffusion in monazite: an experimental study of interdiffusion. Geochim Cosmochim Acta 70:2325–2336CrossRefGoogle Scholar
  23. Gasquet D, Bertrand JM, Paquette JL, Lehmann J, Ratzov G, De Ascenc Guedes R, Tiepolo M, Boullier AM, Scaillet S, Nomade S (2010) Miocene to Messinian deformation and hydrothermalism in the Lauzière Massif (French Western Alps): new U–Th–Pb and Argon ages. Bull Soc Géol Fr 181:227–241CrossRefGoogle Scholar
  24. Gill JB (1981) Orogenic andesites and plate tectonics. Springer, BerlinCrossRefGoogle Scholar
  25. Hamilton DL, Burnham CW, Osborne E (1964) The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. J Petrol 5:21–39CrossRefGoogle Scholar
  26. Harangi S, Downes H, Thirlwall M, Gmeling K (2007) Geochemistry, petrogenesis and geodynamic relationships of miocene calc-alkaline volcanic rocks in the Western carpathian Arc, Eastern Central Europe. J Petrol 48:2261–2287CrossRefGoogle Scholar
  27. Hermann J, Rubatto D (2003) Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Metamorph Geol 21:833–852CrossRefGoogle Scholar
  28. Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry. Contrib Mineral Petrol 116:433–447CrossRefGoogle Scholar
  29. Holland T, Powell R (2001) Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. J Petrol 42:673–683CrossRefGoogle Scholar
  30. Janots E, Engi M, Berger A, Allaz J, Schwarz JO, Spandler C (2008) Prograde metamorphic sequence of REE minerals in politic rocks of the Central Alps: implications for allanite–monazite–xenotime phase relations from 250 to 610 °C. J Metam Geol 26:509–526CrossRefGoogle Scholar
  31. Jercinovic MJ, Williams ML, Allaz J, Donovan JJ (2011) Trace analysis in EMPA. European Workshop on Modern developments and applications in microbeam analysis. Anger, FranceGoogle Scholar
  32. Joesten RL (1991) Kinetics of coarsening and diffusion-controlled mineral growth. In: Kerrick DM (ed) Contact metamorphism, 26. Reviews in Mineralogy, Mineralogical Society of America, Washington, DC, pp 507–582Google Scholar
  33. Kelly NM, Harley SL, Möller A (2012) Complexity in the behavior and recrystallization of monazite during high-T metamorphism and fluid infiltration. Chem Geol 322–323:192–208CrossRefGoogle Scholar
  34. Konecny V, Lexa J, Hojstricova V (1995) The central Slovakia neogene volcanic field: a review. Acta Vulc 7:63–78Google Scholar
  35. Konečný V, Bagdasarjan GP, Vass D (1969) Evolution of Neogene volcanism in Central Slovakia and its confrontation with absolute ages. Acta Geol Acad Sci Hung 13:245–258Google Scholar
  36. Krenn E, Finger F (2007) Formation of monazite and rhabdophane at the expense of allanite during Alpine low temperature retrogression of metapelitic basement rocks from Crete, reece: microprobe data and geochronological implications. Lithos 95:130–147CrossRefGoogle Scholar
  37. Kriegsman LM, Hensen BJ (1998) Back reaction between restite and melt: implications for geothermobarometry and pressure–temperature paths. Geology 26:1111–1114CrossRefGoogle Scholar
  38. Maluski H, Rajlich P, Matte P (1993) 40Ar–39Ar dating of the Inner Carpathians Variscan basement and Alpine mylonitic overprinting. Tectonophysics 223:313–337CrossRefGoogle Scholar
  39. Moecher DP, Essene EJ, Anovitz LM (1988) Calculation and application of clinopyroxene–garnet–plagioclase–quartz geobarometers. Contrib Mineral Petrol 100:92–106CrossRefGoogle Scholar
  40. Montel JM, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53CrossRefGoogle Scholar
  41. Paquette JL, Tiepolo M (2007) High resolution (5 μm) U–Th–Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237CrossRefGoogle Scholar
  42. Pécskay Z, Lexa J, Szakáca A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetkovic V (2006) Geochronology of Neogene magmatism in the Carpathian arc and Intra-Carpathian area. Geol Carpath 57:511–530Google Scholar
  43. Perkins D, Chipera SJ (1985) Garnet–orthopyroxene–plagioclase–quartz barometry: refinement and application to the English River subprovince and the Minnesota River valley. Contrib Mineral Petrol 89:69–80CrossRefGoogle Scholar
  44. Powell R, Holland TJ (1994) Optimal geothermometry and geobarometry. Am Mineral 79:120–133Google Scholar
  45. Putnis A (2009) Mineral replacement reactions. Rev Mineral 70:87–124CrossRefGoogle Scholar
  46. Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10:254–269Google Scholar
  47. Pyle J, Spear F (2003) Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire. Am Mineral 88:338–351CrossRefGoogle Scholar
  48. Rapp RP, Watson EB (1986) Monazite solubility and dissolution kinetics: implications for the thorium and light rare earth chemistry of felsic magmas. Contrib Mineral Petrol 94:304–316CrossRefGoogle Scholar
  49. Rasmussen B, Fletcher IR, Muhling JR (2007) In situ U–Pb dating and element mapping of three generations of monazite: unravelling cryptic tectonothermal events in low-grade terranes. Geochim Cosmochim Acta 71:670–690CrossRefGoogle Scholar
  50. Rubatto D, Chakraborty S, Dasgupta S (2013) Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology. Contrib Mineral Petrol 165:349–372CrossRefGoogle Scholar
  51. Seghedi I (2010) Miocen-recent magmatism and geodynamic processes in the Carpathian–Pannonian region, relations with Balkan and Aegen region. XIX Congress of the Carpathian–Balkan geological association. Geol Balc 38(1–2):9–10Google Scholar
  52. Seydoux-Guillaume AM, Paquette JL, Wiedenbeck M, Montel JM, Heinrich W (2002) Experimental resetting of the U–Th–Pb systems in monazite. Chem Geol 191:165–181CrossRefGoogle Scholar
  53. Seydoux-Guillaume AM, Goncalves P, Wirth R, Deutsch A (2003) Transmission electron microscope study of polyphase and discordant monazites: site-specific specimen preparation using the focused ion beam technique. Geology 31:973–976CrossRefGoogle Scholar
  54. Seydoux-Guillaume AM, Montel JM, Bingen B, Bosse V, de Parseval P, Paquette JL, Wirth R (2012) Low-temperature alteration of monazite: fluid mediated coupled dissolution–precipitation, irradiation damage, and disturbance of the U–Pb and Th–Pb chronometers. Chem Geol 330–331:140–158CrossRefGoogle Scholar
  55. Spear FS (2010) Monazite–allanite phase relations in metapelites. Chem Geol 279:55–62CrossRefGoogle Scholar
  56. Spear FS, Pyle JM (2002) Apatite, monazite, and xenotime in metamorphic rocks, reviews in mineralogy and geochemistry, phosphates: geochemical, geobiological, and materials importance. Rev Mineral 48:523–558CrossRefGoogle Scholar
  57. Szabó C, Harangi S, Csontos L (1992) Review of Neogene and Quaternary volcanism of the Carpathian–Pannonian region. Tectonophysics 208:243–256CrossRefGoogle Scholar
  58. Townsend KJ, Miller CF, D’Andrea JL, Ayers JC, Harrison TM, Coath CD (2001) Low temperature replacement of monazite in the Ireteba granite, Southern Nevada: geochronological implications. Chem Geol 172:95–112CrossRefGoogle Scholar
  59. Valley JW, Cavosie AJ, Ushikubo T, Reinhard DA, Lawrence DF, Larson DJ, Clifton PH, Kelly TF, Wilde SA, Moser DE, Spicuzza MJ (2014) Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat Geosci 7:219–223CrossRefGoogle Scholar
  60. van Achterberg E, Ryan CG, Jackson SE, Griffin W (2001) Data reduction software for LA-ICP-MS. In: Sylvester P (Ed.), Laser ablation-ICPMS in the Earth Science, vol 29. Mineralogical Association of Canada, pp 239–243Google Scholar
  61. Zhu XK, O’Nions RK (1999) Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology: a case study from the Lewisian terrain. Earth Planet Sci Lett 171:209–220CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Didier
    • 1
    • 3
    Email author
  • V. Bosse
    • 1
  • J. Bouloton
    • 1
  • S. Mostefaoui
    • 2
  • M. Viala
    • 1
  • J. L. Paquette
    • 1
  • J. L. Devidal
    • 1
  • R. Duhamel
    • 2
  1. 1.Laboratoire Magmas et VolcansUniversité Blaise Pascal - CNRS - IRD, OPGCClermont FerrandFrance
  2. 2.IMPMCMuséum National d’Histoire NaturelleParisFrance
  3. 3.Institut of Earth SciencesUniversity of LausanneLausanneSwitzerland

Personalised recommendations