Advertisement

Heat capacity of hydrous trachybasalt from Mt Etna: comparison with CaAl2Si2O8 (An)–CaMgSi2O6 (Di) as basaltic proxy compositions

  • D. GiordanoEmail author
  • A. R. L. Nichols
  • M. Potuzak
  • D. Di Genova
  • C. Romano
  • J. K. Russell
Original Paper

Abstract

The specific heat capacity (C p) of six variably hydrated (~3.5 wt% H2O) iron-bearing Etna trachybasaltic glasses and liquids has been measured using differential scanning calorimetry from room temperature across the glass transition region. These data are compared to heat capacity measurements on thirteen melt compositions in the iron-free anorthite (An)–diopside (Di) system over a similar range of H2O contents. These data extend considerably the published C p measurements for hydrous melts and glasses. The results for the Etna trachybasalts show nonlinear variations in, both, the heat capacity of the glass at the onset of the glass transition (i.e., C p g ) and the fully relaxed liquid (i.e., C p l ) with increasing H2O content. Similarly, the “configurational heat capacity” (i.e., C p c  = C p l  − C p g ) varies nonlinearly with H2O content. The An–Di hydrous compositions investigated show similar trends, with C p values varying as a function of melt composition and H2O content. The results show that values in hydrous C p g , C p l and C p c in the depolymerized glasses and liquids are substantially different from those observed for more polymerized hydrous albitic, leucogranitic, trachytic and phonolitic multicomponent compositions previously investigated. Polymerized melts have lower C p l and C p c and higher C p g with respect to more depolymerized compositions. The covariation between C p values and the degree of polymerization in glasses and melts is well described in terms of SMhydrous and NBO/T hydrous. Values of C p c increase sharply with increasing depolymerization up to SMhydrous ~ 30–35 mol% (NBO/T hydrous ~ 0.5) and then stabilize to an almost constant value. The partial molar heat capacity of H2O for both glasses (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{g}} \)) and liquids (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \)) appears to be independent of composition and, assuming ideal mixing, we obtain a value for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) of 79 J mol−1 K−1. However, we note that a range of values for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) (i.e., ~78–87 J mol−1 K−1) proposed by previous workers will reproduce the extended data to within experimental uncertainty. Our analysis suggests that more data are required in order to ascribe a compositional dependence (i.e., nonideal mixing) to \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \).

Keywords

Specific heat Etna trachybasalt Anorthite–diopside Hydrous silicate melts 

Notes

Acknowledgments

The authors would like to acknowledge two anonymous reviewers for constructive comments that have led to clarification of the initial manuscript. J.K.R. acknowledges financial support for this research from grants awarded through the NSERC Discovery and Discovery Accelerator Supplements programs. D. Giordano acknowledges financial support for this research from the local research funds (2012, 2013, 2014) of the University of Turin.

Supplementary material

410_2015_1196_MOESM1_ESM.docx (83 kb)
Supplementary material 1 (DOCX 82 kb)

References

  1. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146CrossRefGoogle Scholar
  2. Avramov I (2013) The role of entropy on viscosity of silicates. J Non-Cryst Solids 362:120–123CrossRefGoogle Scholar
  3. Behrens H, Stuke A (2003) Quantification of H2O contents in silicate glasses using IR spectroscopy—a calibration based on hydrous glasses analyzed by Karl–Fisher titration. Glass Sci Technol 76:176–189Google Scholar
  4. Behrens H, Romano C, Nowak M, Holtz F, Dingwell DB (1996) Near infrared spectroscopic determination of H2O species in glasses of the system MAlSi3O8 (M=Li, Na, K): an interlaboratory study. Chem Geol 128:41–63CrossRefGoogle Scholar
  5. Bouhifd MA, Whittington A, Roux J, Richet P (2006) Effect of H2O on the heat capacity of polymerized aluminosilicate glasses and melts. Geochim Cosmochim Acta 70:711–722CrossRefGoogle Scholar
  6. Bouhifd MA, Whittington A, Withers AC, Richet P (2013) Heat capacities of hydrous silicate glasses and liquids. Chem Geol 346:125–134CrossRefGoogle Scholar
  7. Bowen NL (1915) The crystallization of haplobasaltic, haplodioritic and related magmas. Am J Sci 40:161–185CrossRefGoogle Scholar
  8. Burnham CW, Davis NF (1974) The role of H2O in silicate melts: II Thermodynamic and phase relations in the system NaAlSi3O8–H2O to 10 kilobars, 700–1000°C. Am J Sci 274:902–940CrossRefGoogle Scholar
  9. Chevrel MO, Giordano D, Potuzak M, Courtial P, Dingwell DB (2013) Physical properties of CaAl2Si2O8–CaMgSi2O6–FeO–Fe2O3 melts: analogues for extra-terrestrial basalt. Chem Geol 346:93–105CrossRefGoogle Scholar
  10. Clemens JD, Navrotsky A (1987) Mixing properties of NaAlSi3O8 melt-H2O: new calorimetric data and some geological implications. J Geol 95:173–186CrossRefGoogle Scholar
  11. Courtial P, Richet P (1993) Heat capacity of magnesium aluminosilicate melts. Geochim Cosmochim Acta 57:1267–1275CrossRefGoogle Scholar
  12. Di Genova D, Romano C, Giordano D, Alletti M (2014) Heat capacity, configurational heat capacity and fragility of hydrous magmas. Geochim Cosmochim Acta 142:314–333CrossRefGoogle Scholar
  13. Di Muro A, Metrich N, Mercier M, Giordano D, Massarre D, Montagnac G (2009) Micro-Raman determination of iron redox state in dry natural glasses: application to peralkaline rhyolites and basalts. Chem Geol 259:78–88CrossRefGoogle Scholar
  14. Dingwell DB (1991) Redox viscometry of some Fe-bearing silicate melts. Am Mineral 76:1560–1562Google Scholar
  15. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. Am Ceram Soc J 8:339–355CrossRefGoogle Scholar
  16. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes: IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperature and pressures. Contrib Mineral Petrol 119:197–212CrossRefGoogle Scholar
  17. Giordano D, Dingwell DB (2003) Viscosity of hydrous Etna basalt: implications for Plinian-style basaltic eruptions. Bull Volcanol 65:8–14Google Scholar
  18. Giordano D, Russell JK (2007) A rheological model for glassforming silicate melts in the systems CAS, MAS, MCAS. J Phys Condens Matter 19:205148CrossRefGoogle Scholar
  19. Giordano D, Nichols ARL, Dingwell DB (2005) Glass transition temperatures of natural hydrous melts: a relationship with shear viscosity and implications for the welding process. J Volcanol Geotherm Res 142:105–118CrossRefGoogle Scholar
  20. Giordano D, Potuzak M, Romano C, Dingwell DB, Nowak M (2008a) Viscosity and glass transition temperature of hydrous melts in the system CaAl2Si2O8–CaMgSi2O6. Chem Geol 256:203–215CrossRefGoogle Scholar
  21. Giordano D, Russell JK, Dingwell DB (2008b) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134CrossRefGoogle Scholar
  22. Giordano D, Ardia P, Romano C, Dingwell DB, Di Muro A, Schmidt MW, Mangiacapra A, Hess KU (2009) The rheological evolution of alkaline Vesuvius magmas and comparison with alkaline series from the Phlegrean Fields, Etna, Stromboli and Teide. Geochim Cosmochim Acta 73:6613–6630CrossRefGoogle Scholar
  23. Knoche R (1993) Temperaturabhängige Eigenschaften silikatischer Schmelzen Untersuchungen in den Systemen Na2O–SiO2 und NaAlSi3O8–CaAl2Si2O8–CaMgSi2O6 Dissertation, Universität BayreuthGoogle Scholar
  24. Kushiro I (1973) The system diopside–anorthite–albite: determination of compositions of coexisting phases. Carnegie Inst Wash Yearb 72:502–507Google Scholar
  25. Lange RA, Navrotsky A (1992) Mineralogy and Heat capacities of Fe2O3-bearing silicate liquids. Contrib Mineral Petrol 110:311–320CrossRefGoogle Scholar
  26. Maier CG, Kelley KK (1932) An equation for the representation of high temperature heat content data. J Am Ceram Soc 54:3243–3345Google Scholar
  27. Mercier M, Muro AD, Giordano D, Metrich N, Lesne P, Pichavant M, Scaillet B, Clocchiatti R, Montagnac G (2009) Influence of glass polymerization and oxidation on micro-Raman H2O analysis in alumino-silicate glasses. Geochim Cosmochim Acta 73:197–217CrossRefGoogle Scholar
  28. Moynihan CT (1995) Structural relaxation in the glass transition. In: Stebbins JF, McMillan PF, Dingwell DB (eds) Structure, dynamics and properties of silicate melts reviews in mineralogy, vol 32. Mineralogical Society of America, Washington, DC, pp 1–19Google Scholar
  29. Mysen BO (1988) Structure and properties of silicate melts. Elsevier Publishing Company, AmsterdamGoogle Scholar
  30. Navrotsky A (1995) Energetics of Silicate Melts. Rev Mineral 32:121–143Google Scholar
  31. Navrotsky A, Hon R, Weill DF, Henry DJ (1980) Thermochemistry of glasses and liquids in the system CaMgSi2O6–CaAl2Si2O8–NaAlSi3O8, SiO2–CaAl2Si2O8–NaAlSi3O8 and SiO2–Al2O3–CaO–Na2O. Geochim Cosmochim Acta 44:1409–1423CrossRefGoogle Scholar
  32. Perugini D, Poli G (2005) Viscous fingering during replenishment of felsic magma chambers by continuous inputs of mafic magmas: field evidence and fluid-mechanics experiments. Geology 33:5–8CrossRefGoogle Scholar
  33. Potuzak M, Nichols ARL, Dingwell DB, Clague DA (2008) Hyperquenched volcanic glass from Loihi Seamount, Hawaii. Earth Planet Sci Lett 270(1):54–62CrossRefGoogle Scholar
  34. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes: the art of scientific computing. Cambridge University Press, CambridgeGoogle Scholar
  35. Pyle DM (1995) Mass and energy budgets of explosive volcanic eruptions. Geophys Res Lett 22:563–566CrossRefGoogle Scholar
  36. Richet P (1984) Viscosity and configurational entropy of silicate melts. Geochim Cosmochim Acta 48:471–483CrossRefGoogle Scholar
  37. Richet P (1987) Heat capacity of silicate glasses. Chem Geol 62:111–124CrossRefGoogle Scholar
  38. Richet P, Bottinga Y (1985) Heat capacity of aluminum-free liquid silicates. Geochim Cosmochim Acta 49:471–486CrossRefGoogle Scholar
  39. Richet P, Bottinga Y (1995) Rheology and configurational entropy of silicate melts. In: Stebbins JF, McMillan PF, Dingwell DB (eds) Structure, dynamics and properties of silicate melts, vol 32. Rev Mineral, pp 67–94Google Scholar
  40. Richet P, Neuville DR (1992) Thermodynamics of silicate melts: Configurational properties. In: Saxena S (ed) Advances in physical geochemistry, vol 10, pp 132–161Google Scholar
  41. Russell JK (1990) Magma mixing processes: insights and constraints from thermodynamics calculations. In: Nicholls J, Russell JK (eds) Modern methods of igneous petrology: understanding magmatic processes, vol 24. Rev Mineral, pp 153–190Google Scholar
  42. Russell JK, Giordano D (2005) A model for silicate melt viscosity in the system CaMgSi2O6–CaAl2Si2O8–NaAlSi3O8. Geochim Cosmochim Acta 69:5333–5349CrossRefGoogle Scholar
  43. Russell JK, Giordano D, Dingwell DB, Hess KU (2002) Modelling the non-Arrhenian rheology of silicate melts: numerical considerations. Eur J Mineral 14:417–427CrossRefGoogle Scholar
  44. Russell JK, Giordano D, Dingwell DB (2003) High-temperature limits of non-Arrhenian silicate melts: implications for modelling compositional dependencies. Am Mineral 88:1390–1394CrossRefGoogle Scholar
  45. Sack RO, Ghiorso MS (1994) Thermodynamics of multicomponent pyroxenes: II. Phase relations in the quadrilateral. Contrib Mineral Petrol 116:287–300CrossRefGoogle Scholar
  46. Sahagian DI, Proussevich AA (1996) Thermal effects of magma outgassing. J Volcanol Geotherm Res 74:19–38CrossRefGoogle Scholar
  47. Stebbins JF (2008) Temperature effects on the network structure of oxide melts and their consequences for configurational heat capacity. Chem Geol 256:80–91CrossRefGoogle Scholar
  48. Stebbins JF, Carmichael ISE, Moret LK (1984) Heat capacities and entropies of silicate liquids and glasses. Contrib Mineral Petrol 86:131–148CrossRefGoogle Scholar
  49. Toplis MJ (1998) Energy barriers to viscous flow and the prediction of glass transition temperatures of molten silicates. Am Miner 83:480–490Google Scholar
  50. Toplis MJ, Dingwell DB, Hess KU, Lenci T (1997) Viscosity, fragility and configurational entropy of melts along the join SiO2–NaAlSiO4. Am Mineral 82:979–990Google Scholar
  51. Toplis MJ, Gottsmann J, Knoche R, Dingwell DB (2001) Heat capacities of haplogranitic glasses and liquids. Geochim Cosmochim Acta 65:1985–1994 CrossRefGoogle Scholar
  52. Webb SL (2008) Configurational heat capacity of Na2O–CaO–Al2O3–SiO2 melts. Chem Geol 256:92–101CrossRefGoogle Scholar
  53. Weill DF, Hon R, Navrotsky A (1980) The igneous system CaMgSi2O6–CaAl2Si2O8–NaAlSi3O8: variations on a classic theme by Bowen. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, pp 49–92Google Scholar
  54. Whittington A, Richet P, Holtz F (2000) Water and the viscosity of depolymerised aluminosilicate melts. Geochim Cosmochim Acta 64:3725–3736CrossRefGoogle Scholar
  55. Whittington A, Richet P, Linard Y, Holtz F (2001) The viscosity of hydrous phonolites and trachytes. Chem Geol 174:209–223CrossRefGoogle Scholar
  56. Whittington AG, Bouhifd MA, Richet P (2009) The viscosity of hydrous NaAlSi3O8 and granitic melts: configurational entropy models. Am Mineral 94:1–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • D. Giordano
    • 1
    Email author
  • A. R. L. Nichols
    • 2
  • M. Potuzak
    • 3
  • D. Di Genova
    • 4
  • C. Romano
    • 5
  • J. K. Russell
    • 6
  1. 1.Dipartimento di Scienze della TerraUniversita’ degli Studi di TorinoTurinItaly
  2. 2.Research and Development Center for Ocean Drilling ScienceJapan Agency for Marine Earth Science and Technology (JAMSTEC)YokosukaJapan
  3. 3.Science and Technology DivisionCorning IncorporatedCorningUSA
  4. 4.Department for Earth and Environmental SciencesUniversity of MunichMunichGermany
  5. 5.Dipartimento di ScienzeUniversità degli Studi Roma TreRomeItaly
  6. 6.Department of Earth, Ocean and Atmospheric SciencesThe University of British ColumbiaVancouverCanada

Personalised recommendations