Quaternary high-Mg ultrapotassic rocks from the Qal’eh Hasan Ali maars, southeastern Iran: petrogenesis and geodynamic implications

  • Kwan-Nang PangEmail author
  • Sun-Lin Chung
  • Mohammad Hossein Zarrinkoub
  • Fei Wang
  • Vadim S. Kamenetsky
  • Hao-Yang Lee
Original Paper


A set of rare, high-Mg ultrapotassic rocks from the Qal’eh Hasan Ali maars, southeastern Iran, was investigated using phlogopite 40Ar/39Ar geochronology, olivine chemistry, and bulk-rock elemental and Sr–Nd–Hf isotopic geochemistry to decipher their petrogenesis and regional tectonic implications. Phlogopite separates yield inverse isochron 40Ar/39Ar ages from ca. 112 to 119 ka, indicating that magma genesis postdated the onset of the Arabia–Eurasia collision at the Late Eocene–Early Oligocene. The studied rocks are characterized by kamafugitic affinity with relatively low SiO2 and Al2O3 and high CaO and Sr. They contain relatively primitive olivine (Fo85–92) that, on the basis of olivine–liquid Fe/Mg exchange equilibrium, suggests the primary melt to be ultrapotassic with ~13 wt% MgO. Other key geochemical features include extreme enrichment in most incompatible trace elements, depletions in Nb, Ta, P and Ti and enrichment in Pb relative to elements of similar incompatibilities. The Sr–Nd–Hf isotopic ratios of the rocks do not deviate significantly from the bulk silicate Earth (87Sr/86Sr = 0.7055–0.7059, 143Nd/144Nd = 0.5125–0.5126 and 176Hf/177Hf = 0.2827–0.2829). Relatively high Zn/Fe, Gd/Yb, Rb, Rb/Sr and P2O5 and low Yb and P/P* for the rocks are consistent with derivation from a mantle source containing clinopyroxene, phlogopite, apatite and garnet that formed in response to modal metasomatism in the lithospheric mantle. Relatively low Hf/Nd and high Sr/Hf of the rocks indicate that the metasomatized lithologies from which the studied rocks formed were derived dominantly from subducted marly sediments. The Qal’eh Hasan Ali magmatism is best explained by small-scale destruction of the continental mantle in a post-collisional setting, presumably driven by localized convective instability as a result of the Arabia–Eurasia collision.


Kamafugite Ultrapotassic Iran Post-collisional Metasomatism Lithospheric mantle 



We thank Sandrin Feig (University of Tasmania), Ying Liu (Guangzhou Institute of Geochemistry, Chinese Academy of Science), Chiu-Hong Chu and Te-Hsien Lin (National Taiwan University) for laboratory assistance and Ling Chen (Institute of Geology and Geophysics, Chinese Academy of Science) for thoughtful discussion. Journal reviews by two anonymous reviewers and editorial handling by the editor T.L. Grove are appreciated. This study was performed under a joint research program supported by University of Birjand and National Taiwan University. Financial support was obtained from Ministry of Science and Technology, Taiwan, ROC (MOST 103-2745-M-002-005-ASP).

Supplementary material

410_2015_1183_MOESM1_ESM.xls (37 kb)
Supplementary material 1 (XLS 37 kb)
410_2015_1183_MOESM2_ESM.xls (86 kb)
Supplementary material 2 (XLS 86 kb)


  1. Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B, Spakman W, Monié P, Meyer B, Wortel R (2011) Zagros orogeny: a subduction-dominated process. Geol Mag 148:692–725CrossRefGoogle Scholar
  2. Aghazadeh M, Castro A, Omran NR, Emami MH, Moinvaziri H, Badrzadeh Z (2010) The gabbro-(shoshonitic)-monzonite-granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran. J Asian Earth Sci 38:199–219CrossRefGoogle Scholar
  3. Ahmadzadeh G, Jahangiri A, Lentz D, Mojtahedi M (2010) Petrogenesis of Plio-Quaternary post-collisional ultrapotassic volcanism in NW of Marand, NW Iran. J Asian Earth Sci 39:37–50CrossRefGoogle Scholar
  4. Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238CrossRefGoogle Scholar
  5. Allen MB, Armstrong HA (2008) Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Paleogeogr Paleoclimatol Paleoecol 265:52–58CrossRefGoogle Scholar
  6. Allen MB, Kheirkhah M, Neill I, Emami MH, McLeod CL (2013) Generation of arc and within-plate chemical signatures in collision zone magmatism: quaternary lavas from Kurdistan Province, Iran. J Petrol 54:887–911CrossRefGoogle Scholar
  7. Amakawa H, Ingri J, Masuda A, Shimizu H (1991) Isotopic compositions of Ce, Nd and Sr in ferromanganese nodules from the Pacific and Atlantic Oceans, the Baltic and Barents Seas, and the Gulf of Bothnia. Earth Planet Sci Lett 105:554–565CrossRefGoogle Scholar
  8. Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24Google Scholar
  9. Asiabanha A, Foden J (2012) Post-collisional transition from an extensional volcano-sedimentary basin to a continental arc in the Alborz Ranges, N-Iran. Lithos 148:98–111CrossRefGoogle Scholar
  10. Avanzinelli R, Lustrino M, Mattei M, Melluso L, Conticelli S (2009) Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 113:213–227CrossRefGoogle Scholar
  11. Ayers J (1998) Trace element modeling of aqueous fluid–peridotite interaction in the mantle wedge of subduction zones. Contrib Mineral Petrol 132:390–404CrossRefGoogle Scholar
  12. Azizi H, Chung S-L, Tanaka T, Asahara Y (2011) Isotopic dating of the Khoy metamorphic complex (KMC), northwestern Iran: a significant revision of the formation age and magma source. Precambrian Res 185:87–94CrossRefGoogle Scholar
  13. Ballato P, Uba CE, Landgraf A, Strecker MR, Sudo M, Stockli DF, Friedrich A, Tabatabaei SH (2011) Arabia-Eurasia continental collision: insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Geol Soc Am Bull 123:106–131CrossRefGoogle Scholar
  14. Barrier E, Vrielynck B (2008) Palaeotectonic maps of the Middle East. Tectono-sedimentary-palinspastic maps from Late Norian to Pliocene, 14 maps, ParisGoogle Scholar
  15. Bell K (1989) Carbonatites: Genesis and Evolution. Unwin Hyman, London, pp 105–148Google Scholar
  16. Bird P (1979) Continental delamination and the Colorado Plateau. J Geophys Res 84:7561–7571CrossRefGoogle Scholar
  17. Boari E, Tommasini S, Laurenzi MA, Conticelli S (2009) Transition from ultrapotassic kamafugitic to sub-alkaline magmas: Sr, Nd, and Pb isotope, trace element and 40Ar-39Ar age data from the Middle Latin Valley volcanic field, Roman Magmatic Province, Central Italy. J Petrol 50:1327–1357CrossRefGoogle Scholar
  18. Brenan JM, Shaw HF, Ryenson FJ, Phinney DL (1995) Mineral-aqueous fluid partitioning of trace elements at 900 C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim Cosmochim Acta 59:3331–3350CrossRefGoogle Scholar
  19. Buhlmann AL, Cavell P, Burwash RA, Creaser RA, Luth RW (2000) Minette bodies and cognate mica-clinopyroxenite xenoliths from the Milk River area, southern Alberta: records of a complex history of the northernmost part of the Archean Wyoming craton. Can J Earth Sci 37:1629–1650CrossRefGoogle Scholar
  20. Chiu H-Y, Chung S-L, Zarrinkoub MH, Mohammadi SS, Khatib MM, Iizuka Y (2013) Zircon U-Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos 162–163:70–87CrossRefGoogle Scholar
  21. Chung S-L, Wang K-L, Crawford AJ, Kamenetsky VS, Chen C-H, Lan C-Y, Chen C-H (2001) High-Mg potassic rocks from Taiwan: implications for the genesis of orogenic potassic lavas. Lithos 59:153–170CrossRefGoogle Scholar
  22. Chung S-L, Chu M-F, Zhang Y, Xie Y, Lo C-H, Lee T-Y, Lan C-Y, Li X, Zhang Q, Wang Y (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci Rev 68:173–196CrossRefGoogle Scholar
  23. Conticelli S, Guarnieri L, Farinelli A, Mattei M, Avanzinelli R, Bianchini G, Boari E, Tommasini S, Tiepolo M, Prelević D, Venturelli G (2009) Trace elements and Sr–Nd–Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean Region: genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 107:68–92CrossRefGoogle Scholar
  24. Dargahi S, Arvin M, Pan Y, Babaei A (2010) Petrogenesis of post-collisional A-type granitoids from the Urumieh-Dokhtar magmatic assemblage, Southwestern Kerman, Iran: constraints on the Arabian-Eurasian continental collision. Lithos 115:190–204CrossRefGoogle Scholar
  25. Davidson J, Hassanzadeh J, Berzins R, Stockli DF, Bashukooh B, Turrin B, Pandamouz A (2004) The geology of the Damavand volcano, Alborz Mountains, northern Iran. Geol Soc Am Bull 116:16–29CrossRefGoogle Scholar
  26. Davies JH, von Blanckenburg F (1995) Slab breakoff: a model of lithospheric detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102CrossRefGoogle Scholar
  27. Dewey JF, Pitman WC III, Ryan WBF, Bonnin J (1973) Plate tectonics and the evolution of the Alpine system. Geol Soc Am Bull 84:3137–3180CrossRefGoogle Scholar
  28. Edgar AD, Green DH, Hibberson WO (1976) Experimental petrology of a highly potassic magma. J Petrol 17:339–356CrossRefGoogle Scholar
  29. Edgar AD, Condliffe E, Barnett RL, Shirran GJ (1980) An experimental study of an olivine ugandite magma and mechanisms for the formation of its K-enriched derivatives. J Petrol 21:475–497CrossRefGoogle Scholar
  30. Elkins-Tanton LT (2005) Continental magmatism caused by lithospheric delamination. In: Foulger et al (eds) Melting anomalies: their nature and origin. Geol Soc Am, Boulder, Colorado, pp 449–461Google Scholar
  31. Elkins-Tanton LT (2007) Continental magmatism, volatile recycling, and a heterogeneous mantle caused by lithospheric gravitational instabilities. J Geophys Res. doi: 10.1029/2005JB004072 Google Scholar
  32. Elkins-Tanton LT, Grove TL (2003) Evidence for deep melting of hydrous metasomatized mantle: pliocene high-potassium magmas from the Sierra Nevadas. J Geophys Res. doi: 10.1029/2002JB002168 Google Scholar
  33. Foley SF (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–453CrossRefGoogle Scholar
  34. Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classification, and constraint for petrogenetic models. Earth Sci Rev 24:81–134CrossRefGoogle Scholar
  35. Foley SF, Barth MG, Jenner GA (2000) Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim Cosmochim Acta 64:933–938CrossRefGoogle Scholar
  36. Foley SF, Prelević D, Rehfeldt T, Jacob DE (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet Sci Lett 363:181–191CrossRefGoogle Scholar
  37. Frimmel HE (2009) Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem Geol 258:338–353CrossRefGoogle Scholar
  38. Funk SP, Luth RW (2013) Melting phase relations of a mica-clinopyroxenite from the Milk River area, southern Alberta, Canada. Contrib Mineral Petrol 166:393–409CrossRefGoogle Scholar
  39. Ghazi AM, Hassanipak AA, Mahoney JJ, Duncan RA (2004) Geochemical characteristics, 40Ar-39Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, S.E. Iran. Tectonophysics 393:175–196CrossRefGoogle Scholar
  40. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212CrossRefGoogle Scholar
  41. Gill JB (1981) Orogenic Andesites and Plate Tectonics. Springer-Verlag, BerlinCrossRefGoogle Scholar
  42. Grassi D, Schmidt MW (2011) The melting of carbonated pelites from 70 to 700 km depth. J Petrol 52:765–789CrossRefGoogle Scholar
  43. Grégoire M, Bell DR, Le Roex AP (2002) Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classifications and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib Mineral Petrol 142:603–625CrossRefGoogle Scholar
  44. Gurenko AA, Hansteen TH, Schmincke H-U (1996) Evolution of parental magmas of Miocene shield basalts of Gran Canaria (Canary Islands): constraints from crystal, melt and fluid inclusions in minerals. Contrib Mineral Petrol 124:422–435CrossRefGoogle Scholar
  45. Hawkesworth CJ, Turner SP, McDermott F, Peate DW, van Calsteren P (1997) U–Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science 276:551–555CrossRefGoogle Scholar
  46. Ionov DA, Griffin WL, O’Reilly SY (1997) Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem Geol 141:153–184CrossRefGoogle Scholar
  47. Jahangiri A (2007) Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications. J Asian Earth Sci 30:433–447CrossRefGoogle Scholar
  48. Jiménez-Munt I, Fernàndez M, Saura E, Vergés J, Garcia-Castellanos D (2012) 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia-Eurasia collision (Iran). Geophys J Int 190:1311–1324CrossRefGoogle Scholar
  49. Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosy. doi: 10.1029/1999GC000014 Google Scholar
  50. Kaislaniemi L, van Hunen J, Allen MB, Neill I (2014) Sublithospheric small-scale convection—a mechanism for collision zone magmatism. Geology 42:291–294CrossRefGoogle Scholar
  51. Katz RF, Spiegelman M, Langmuir CH (2003) A new parameterization of hydrous mantle melting. Geochem Geophys Geosy. doi: 10.1029/2002GC000433 Google Scholar
  52. Keskin M (2007) Eastern Anatolia: a hot spot in a collision zone without a mantle plume. In: Foulger RF, Jurdy DM (eds) Plates, plumes and planetary processes. Geol Soc Am Sp Paper 430:693–722Google Scholar
  53. Kheirkhah M, Allen MB, Emami M (2009) Quaternary syn-collision magmatism from the Iran/Turkey borderlands. J Volcanol Geotherm Res 182:1–12CrossRefGoogle Scholar
  54. Lee C-TA (2014) Physics and chemistry of deep continental crust recycling. In: Treatise of geochemistry, 2nd edn. doi: 10.1016/B978-0-08-095975-7.00314-4
  55. Lee C-TA, Bachmann O (2014) How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics. Earth Planet Sci Lett 393:266–274CrossRefGoogle Scholar
  56. Lee C-TA, Luffi P, Le Roux V, Dasgupta R, Albaréde F, Leeman WP (2010) The redox state of arc mantle using Zn/Fe systematics. Nature 468:681–685CrossRefGoogle Scholar
  57. Lee C-TA, Luffi P, Chin E (2011) Building and destroying continental mantle. Annu Rev Earth Planet Sci 39:59–90CrossRefGoogle Scholar
  58. Lee H-Y, Chung S-L, Ji J, Qian Q, Gallet S, Lo C-H, Lee T-Y, Zhang Q (2012) Geochemical and Sr–Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet. J Asian Earth Sci 53:96–114CrossRefGoogle Scholar
  59. Li X-H, Li Z-X, Wingate MTD, Chung S-L, Liu Y, Lin G-C, Li W-X (2006) Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: part of a Neoproterozoic superplume beneath Rodinia? Precambrian Res 146:1–15CrossRefGoogle Scholar
  60. Lin I-J, Chung S-L, Chu C-H, Lee H-Y, Gallet S, Wu G, Ji J, Zhang Y (2012) Geochemical and Sr–Nd isotopic characteristics of Cretaceous to Paleocene granitoids and volcanic rocks, SE Tibet: petrogenesis and tectonic implications. J Asian Earth Sci 53:131–150CrossRefGoogle Scholar
  61. Liu D, Zhao Z, Zhu D-C, Niu Y, DePaolo DJ, Harrison TM, Mo XX, Dong G, Zhou S, Sun C, Zhang Z, Liu J (2014) Postcollisional potassic and ultrapotassic rocks in southern Tibet: mantle and crustal origins in response to India-Asia collision and convergence. Geochim Cosmochim Acta 143:207–231CrossRefGoogle Scholar
  62. Lloyd FE, Arima M, Edgar AD (1985) Partial melting of a phlogopite-clinopyroxenite nodule from south-west Uganda: an experimental study bearing on the origin of highly potassic continental rift volcanics. Contrib Mineral Petrol 91:321–329CrossRefGoogle Scholar
  63. Luth RW (2003) Mantle volatiles—distribution and consequences. In: Carlson RW (ed) The Mantle and Core, Treatise in Geochemistry, vol 2. Elsevier-Pergamon, Oxford, pp 319–361CrossRefGoogle Scholar
  64. McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050CrossRefGoogle Scholar
  65. McQuarrie N, van Hinsbergen DJJ (2013) Retrodeforming the Arabia-Eurasia collision zone: age of collision versus magnitude of continental subduction. Geology 41:315–318CrossRefGoogle Scholar
  66. Milton DJ (1976) Qal’eh Hasan Ali Maars, central Iran. Bull Volcanol 40:201–208CrossRefGoogle Scholar
  67. Moghadam HS, Ghorbani G, Zaki Khedr M, Fazlnia N, Chiaradia M, Eyuboglu Y, Santosh M, Galindo Francisco C, Lopez Martinez M, Gourgaud A, Arai S (2014) Late Miocene K-rich volcanism in the Eslamieh Peninsula (Saray), NW Iran: implications for geodynamic evolution of the Turkish-Iranian High Plateau. Gondwana Res 26:1028–1050CrossRefGoogle Scholar
  68. Nicholls IA, Whitford DJ (1983) Potassium-rich volcanic rocks of the Muriah complex, Java, Indonesia: products of multiple magma sources? J Volcanol Geotherm Res 18:337–359CrossRefGoogle Scholar
  69. Omrani J, Agard P, Whitechurch H, Benoit M, Prouteau G, Jolivet L (2008) Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos 106:380–398CrossRefGoogle Scholar
  70. O’Reilly SY, Griffin WL (2013) Mantle metasomatism. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Lecture Notes in Earth System Sciences. Springer, Berlin. doi: 10.1007/978-3-642-28394-9_12 Google Scholar
  71. Owen JP (2008) Geochemistry of lamprophyres from the Western Alps, Italy: implications for the origin of an enriched isotopic component in the Italian mantle. Contrib Mineral Petrol 155:341–362CrossRefGoogle Scholar
  72. Pang K-N, Chung S-L, Zarrinkoub MH, Mohammadi SS, Yang H-M, Chu C-H, Lee H-Y, Lo C-H (2012) Age, geochemical characteristics and petrogenesis of Late Cenozoic intraplate alkali basalts in the Lut-Sistan region, eastern Iran. Chem Geol 306–307:40–53CrossRefGoogle Scholar
  73. Pang K-N, Chung S-L, Zarrinkoub MH, Khatib MM, Mohammadi SS, Chiu H-Y, Chu C-H, Lee H-Y, Lo C-H (2013a) Eocene-Oligocene post-collisional magmatism in the Lut-Sistan region, eastern Iran: magma genesis and tectonic implications. Lithos 180–181:234–251CrossRefGoogle Scholar
  74. Pang K-N, Chung S-L, Zarrinkoub MH, Lin Y-C, Lee H-Y, Lo C-H, Khatib MM (2013b) Iranian ultrapotassic volcanism at ~11 Ma signifies the initiation of post-collisional magmatism in the Arabia-Eurasia collision zone. Terra Nova 25:405–413CrossRefGoogle Scholar
  75. Pang K-N, Chung S-L, Zarrinkoub MH, Chiu H-Y, Li X-H (2014) On the magmatic record of the Makran arc, southeastern Iran: insights from zircon U-Pb geochronology and bulk-rock geochemistry. Geochem Geophys Geosy 15:2151–2169CrossRefGoogle Scholar
  76. Patchett PJ, White WM, Feldmann H, Kielinczuk S, Hofmann AW (1984) Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into Earth’s mantle. Earth Planet Sci Lett 69:365–378CrossRefGoogle Scholar
  77. Patchett PJ, Vervoort JD, Söderlund U, Salters VJM (2004) Lu–Hf and Sm–Nd isotopic systematics in chondrites and their constraints on the Lu–Hf properties of the Earth. Earth Planet Sci Lett 222:29–41CrossRefGoogle Scholar
  78. Pearce JA, Bender JF, De Long SE, Kidd WSF, Low PJ, Guner Y, Saroglu F, Yilmaz Y, Moorbath S, Mitchell JG (1990) Genesis of collision volcanism in Eastern Anatolia, Turkey. J Volcanol Geotherm Res 44:189–229CrossRefGoogle Scholar
  79. Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochem Geophys Geosy. doi: 10.1029/2004GC000895 Google Scholar
  80. Peccerillo A, Poli G, Serri G (1988) Petrogenesis of orenditic and kamafugitic rocks from central Italy. Can Mineral 26:45–65Google Scholar
  81. Peccerillo A, Federico M, Barbieri M, Brilli M, Wu T-W (2010) Interaction between ultrapotassic magmas and carbonate rocks: evidence from geochemical and isotopic (Sr, Nd, O) compositions of granular lithic clasts from the Alban Hills Volcano, Central Italy. Geochim Cosmochim Acta 74:2999–3022CrossRefGoogle Scholar
  82. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394CrossRefGoogle Scholar
  83. Prelević D, Foley SF, Romer RL, Cvetković V, Downes H (2005) Tertiary ultrapotassic volcanism in Serbia: constraints on petrogenesis and mantle source characteristics. J Petrol 46:1443–1487CrossRefGoogle Scholar
  84. Prelević D, Foley SF, Romer RL, Conticelli S (2008) Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics. Geochim Cosmochim Acta 72:2125–2156CrossRefGoogle Scholar
  85. Prelević D, Stracke A, Foley SF, Romer RL, Conticelli S (2010) Hf isotope compositions of Mediterranean lamproites: mixing of melts from asthenosphere and crustally contaminated mantle lithosphere. Lithos 119:297–312CrossRefGoogle Scholar
  86. Prelević D, Akal C, Foley SF, Romer RL, Stracke A, van den Bogaard P (2012) Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. J Petrol 53:1019–1055CrossRefGoogle Scholar
  87. Priestley K, McKenzie D, Barron J, Tatar M, Debayle E (2012) The Zagros core: deformation of the continental lithospheric mantle. Geochem Geophys Geosy. doi: 10.1029/2012GC004435 Google Scholar
  88. Roeder PL, Emslie RF (1970) Olivine–liquid equilibrium. Contrib Mineral Petrol 29:275–289CrossRefGoogle Scholar
  89. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The Crust, Treatise in Geochemistry, vol 3. Elsevier-Pergamon, Oxford, pp 1–64CrossRefGoogle Scholar
  90. Saadat S, Stern CR, Moradian A (2014) Petrochemistry of ultrapotassic tephrites and associated cognate plutonic xenoliths with carbonatite affinities from the late Quaternary Qa’le Hasan Ali maars, central Iran. J Asian Earth Sci 89:108–122CrossRefGoogle Scholar
  91. Şengör AMC, Natal’in BA (1996) Paleotectonics of Asia: fragments of a synthesis. In: Yin A, Harrison M (eds) The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, pp 486–640Google Scholar
  92. Şengör AMC, Altlner D, Cin A, Ustaomer T, Hsu KJ (1988) Origin and Assembly of the Tethyside Orogenic Collage at the Expense of Gondwana Land. In: Audley-Charles MG, Hallam AE (eds) Gondwana and Tethys. Geol Soc London Sp Pub, Blackwell, Oxford, pp 119–181Google Scholar
  93. Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243CrossRefGoogle Scholar
  94. Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417CrossRefGoogle Scholar
  95. Stoppa F, Cundari A (1998) Origin and multiple crystallization of the kamafugite-carbonatite association: the San Venanzo-Pian di Celle occurrence (Umbria, Italy). Mineral Mag 62:273–289CrossRefGoogle Scholar
  96. Straub SM, LaGatta AB, Martin-Del Pozzo AL, Langmuir CH (2008) Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem Geophys Geosy. doi: 10.1029/2007GC001583 Google Scholar
  97. Su B-X, Chung S-L, Zarrinkoub MH, Pang K-N, Chen L, Ji W-Q, Brewer A, Ying J-F, Khatib MM (2014) Composition and structure of the lithospheric mantle beneath NE Iran: constraints from mantle xenoliths. Lithos 202–203:267–282CrossRefGoogle Scholar
  98. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics in ocean basalt: implication for mantle composition and processes, in: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc London Sp Pub, vol 42, Blackwell Scientific Publication, Oxford, pp 313–345Google Scholar
  99. Tatsumi Y, Koyaguchi T (1989) An absarokite from a phlogopite lherzolite source. Contrib Mineral Petrol 102:34–40CrossRefGoogle Scholar
  100. Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, Van Calsteren P, Deng W (1996) Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37:45–71CrossRefGoogle Scholar
  101. Turner SP, Platt JP, George RMM, Kelley SP, Pearson DG, Nowell GM (1999) Magmatism associated with orogenic collapse of the Betic-Alboran Domain, SE Spain. J Petrol 40:1011–1036CrossRefGoogle Scholar
  102. Verdel C, Wernicke BP, Hassanzadeh J, Guest B (2011) A Paleogene extensional arc flare-up in Iran. Tectonics 30:TC3008. doi: 10.1029/2010TC002809 CrossRefGoogle Scholar
  103. Vernant P, Nilforoushan F, Hatzfeld D, Abbassi MR, Vigny C, Masson F, Nankali H, Martinod J, Ashtiani A, Bayer R, Tavakoli F, Chéry J (2004) Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys J Int 157:381–398CrossRefGoogle Scholar
  104. Wang F, Zheng X-S, Lee JIK, Choe WH, Evans N, Zhu R-X (2009) An 40Ar/39Ar geochronology on a mid-Eocene igneous event on the Barton and Weaver peninsulas: implications for the dynamic setting of the Antarctic Peninsula. Geochem Geophys Geosy 10:Q12006. doi: 10.1029/2009GC002874 Google Scholar
  105. Wilson M (1989) Igneous Petrogenesis. Springer, DordrechtCrossRefGoogle Scholar
  106. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72CrossRefGoogle Scholar
  107. Zarrinkoub MH, Pang K-N, Chung S-L, Khatib MM, Mohammadi SS, Chiu H-Y, Lee H-Y (2012) Zircon U–Pb age and geochemical constraints on the origin of the Birjand ophiolite, Sistan suture zone, eastern Iran. Lithos 154:392–405CrossRefGoogle Scholar
  108. Zhao Z, Mo X, Dilek Y, Niu Y, DePaolo DJ, Robinson P, Zhu D, Sun C, Dong G, Zhou S, Luo Z, Hou Z (2009) Geochemical and Sr–Nd–Pb–O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos 113:190–212CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Earth SciencesAcademia SinicaTaipeiTaiwan
  2. 2.Department of GeosciencesNational Taiwan University, TaipeiTaipeiTaiwan
  3. 3.Department of GeologyUniversity of BirjandBirjandIran
  4. 4.Paleomagnetism and Geochronology Laboratory, State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  5. 5.School of Physical SciencesUniversity of TasmaniaHobartAustralia

Personalised recommendations