Water, iron, redox environment: effects on the wadsleyite–ringwoodite phase transition

  • Maria Mrosko
  • Monika Koch-Müller
  • Catherine McCammon
  • Dieter Rhede
  • Joseph R. Smyth
  • Richard Wirth
Original Paper


The transition zone of the Earth’s upper mantle is characterized by three discontinuities in seismic wave velocity profiles. One of these at about a depth of 520 km is assigned to the transformation of wadsleyite (β-) to ringwoodite [γ-(Mg, Fe)2SiO4] (e.g., Shearer in J Geophys Res 101:3053–3066, 1996). The exact location, width, and other properties of that discontinuity are affected by a multitude of parameters. The present study specifically focuses on the effect of water, iron content, and redox environment on the depth of the phase transition. We performed high-pressure experiments in a multi-anvil apparatus at 1200 °C with variation in Mg–Fe compositions (0.10 < xFe < 0.24), water contents (0 < \(x_{{{\text{H}}_{2} {\text{O}}}}\) < 2 wt%), and the redox environment [using different buffers: Fe/FeO (reducing), Re/ReO2 (oxidizing)]. Run products were investigated using electron microprobe and Fourier transform infrared spectroscopy to obtain the composition including the hydroxyl concentration of coexisting phases. Mössbauer (MB) spectroscopy and electron energy loss spectroscopy as well as single-crystal X-ray diffraction were applied to gain insight into the Fe3+ content and incorporation mechanisms. Under hydrous and reducing conditions, the wadsleyite–ringwoodite boundary shifts by 0.5 GPa to higher pressures accompanied by a broadening of the region of coexisting wadsleyite and ringwoodite. In contrast, under hydrous and oxidizing conditions, the two-phase field gets narrower and the shift of the two-phase field to higher pressure is amplified. Thus, the stability field of wadsleyite is extended to higher pressure, most likely due to the higher water and Fe3+ content in the wadsleyite structure compared to ringwoodite. Based on results from MB spectroscopy and single-crystal X-ray diffraction, we infer that Fe3+ in wadsleyite is incorporated as a spinelloid component and stabilizes wadsleyite to higher pressures.


Wadsleyite Ringwoodite Phase stability Spinelloid Electron microprobe Nominally anhydrous minerals Ferric iron FTIR spectroscopy Mössbauer spectroscopy Electron energy loss spectroscopy Single-crystal X-ray diffraction 

Supplementary material

410_2015_1163_MOESM1_ESM.doc (26 kb)
Supplementary material 1 (DOC 26 kb)


  1. Akaogi M (2007) Phase transition of minerals in the transition zone and upper part of the lower mantle. Geolog Soc Am 421:1–13Google Scholar
  2. Akaogi M, Yusa H, Shiraishi K, Suzuki T (1995) Thermodynamic properties of alpha-quartz, coesite and stishovite and equilibrium phase relations at high pressures and high temperatures. J Geophys Res 100:337–347Google Scholar
  3. Bina CR, Wood BJ (1987) Olivine-spinel transitions; experimental and thermodynamic constraints and implications for the nature of the 400-km seismic discontinuity. J Geophys Res B Solid Earth Planets 92:4853–4866CrossRefGoogle Scholar
  4. Bolfan-Casanova N, Munoz M, McCammon C, Deloule E, Ferot A, Demouchy S, France L, Andrault D, Pascarelli S (2012) Ferric iron and water incorporation in wadsleyite under hydrous and oxidizing conditions: a XANES, Mossbauer, and SIMS study. Am Mineral 97(8–9):1483–1493CrossRefGoogle Scholar
  5. Cao Q, Wang P, van der Hilst RD, de Hoop MV, Shim SH (2010) Imaging the upper mantle itransition zone with a generalized Radon transform of SS precursors. Phys Earth Planet Inter 180:80–91CrossRefGoogle Scholar
  6. Cromer DT, Mann J (1968) X-ray scattering factors computed from numerical Hartree–Fock wave functions. Acta Crystallogr A A24:321–325CrossRefGoogle Scholar
  7. Deon F, Koch-Müller M, Rhede D, Gottschalk M, Wirth R, Thomas SM (2010) Location and quantification of hydroxyl in wadsleyite: new insights. Am Mineral 95:312–322CrossRefGoogle Scholar
  8. Deon F, Koch-Müller M, Rhede D, Wirth R (2011) Water and Iron effect on the P-T-x coordinates of the 410-km discontinuity in the Earth upper mantle. Contrib Mineral Petrol 161:653–666CrossRefGoogle Scholar
  9. Deuss A, Woodhouse J (2001) Seismic observations of splitting of the mid-transition zone discontinuity in earth’s mantle. Science 294:354–357CrossRefGoogle Scholar
  10. Farrugia LJ (1999) WinGX software package. J Appl Crystallogr 32:837–838CrossRefGoogle Scholar
  11. Frost DJ, Dolejs D (2007) Experimental determination of the effect of H2O on the 410-km discontinuity. Earth Planet Sci Lett 256:182–195CrossRefGoogle Scholar
  12. Frost DJ, McCammon CA (2009) The effect of oxygen fugacity on the olivine to wadsleyite transformation; implications for remote sensing of mantle redox state at the 410 km seismic discontinuity. Am Mineral 94:872–882CrossRefGoogle Scholar
  13. Gasparik T (1989) Transformation of enstatite—diopside—jadeite pyroxenes to garnet. Contrib Mineral Petrol 102:389–405CrossRefGoogle Scholar
  14. Hazen RM, Weinberger MB, Yang H, Prewitt CT (2000) Comparative high-pressure crystal chemistry of wadsleyite, β-(Mg1−xFex)2SiO4, with x = 0 and 0.25. Am Mineral 85:770–777Google Scholar
  15. Inoue T, Yurimoto H, Kudoh Y (1995) Hydrous modified spinel, Mg1.75SiH0.5O4: a new reservoir in the mantle transition region. Geophys Res Lett 22:117–120CrossRefGoogle Scholar
  16. Inoue T, Irifune T, Higo Y, Sanchira T, Sueda Y, Yamada A, Shinmei T, Yamazaki D, Ando J, Funakoshi K, Utsumi W (2006) The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 determined by in situ X-ray diffraction. Phys Chem Miner 33:106–114CrossRefGoogle Scholar
  17. Jacobson SD, Demouchy S, Frost DJ, Boffa Ballaran T, Kung J (2005) A systematic study of OH in hydrous wadsleyite from polarized FTIR spectroscopy and single-crystal X-ray diffraction: oxygen sites for hydrogen storage n Earth’s interior. Am Mineral 90:61–70CrossRefGoogle Scholar
  18. Katsura and Ito (1989) The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel and spinel. J Geophys Res 94:15663–15670CrossRefGoogle Scholar
  19. Kawamoto T (2004) Hydrous phase stability and partial melt chemistry of H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys Earth Planet Inter 143–144:387–395CrossRefGoogle Scholar
  20. Koch-Müller M, Rhede D (2010) IR absorption coefficients for water in nominally anhydrous high-pressure minerals. Am Mineral 95:770–775CrossRefGoogle Scholar
  21. Koch-Müller M, Dera P, Fei Y, Hellwig H, Liu Z, van Orman J, Wirth R (2005) Polymorphic phase transition in superhydrous phase B. Phys Chem Miner 32:349–361CrossRefGoogle Scholar
  22. Litasov K, Ohtani E (2003) Stability of various hydrous phases in CMAS pyrolite-H2O system up to 25 GPa. Phys Chem Miner 30:147–156CrossRefGoogle Scholar
  23. Litasov KD, Ohtani E (2007) Effect of water on the phase relations in Earth’s mantle and deep water cycle. Geol Soc Am 421:115–156Google Scholar
  24. Margulies S, Ehrman JR (1961) Transmission and line broadening of resonance radiation incident on a resonance absorber. Nucl Instrum Methods 12(C):131–137CrossRefGoogle Scholar
  25. McCammon CA, Frost DJ, Smyth JR, Laustsen HMS, Kawamoto T, Ross NL, van Aken PA (2004) Oxidation state of iron in hydrous mantle phases: implications for subduction and mantle oxygen fugacity. Phys Earth Planet Inter 143–144:157–169CrossRefGoogle Scholar
  26. Morishima H, Kato T, Suto M, Ohtani E, Urakawa S, Utsumi W, Shimomura O, Kikegawa T (1994) The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science 26:1202–1203CrossRefGoogle Scholar
  27. Pearson DG, Brenker FE, Nestola F, McNeill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507(7491):221–224CrossRefGoogle Scholar
  28. Prescher C, McCammon C, Dubrovinsky L (2012) MossA: a program for analyzing energy-domain Mössbauer spectra from conventional and synchrotron sources. J Appl Crystallogr 45:329–331CrossRefGoogle Scholar
  29. Schmerr N, Garnero EJ (2007) Upper mantle discontinuity topography from thermal and chemical heterogeneity. Science 318:623–626CrossRefGoogle Scholar
  30. Schmidt MW, Ulmer P (2004) A rocking multianvil; elimination of chemical segregation in fluid-saturated high-pressure experiments. Geochim Cosmochim Acta 68:1889–1899CrossRefGoogle Scholar
  31. Shearer PM (1996) Transition zone velocity gradients and the 520-km discontinuity. J Geophys Res 101:3053–3066CrossRefGoogle Scholar
  32. Smyth JR, Frost DJ, Nestola F, Holl CM, Bromiley G (2006) Olivine hydration in the deep upper mantle: effects of temperature and silica activity. Geophys Res Lett 33:L15301CrossRefGoogle Scholar
  33. Smyth JR, Miyajima N, Huss GR, Hellebrand E, Rubie DC, Frost DJ (2012) Olivine–wadsleyite–pyroxene topotaxy: evidence for coherent nucleation and diffusion-controlled growth at the 410-km discontinuity. Phys Earth Planet Inter 200–201:85–91CrossRefGoogle Scholar
  34. Smyth JR, Bolfan-Casanova N, Avignant D, El-Ghozzi M, Hirner SM (2014) Tetrahedral ferric iron in oxidized hydrous wadsleyite. Am Mineral 99:458–466CrossRefGoogle Scholar
  35. Tokonami M (1965) Atomic scattering factor for O2−. Acta Crystallogr A 19:486CrossRefGoogle Scholar
  36. van Aken PA, Liebscher B (2002) Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L-23 electron energy-loss near-edge spectra. Phys Chem Miner 29:188–200CrossRefGoogle Scholar
  37. van der Meijde M, van der Lee S, Giardini D (2005) The seismic discontinuities in the Mediterranean mantle. Phys Earth Planet Inter 148:233–250CrossRefGoogle Scholar
  38. Walker D (1991) Lubrication, gasketing, and precision in multianvil experiments. Am Mineral 76:1092–1100Google Scholar
  39. Wirth R (2004) A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876CrossRefGoogle Scholar
  40. Woodland AB, Angel RJ (1998) Crystal structure of a new spinelloid with the wadsleyite structure in the system Fe2SiO4–Fe3O4 and implications for the Earth’s mantle. Am Mineral 83:404–408Google Scholar
  41. Yagi T, Akaogi M, Shimomura O, Suzuki T, Akimoto S (1987) In situ observation of the olivine-spinel phase transformation in Fe2SiO4 using synchrotron radiation. J Geophys Res 92:6207–6213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Maria Mrosko
    • 1
  • Monika Koch-Müller
    • 1
  • Catherine McCammon
    • 2
  • Dieter Rhede
    • 3
  • Joseph R. Smyth
    • 4
  • Richard Wirth
    • 1
  1. 1.Sektion 3.3, Chemie und Physik der GeomaterialienDeutsches GeoForschungsZentrumPotsdamGermany
  2. 2.Bayerisches Geoinstitut BayreuthBayreuthGermany
  3. 3.Sektion 4.2, Anorganische und IsotopenchemieDeutsches GeoForschungsZentrumPotsdamGermany
  4. 4.Department of Geological SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations