Unravelling the complexities in high-grade rocks using multiple techniques: the Achankovil Zone of southern India

  • Richard J. M. Taylor
  • Chris Clark
  • Tim E. Johnson
  • M. Santosh
  • Alan S. Collins
Original Paper

Abstract

The Achankovil Zone of southern India forms a distinct isotopic and structural boundary separating the Madurai Block to the north from the Trivandrum Block to the south. We combine isotopic and trace element geochemistry of major and accessory phases with phase equilibria modelling to provide quantitative constraints on the timing and conditions of peak metamorphism and the nature of the protoliths within the Achankovil Zone. The results suggest a clockwise pressure–temperature path with peak metamorphic temperatures of up to 950 °C at pressures of around 0.7 GPa followed by high-temperature decompression. The metamorphic peak occurred at 545–512 Ma. U–Pb and Hf isotopic analysis of detrital zircon shows that the rocks have a strong affinity with the southern part of the Madurai Block. The Achankovil Zone is interpreted as the reworked southern margin of the Madurai Block, which was metamorphosed during the final stages of the assembly of Gondwana.

Keywords

Phase equilibria modelling Zircon geochronology Metamorphism Achankovil Zone Gondwana 

Supplementary material

410_2015_1147_MOESM1_ESM.xlsx (92 kb)
Supplementary material 1 (XLSX 92 kb)
410_2015_1147_MOESM2_ESM.pdf (14 mb)
Supplementary material 2 (PDF 14325 kb)

References

  1. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214CrossRefGoogle Scholar
  2. Archibald DB, Collins AS, Foden JD, Payne JL, Taylor RJM (2015) Towards unravelling the Mozambique Ocean Conundrum using a Triumvirate of Zircon isotopic proxies on the Ambatolampy Group, Central Madagascar Tectonophysics (in press)Google Scholar
  3. Bartlett JM, Dougherty-Page JS, Harris NBW, Hawkesworth CJ, Santosh M (1998) The application of single zircon evaporation and model Nd ages to the interpretation of polymetamorphic terrains: an example from the Proterozoic mobile belt of south India. Contrib Mineral Petrol 131:181–195CrossRefGoogle Scholar
  4. Bindu RS, Yoshida M, Santosh M (1998) Electron microprobe dating of monazite from the Chittikara granulite, South India: evidence for polymetamorphic events. J Geosci 41:77–83Google Scholar
  5. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170CrossRefGoogle Scholar
  6. Black LP et al (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140. doi:10.1016/j.chemgeo.2004.01.003 CrossRefGoogle Scholar
  7. Brandt S, Raith MM, Schenk V, Sengupta P, Srikantappa C, Gerdes A (2014) Crustal evolution of the Southern Granulite Terrane, south India: new geochronological and geochemical data for felsic orthogneisses and granites. Precambr Res 246:91–122CrossRefGoogle Scholar
  8. Braun I, Kriegsman LM (2003) Proterozoic crustal evolution of southernmost India and Sri Lanka. Geol Soc Lond Spec Publ 206:169–202CrossRefGoogle Scholar
  9. Braun I, Montel JM, Nicollet C (1998) Electron microprobe dating of monazites from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India. Chem Geol 146:65–85CrossRefGoogle Scholar
  10. Cenki B, Kriegsman LM (2005) Tectonics of the Neoproterozoic southern granulite terrain, South India. Precambr Res 138:37–56CrossRefGoogle Scholar
  11. Cenki B, Kriegsman LM, Braun I (2002) Melt-producing and melt-consuming reactions in the Achankovil cordierite gneisses, South India. J Metamorph Geol 20:543–561CrossRefGoogle Scholar
  12. Cenki B, Braun I, Bröcker M (2004) Evolution of the continental crust in the Kerala Khondalite Belt, southernmost India: evidence from Nd isotope mapping, U–Pb and Rb–Sr geochronology. Precambr Res 134:275–292CrossRefGoogle Scholar
  13. Chacko T, Lamb M, Farquhar J (1996) Ultra-high temperature metamorphism in the Kerala Khondalite Belt. In: Santosh M, Yoshida M (eds) The Archaean and proterozoic terrains in Southern India within East Gondwana. Gondwana Research Group Memoir 3:157–165Google Scholar
  14. Claoue-Long JC, Compston W, Roberts J, Fanning CM (1995) Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. Geochronology, time scales and global stratigraphic correlation. SEPM Spec Publ 54:3–21Google Scholar
  15. Clark C, Collins AS, Santosh M, Taylor R, Wade BP (2009a) The P-T-t architecture of a Gondwanan suture: REE, U–Pb and Ti-in-zircon thermometric constraints from the Palghat Cauvery shear system, South India. Precambr Res 174:129–144CrossRefGoogle Scholar
  16. Clark C, Collins AS, Timms NE, Kinny PD, Chetty TRK, Santosh M (2009b) SHRIMP U–Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India. Gondwana Res 16:27–36CrossRefGoogle Scholar
  17. Clark C, Healy D, Johnson T, Collins AS, Taylor RJ, Santosh M, Timms NE (2015) Hot orogens and supercontinent amalgamation: a Gondwanan example from southern India Gondwana Research (in press)Google Scholar
  18. Collins AS (2006) Madagascar and the amalgamation of Central Gondwana. Gondwana Res 9:3–16CrossRefGoogle Scholar
  19. Collins AS, Kröner A, Fitzsimons ICW, Razakamanana T (2003) Detrital footprint of the Mozambique ocean: U–Pb SHRIMP and Pb evaporation zircon geochronology of metasedimentary gneisses in eastern Madagascar. Tectonophysics 375:77–99CrossRefGoogle Scholar
  20. Collins AS, Clark C, Sajeev K, Santosh M, Kelsey DE, Hand M (2007a) Passage through India: the Mozambique Ocean suture, high-pressure granulites and the Palghat–Cauvery shear zone system. Terra Nova 19:141–147CrossRefGoogle Scholar
  21. Collins AS, Santosh M, Braun I, Clark C (2007b) Age and sedimentary provenance of the Southern Granulites, South India: U–Th–Pb SHRIMP secondary ion mass spectrometry. Precambr Res 155:125–138CrossRefGoogle Scholar
  22. Collins AS, Clark C, Plavsa D (2014) Peninsular India in Gondwana: the tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counterparts. Gondwana Res 25:190–203CrossRefGoogle Scholar
  23. Compston W, Williams IS, Meyer C (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res 89(Suppl):525–534CrossRefGoogle Scholar
  24. Cox R et al (2004) Proterozoic tectonostratigraphy and paleogeography of central Madagascar derived from detrital zircon U–Pb age populations. J Geol 112:379–399CrossRefGoogle Scholar
  25. De Laeter JR, Kennedy AK (1998) A double focusing mass spectrometer for geochronology. Int J Mass Spectrom 178:43–50CrossRefGoogle Scholar
  26. De Waele B, Fitzsimons I (2007) The nature and timing of Palaeoproterozoic sedimentation at the southeastern margin of the Congo Craton; zircon U–Pb geochronology of plutonic, volcanic and clastic units in northern Zambia. Precambr Res 159:95–116CrossRefGoogle Scholar
  27. Drury SA, Harris NBW, Holt RW, Reeves-Smith GJ, Wightman RT (1984) Precambrian tectonics and crustal evolution in south India. J Geol 92:3–20CrossRefGoogle Scholar
  28. Fletcher IR, McNaughton NJ, Davis WJ, Rasmussen B (2010) Matrix effects and calibration limitations in ion probe U–Pb and Th–Pb dating of monazite. Chem Geol 270:31–44CrossRefGoogle Scholar
  29. Foster G, Kinny P, Vance D, Prince C, Harris N (2000) The significance of monazite U–Th–Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth Planet Sci Lett 181:327–340CrossRefGoogle Scholar
  30. Ghosh JG, de Wit MJ, Zartman RE (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies. Tectonics 23(TC3006):3001–3038Google Scholar
  31. Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu X, Zhou X (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269CrossRefGoogle Scholar
  32. Harley SL, Nandakumar V (2014) Accessory mineral behaviour in granulite migmatites: a case study from the Kerala Khondalite Belt. India J Petrol 55:1965–2002CrossRefGoogle Scholar
  33. Harley SL, Kinny P, Snape I, Black LP (2001) Zircon chemistry and the definition of events in Archean granulite terrains. In: Fourth international Archean symposium, extended abstract volume, AGSO Geoscience Australia Record 2001/37, pp 511–513Google Scholar
  34. Harris NBW, Santosh M, Taylor PN (1994) Crustal evolution in south India: constraints from Nd isotopes. J Geol 102:139–150CrossRefGoogle Scholar
  35. Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162CrossRefGoogle Scholar
  36. Hokada T, Harley SL (2004) Zircon growth in UHT leucosome: constraints from zircon-garnet rare earth elements (REE) relations in Napier Complex, East Antarctica. J Mineral Petrol Sci 99:180–190CrossRefGoogle Scholar
  37. Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383CrossRefGoogle Scholar
  38. Ishii S, Tsunogae T, Santosh M (2006) Ultrahigh-temperature metamorphism in the Achankovil Zone: implications for the correlation of crustal blocks in southern India. Gondwana Res 10:99–114CrossRefGoogle Scholar
  39. Johnson TE, Clark C, Taylor RJM, Santosh M, Collins AS (2015) Prograde and retrograde growth of monazite in migmatites: an example from the Nagercoil Block, southern India. Geosci Front 6:373–387CrossRefGoogle Scholar
  40. Kelly NM, Harley SL (2005) An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica. Contrib Mineral Petrol 149:57–84CrossRefGoogle Scholar
  41. Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212CrossRefGoogle Scholar
  42. Kemp AIS, Hawkesworth CJ, Paterson BA, Kinny PD, Kemp T (2006) Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439:580–583CrossRefGoogle Scholar
  43. Kennedy A, De Laeter JR (1994) The performance of the WA SHRIMP II ion microprobe, In: Eighth international conference on geochronology, cosmochronology and isotope geology 1107, p 166Google Scholar
  44. Kita NT, Ushikubo T, Fu B, Valley JW (2009) High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem Geol 264:43–57. doi:10.1016/j.chemgeo.2009.02.012 CrossRefGoogle Scholar
  45. Kooijman E, Upadhyay D, Mezger K, Raith MM, Berndt J, Srikantappa C (2011) Response of the U-Pb chronometer and trace elements in zircon to ultrahigh-temperature metamorphism: the Kadavur anorthosite complex, southern India. Chem Geol 290:177–188CrossRefGoogle Scholar
  46. Korhonen FJ, Saw AK, Clark C, Brown M, Bhattacharya S (2011) New constraints on UHT metamorphism in the Eastern Ghats Province through the application of phase equilibria modelling and in situ geochronology. Gondwana Res 20:764–781CrossRefGoogle Scholar
  47. Kröner A, Santosh M, Wong J (2012) Zircon ages and Hf isotopic systematics reveal vestiges of Mesoproterozoic to Archaean crust within the late Neoproterozoic–Cambrian high-grade terrain of southernmost India. Gondwana Res 21:876–886CrossRefGoogle Scholar
  48. Ludwig K (2003) A geochronological toolkit for Microsoft Excel Berkeley Geochron Centre, Special Publication 470Google Scholar
  49. Ludwig K (2009) Errors of isotope ratios acquired by double interpolation. Chem Geol 268:24–26CrossRefGoogle Scholar
  50. Naidu GD, Manoj C, Patro PK, Sreedhar SV, Harinarayana T (2011) Deep electrical signatures across the Achankovil shear zone, Southern Granulite Terrain inferred from magnetotellurics. Gondwana Res 20:405–426CrossRefGoogle Scholar
  51. Nandakumar V, Harley SL (2000) A reappraisal of the pressure–temperature path of granulites from the Kerala Khondalite Belt, Southern India. J Geol 108:687–703CrossRefGoogle Scholar
  52. Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst 11:1–36CrossRefGoogle Scholar
  53. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518CrossRefGoogle Scholar
  54. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144CrossRefGoogle Scholar
  55. Pearce MA, White AJR, Gazley MF (2015) TCInvestigator: automated calculation of mineral mode and composition contours for thermocalc pseudosections. J Metamorph Geol 33:413–425. doi:10.1111/jmg.12126 CrossRefGoogle Scholar
  56. Plavsa D, Collins AS, Foden JF, Kropinski L, Santosh M, Chetty TRK, Clark C (2012) Delineating crustal domains in Peninsular India: age and chemistry of orthopyroxene-bearing felsic gneisses in the Madurai Block. Precambr Res 198–199:77–93CrossRefGoogle Scholar
  57. Plavsa D, Collins AS, Payne JL, Foden JD, Clark C, Santosh M (2014) Detrital zircons in basement metasedimentary protoliths unveil the origins of southern India. Bull Geol Soc Am 126:791–812CrossRefGoogle Scholar
  58. Powell R, Holland TJB (1988) An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J Metamorph Geol 6:173–204CrossRefGoogle Scholar
  59. Prakash D (2010) New SHRIMP U-Pb zircon ages of the metapelitic granulites from NW of Madurai, Southern India. J Geol Soc India 76:371–383CrossRefGoogle Scholar
  60. Raith MM, Sengupta P, Kooijman E, Upadhyay D, Srikantappppa C (2010) Corundum-leucosome-bearing aluminous gneiss from Ayyarmalai, Southern Granulite Terrain, India: a textbook example of vapor phase-absent muscovite-melting in silica-undersaturated aluminous rocks. Am Mineral 95:897–907CrossRefGoogle Scholar
  61. Rajesh KG, Chetty TRK (2006) Structure and tectonics of the Achankovil Shear Zone, southern India. Gondwana Res 10:86–98CrossRefGoogle Scholar
  62. Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138CrossRefGoogle Scholar
  63. Rubatto D, Hermann J (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol 241:38–61CrossRefGoogle Scholar
  64. Sacks PE, Nambiar CG, Walters LJ (1997) Dextral Pan-African shear along the southwestern edge of the Achankovil shear belt, south India: constraints on Gondwana reconstructions. J Geol 105:275–284CrossRefGoogle Scholar
  65. Santosh M (1987) Cordierite gneisses of southern Kerala, India: petrology, fluid inclusions and implications for crustal uplift history. Contrib Mineral Petrol 96:343–356CrossRefGoogle Scholar
  66. Santosh M, Sajeev K (2006) Anticlockwise evolution of ultrahigh-temperature granulites within continental collision zone in southern India. Lithos 92:447–464CrossRefGoogle Scholar
  67. Santosh M, Yokoyama K, Biju-Sekhar S, Rogers JJW (2003) Multiple tectonothermal events in the granulite blocks of southern India revealed from EPMA dating: implications on the history of supercontinents. Gondwana Res 6:29–63CrossRefGoogle Scholar
  68. Santosh M, Tanaka K, Yokoyama K, Collins AS (2005) Late Neoproterozoic-Cambrian felsic magmatism along transcrustal shear zones in southern India: U–Pb electron microprobe ages and implications for the amalgamation of the Gondwana supercontinent. Gondwana Res 8:31–42CrossRefGoogle Scholar
  69. Santosh M, Morimoto T, Tsutsumi Y (2006a) Geochronology of the khondalite belt of Trivandrum Block, Southern India: electron probe ages and implications for Gondwana tectonics. Gondwana Res 9:261–278CrossRefGoogle Scholar
  70. Santosh M, Tagawa M, Yokoyama K, Collins AS (2006b) U–Pb electron probe geochronology of the Nagercoil granulites, Southern India: implications for Gondwana amalgamation. J Asian Earth Sci 28:63–80CrossRefGoogle Scholar
  71. Santosh M, Maruyama S, Sato K (2009a) Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India? Gondwana Res 16:321–341CrossRefGoogle Scholar
  72. Santosh M, Tsunogae T, Tsutsumi Y, Iwamura M (2009b) Microstructurally controlled monazite chronology of ultrahigh-temperature granulites from southern India: implications for the timing of Gondwana assembly. Island Arc 18:248–265CrossRefGoogle Scholar
  73. Santosh M, Xiao WJ, Tsunogae T, Chetty TRK, Yellappa T (2012) The Neoproterozoic subduction complex in southern India: SIMS zircon U–Pb ages and implications for Gondwana assembly. Precambr Res 192–195:190–208CrossRefGoogle Scholar
  74. Sato K, Santosh M, Tsunogae T, Kon Y, Yamamoto S, Hirata T (2010) Laser ablation ICP mass spectrometry for zircon U–Pb geochronology of ultrahigh-temperature gneisses and A-type granites from the Achankovil Suture Zone, southern India. J Geodyn 50:286–299CrossRefGoogle Scholar
  75. Scherer E, Münker C, Mezger K (2001) Calibration of the lutetium–hafnium clock. Science 293:683–687CrossRefGoogle Scholar
  76. Stern RA, Amelin Y (2003) Assessment of errors in SIMS zircon U–Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chem Geol 197:111–142CrossRefGoogle Scholar
  77. Stern RA, Bodorkos S, Kamo SL, Hickman AH, Corfu F (2009) Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand Geoanal Res 33:145–168CrossRefGoogle Scholar
  78. Taylor RJM, Clark C, Fitzsimons IC, Santosh M, Hand M, Evans N, McDonald B (2014) Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India. Contrib Mineral Petrol 168:1–17Google Scholar
  79. Taylor RJM, Harley SL, Hinton RW, Elphick S, Clark C, Kelly NM (2015) Experimental determination of REE partition coefficients between zircon, garnet and melt: a key to understanding high-temperature crustal processes. J Metamorph Geol 33(3):231–248. doi:10.1111/jmg.12118 CrossRefGoogle Scholar
  80. Teale W et al (2011) Cryogenian (∼830Ma) mafic magmatism and metamorphism in the northern Madurai Block, southern India: a magmatic link between Sri Lanka and Madagascar? J Asian Earth Sci 42:223–233CrossRefGoogle Scholar
  81. Tomson JK, Bhaskar Rao YJ, Vijaya Kumar T, Choudhary AK (2013) Geochemistry and neodymium model ages of Precambrian charnockites, Southern Granulite Terrain, India: constraints on terrain assembly. Precambr Res 227:295–315CrossRefGoogle Scholar
  82. White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014a) New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286CrossRefGoogle Scholar
  83. White RW, Powell R, Johnson TE (2014b) The effect of Mn on mineral stability in metapelites revisited: new a–x relations for manganese-bearing minerals. J Metamorph Geol 32:809–828CrossRefGoogle Scholar
  84. Whitehouse MJ, Platt JP (2003) Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol 145:61–74CrossRefGoogle Scholar
  85. Whitehouse MJ, Kumar GR, Rimša A (2014) Behaviour of radiogenic Pb in zircon during ultrahigh-temperature metamorphism: an ion imaging and ion tomography case study from the Kerala Khondalite Belt, southern India. Contrib Mineral Petrol 168:1–18Google Scholar
  86. Williams IS (1998) U–Th–Pb geochronology by ion microprobe. Rev Econ Geol 7(1):1–35CrossRefGoogle Scholar
  87. Yakymchuk C, Brown M (2014) Behaviour of zircon and monazite during crustal melting. J Geol Soc 171:465–479CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Richard J. M. Taylor
    • 1
  • Chris Clark
    • 1
  • Tim E. Johnson
    • 1
  • M. Santosh
    • 2
  • Alan S. Collins
    • 3
  1. 1.Department of Applied Geology, The Institute for Geoscience Research (TIGeR)Curtin UniversityPerthAustralia
  2. 2.School of the Earth Sciences and ResourcesChina University of Geosciences (Beijing)BeijingChina
  3. 3.Department of Earth Sciences, Centre for Tectonics, Resources and Exploration (TRaX)University of AdelaideAdelaideAustralia

Personalised recommendations