To the origin of Icelandic rhyolites: insights from partially melted leucocratic xenoliths

  • Andrey A. GurenkoEmail author
  • Ilya N. Bindeman
  • Ingvar A. Sigurdsson
Original Paper


We have studied glass-bearing leucocratic (granitic to Qz-monzonitic) crustal xenoliths from the Tindfjöll Pleistocene volcanic complex, SW Iceland. The xenoliths consist of strongly resorbed relicts of anorthitic plagioclase, K-rich feldspar and rounded quartz in colorless through pale to dark-brown interstitial glass. Spongy clinopyroxene and/or rounded or elongated crystals of orthopyroxene are in subordinate amount. Magnetite, ilmenite, zircon, apatite, allanite and/or chevkinite are accessory minerals. The xenoliths more likely are relicts of earlier-formed, partially melted Si-rich rocks or quartz–feldspar-rich crystal segregations, which suffered latter interaction with hotter and more primitive magma(s). Icelandic lavas are typically low in δ 18O compared to mantle-derived, “MORB”-like rocks (~5.6 ± 0.2 ‰), likely due to their interaction with, or contamination by, the upper-crustal rocks affected by rain and glacial melt waters. Surprisingly, many quartz and feldspar crystals and associated colorless to light-colored interstitial glasses of the studied xenoliths are not low but high in δ 18O (5.1–7.2 ‰, excluding three dark-brown glasses of 4–5 ‰). The xenoliths contain abundant, low- to high-δ 18O (2.4–6.3 ‰) young zircons (U–Pb age 0.2–0.27 ± 0.03 Ma; U–Th age 0.16 ± 0.07 Ma), most of them in oxygen isotope equilibrium with interstitial glasses. The δ 18O values >5.6 ‰ recorded in the coexisting zircon, quartz, feldspar and colorless interstitial glass suggest crystallization from melts produced by fusion of crustal rocks altered by seawater, also reflecting multiple melting and crystallization events. This suggests that “normal”-δ 18O silicic magmas may not be ultimately produced by crystallization of mafic, basaltic magmas. Instead, our new single-crystal laser fluorination and ion microprobe O-isotope data suggest addition of diverse partial crustal melts, probably originated from variously altered and preconditioned crust.


Iceland Rhyolites Leucocratic xenoliths Oxygen isotopes Zircon age 



We are very grateful to A.V. Sobolev, K.P. Jochum, B. Stoll and U. Weis, who provided access to, and technical assistance with, electron microprobe and laser ablation ICP-MS analyses at the Max Planck Institute (Mainz, Germany) and Axel Schmitt (UCLA) for his help and assistance with zircon dating and preliminary evaluation of raw data. We thank the Smithsonian National Museum of Natural History (Washington, DC, USA) for providing us with the standards for electron microprobe analysis and J. Valley (University of Wisconsin) for the KIM-5 zircon standard for oxygen isotopes by SIMS. The insightful reviews of Olgeir Sigmarsson and one anonymous referee helped us to substantially improve the manuscript. Editorial handling of the paper by Timothy Grove is gratefully acknowledged. This work was supported by the NSF Grants EAR 0911093 to AAG and CAREER EAR 0805972 to IBN, by the Max Planck Society (Germany) and INSU-CNRS (France). This is CRPG contribution 2378.

Supplementary material

410_2015_1145_MOESM1_ESM.doc (299 kb)
Supplementary material 1 (DOC 299 kb)


  1. Alt JC, Muehlenbachs K, Honnorez J (1986) An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP Hole 504B. Earth Planet Sci Lett 80:217–229CrossRefGoogle Scholar
  2. Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe–Mg–Mn–Ti oxides. Am Mineral 73:714–726Google Scholar
  3. Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: a PASCAL program to assess equilibria among Fe–Mg–Ti oxides, pyroxenes, olivine and quartz. Comput Geosci 19:1333–1350CrossRefGoogle Scholar
  4. Best MG (2003) Igneous and metamorphic petrology. Blackwell Science Ltd, OxfordGoogle Scholar
  5. Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. In: Putirka KD, Tepley III FJ (eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem 69, Mineral Soc Am. Washington DC, pp 445–478Google Scholar
  6. Bindeman IN, Simakin AG (2014) Rhyolites—hard to produce, but easy to recycle and sequester: integrating microgeochemical observations and numerical models. Geosphere. doi: 10.1130/GES00969.1 Google Scholar
  7. Bindeman IN, Valley JW (2002) Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies. Contrib Mineral Petrol 144:185–205CrossRefGoogle Scholar
  8. Bindeman IN, Valley JW (2003) Rapid generation of both high- and low-δ 18O, large-volume silicic magmas at the Timber Mountain/Oasis Valley caldera complex, Nevada. Geol Soc Am Bull 115:581–595CrossRefGoogle Scholar
  9. Bindeman I, Schmitt A, Valey JW (2006) U–Pb zircon geochronology of silicic tuffs from the Timber Mountain/Oasis Valley caldera complex, Nevada: rapid generation of large volume magmas by shallow-level remelting. Contrib Mineral Petrol 152:649–665CrossRefGoogle Scholar
  10. Bindeman IN, Gurenko AA, Sigmarsson O, Chaussidon M (2008a) Oxygen isotope heterogeneity and disequilibria of olivine phenocrysts in large volume basalts from Iceland: evidence for magmatic digestion and erosion of Pleistocene hyaloclastites. Geochim Cosmochim Acta 72:4397–4420CrossRefGoogle Scholar
  11. Bindeman IN, Fu B, Noriko KT, Valley JW (2008b) Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons. J Petrol 49:163–193CrossRefGoogle Scholar
  12. Bindeman I, Gurenko A, Carley T, Miller C, Martin E, Sigmarsson O (2012) Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB. Terra Nova 24:227–232CrossRefGoogle Scholar
  13. Blake S (1984) Magma mixing and hybridization processes at the alkalic, silicic, Torfajökull central volcano triggered by tholeiitic Veidivötn fissuring, south Iceland. J Volcanol Geotherm Res 22:1–31CrossRefGoogle Scholar
  14. Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334CrossRefGoogle Scholar
  15. Bourgeois O, Dauteuil O, Van Vliet-Lanoë B (1998) Pleistocene subglacial volcanism in Iceland: tectonic implications. Earth Planet Sci Lett 164:165–178CrossRefGoogle Scholar
  16. Bowen NL (1928) Origin of igneous rocks. Plinceton University Press, NewJerseyGoogle Scholar
  17. Carley TL, Miller CL, Barth AP, Bindeman IN, Wooden JL (2011) Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas. Mineral Petrol 102:135–161CrossRefGoogle Scholar
  18. Carmichael ISE (1964) The petrology of Thingmuli, a Tertiary volcano in eastern Iceland. J Petrol 5:435–460CrossRefGoogle Scholar
  19. Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Rev Mineral Geochem 43, Mineral Soc Am. Washington DC, pp 1–81Google Scholar
  20. Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: application to geothermometry. Geochim Cosmochim Acta 53:2985–2995CrossRefGoogle Scholar
  21. Condomines M, Grönvold K, Hooker PJ, Muehlenbachs K, O’Nions RK, Óskarsson N, Oxburgh ER (1983) Helium, oxygen, strontium and neodymium isotopic relationships in Icelandic volcanics. Earth Planet Sci Lett 66:125–136CrossRefGoogle Scholar
  22. Ferry J, Watson E (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437CrossRefGoogle Scholar
  23. Frost BR, Lindsley DH, Andersen DJ (1988) Fe–Ti oxide-silicate equilibria: assemblages with fayalitic olivine. Am Mineral 73:727–740Google Scholar
  24. Furman T, Frey FA, Meyer PS (1992) Petrogenesis of evolved basalts and rhyolites at Austurhorn, southeastern Iceland: the role of fractional crystallisation. J Petrol 33:1405–1445CrossRefGoogle Scholar
  25. Gautason B, Muehlenbachs K (1998) Oxygen isotopic fluxes associated with high-temperature processes in the rift zones of Iceland. Chem Geol 145:275–286CrossRefGoogle Scholar
  26. Gerasimovsky VI, Polyakov AI, Durasova HF et al (1978) Iceland and the mid-Atlantic ridge, Geokhemistry. Nauka, MoscowGoogle Scholar
  27. Getty SR, DePaolo DJ (1995) Quaternary geochronology using the U–Th–Pb method. Geochim Cosmochim Acta 59:3267–3272CrossRefGoogle Scholar
  28. Gillis KM, Coogan LA (2002) Anatectic migmatites from the roof of an ocean ridge magma chamber. J Petrol 43:2075–2095CrossRefGoogle Scholar
  29. Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ 18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755CrossRefGoogle Scholar
  30. Grimes C, Ushikubo T, John B, Valley J (2011) Uniformly mantle-like δ 18O in zircons from oceanic plagiogranites and gabbros. Contrib Mineral Petrol 161:13–33CrossRefGoogle Scholar
  31. Gunnarsson B, Marsh BD, Taylor HP (1998) Generation of Icelandic rhyolites: silicic lavas from the Torfajökull central volcano. J Volcanol Geotherm Res 83:1–45CrossRefGoogle Scholar
  32. Gurenko AA, Chaussidon M (2002) Oxygen isotope variations in primitive tholeiites of Iceland: evidence from a SIMS study of glass inclusions, olivine phenocrysts and pillow rim glasses. Earth Planet Sci Lett 205:63–79CrossRefGoogle Scholar
  33. Gurenko AA, Trumbull RB, Thomas R, Lindsay JM (2005) A melt inclusion record of volatiles, trace elements and Li–B isotope variations in a single magma system from the Plat Pays Volcanic Complex, Dominica, Lesser Antilles. J Petrol 46:2495–2526CrossRefGoogle Scholar
  34. Harrison TM, Watson EB, Aikman AB (2007) Temperature spectra of zircon crystallization in plutonic rocks. Geology 35:635–638CrossRefGoogle Scholar
  35. Hattori K, Muehlenbachs K (1982) Oxygen isotope ratios of the Icelandic crust. J Geophys Res 87:6559–6565CrossRefGoogle Scholar
  36. Hayden LA, Watson EB (2007) Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sci Lett 258:561–568CrossRefGoogle Scholar
  37. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90:297–314CrossRefGoogle Scholar
  38. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon. Rev Mineral Geochem 53, Mineral Soc Am, Washington DC, pp 27-62Google Scholar
  39. Jakobsson S (1966) The Grimsnes lavas, SW-Iceland. Acta Nat Isl 2:5–30Google Scholar
  40. Jakobsson SP (1972) Chemistry and distribution pattern of recent basaltic rocks in Iceland. Lithos 5:365–368CrossRefGoogle Scholar
  41. Jakobsson SP (1979) Petrology of recent basalts of the Eastern Volcanic Zone, Iceland. Acta Nat Isl 26:1–103Google Scholar
  42. Jakobsson SP, Jónasson K, Sigurdsson IA (2008) The three igneous rock series of Iceland. Jökull 58:117–138Google Scholar
  43. Jónasson K (2007) Silicic volcanism in Iceland: composition and distribution within the active volcanic zones. J Geodyn 43:101–117CrossRefGoogle Scholar
  44. Jørgensen KA (1980) The Thórsmörk ignimbrite: an unusual comenditic pyroclastic flow in southern Iceland. J Volcanol Geotherm Res 8:7–22CrossRefGoogle Scholar
  45. Jørgensen KA (1987) Mineralogy and petrology of alkaline granophyric xenoliths from the Thorsmörk ignimbrite, southern Iceland. Lithos 20:153–168CrossRefGoogle Scholar
  46. Lacasse C, Sigurdsson H, Carey SN, Jóhannesson H, Thomas LE, Rogers NW (2007) Bimodal volcanism at the Katla subglacial caldera, Iceland: insight into the geochemistry and petrogenesis of rhyolitic magmas. Bull Volcanol 69:373–399CrossRefGoogle Scholar
  47. Larsen JG (1979) Glass-bearing gabbro inclusions in hyaloclastites from Tindfjalljokull, Iceland. Lithos 12:289–302CrossRefGoogle Scholar
  48. Le Bas MJ, Streckeisen AL (1991) The IUGS systematics of igneous rocks. J Geol Soc 148:825–833CrossRefGoogle Scholar
  49. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  50. Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493Google Scholar
  51. Ludwig KR (2008) User’s manual for Isoplot 3.70: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec Publ No. 4, p 77Google Scholar
  52. Macdonald R, Sparks RSJ, Sigurdsson H, Mattey DP, McGarvie DW, Smith RL (1987) The 1875 eruption of Askja volcano, Iceland: combined fractional crystallization and elective contamination in the generation of rhyolitic magma. Mineral Mag 51:183–202CrossRefGoogle Scholar
  53. Macdonald R, McGarvie DW, Pinkerton H, Smith RL, Palacz ZA (1990) Petrogenetic evolution of the Torfajökull volcanic complex, Iceland I. Relationship between the magma types. J Petrol 31:429–459CrossRefGoogle Scholar
  54. Marsh BD, Gunnarsson B, Congdon R, Carmody R (1991) Hawaiian basalt and Icelandic rhyolite: indicators of differentiation and partial melting. Geol Rundsch 80:481–510CrossRefGoogle Scholar
  55. Martin E, Sigmarsson O (2007) Crustal thermal state and origin of silicic magma in Iceland: the case of Torfajökull, Ljósufjöll and Snæfellsjökull volcanoes. Contrib Mineral Petrol 153:593–605CrossRefGoogle Scholar
  56. McBirney AR (2006) Igneous petrology. Jones and Bartlett, SudburyGoogle Scholar
  57. Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532CrossRefGoogle Scholar
  58. Muehlenbachs K, Anderson AT, Sigvaldason GE (1974) Low-18O basalt from Iceland. Geochim Cosmochim Acta 38:577–588CrossRefGoogle Scholar
  59. Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Lejeune A-M, Brewer TS, Macdonald R, Black S, Young S (1998) The role of magma mixing in triggering the current eruption at the Soufriere Hills Volcano, Montserrat, West Indies. Geophys Res Lett 25:3433–3435CrossRefGoogle Scholar
  60. Namur O, Charlier B, Toplis MJ (2011) Differentiation of tholeiitic basalt to A-type granite in the Sept Iles layered intrusion, Canada. J Petrol 52:487–539CrossRefGoogle Scholar
  61. Palmason G, Saemundsson K (1974) Iceland in relation to the mid-Atlantic ridge. Ann Rev Earth Planet Sci 2:25–50CrossRefGoogle Scholar
  62. Portnyagin M, Hoernle K, Storm S, Mironov N, van den Bogaard C, Botcharnikov R (2012) H2O-rich melt inclusions in fayalitic olivine from Hekla volcano: implications for phase relationships in silicic systems and driving forces of explosive volcanism on Iceland. Earth Planet Sci Let 357–358:337–346CrossRefGoogle Scholar
  63. Prestvik T, Goldberg S, Karlsson H, Grönvold K (2001) Anomalous strontium and lead isotope signatures in the off-rift Öræfajökull central volcano in south-east Iceland—evidence for enriched endmember(s) of the Iceland mantle plume? Earth Planet Sci Lett 190:211–220CrossRefGoogle Scholar
  64. Sañudo-Wilhelmy SA, Flegal AR (1994) Temporal variations in lead concentrations and isotopic composition in the Southern California Bight. Geochim Cosmochim Acta 58:3315–3320CrossRefGoogle Scholar
  65. Schärer U (1984) The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204CrossRefGoogle Scholar
  66. Schattel N, Portnyagin M, Golowin R, Hoernle K, Bindeman I (2014) Contrasting conditions of rift and off-rift silicic magma origin on Iceland. Geophys Res Lett. doi: 10.1002/2014GL060780 Google Scholar
  67. Schmitt AK, Grove M, Harrison TM, Lovera O, Hulen J, Walters M (2003) The Geysers—Cobb Mountain Magma System, California (Part 1): U–Pb zircon ages of volcanic rocks, conditions of zircon crystallization and magma residence times. Geochim Cosmochim Acta 67:3423–3442CrossRefGoogle Scholar
  68. Schmitt AK, Stockli DF, Hausback BP (2006) Eruption and magma crystallization ages of Las Tres Vírgenes (Baja California) constrained by combined 230Th/238U and (U–Th)/He dating of zircon. J Volcanol Geotherm Res 158:281–295CrossRefGoogle Scholar
  69. Sigmarsson O, Hémond C, Condomines M, Fourcade S, Óskarsson N (1991) Origin of silicic magma in Iceland revealed by Th isotopes. Geology 19:621–724CrossRefGoogle Scholar
  70. Sigmarsson O, Condomines M, Fourcade S (1992) A detailed Th, Sr and O isotope study of Hekla: differentiation processes in an Icelandic volcano. Contrib Mineral Petrol 112:20–34CrossRefGoogle Scholar
  71. Sigurdsson H (1968) Petrology of acid xenoliths from Surtsey. Geol Mag 105:440–453CrossRefGoogle Scholar
  72. Sigurdsson H (1977) Generation of Icelandic rhyolites by melting of plagiogranites in the oceanic layer. Nature 269:25–28CrossRefGoogle Scholar
  73. Sigurdsson H, Sparks R (1981) Petrology of rhyolitic and mixed magma ejecta from the 1975 eruption of Askja, Iceland. J Petrol 22:41–84CrossRefGoogle Scholar
  74. Stakes DS, Taylor HP (1992) The northern Samail ophiolite: an oxygen isotope, microprobe, and field study. J Geophys Res 97:7043–7080CrossRefGoogle Scholar
  75. Sverrisdottir G (2007) Hybrid magma generation preceding Plinian silicic eruptions at Hekla, Iceland: evidence from mineralogy and chemistry of two zoned deposits. Geol Mag 144:643–659CrossRefGoogle Scholar
  76. Taylor HPJ, Sheppard SMF (1986) Igneous rocks: I. Processes of isotopic fractionation and isotopic systematics. In: Valley JW, Taylor HPJ, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Mineral Soc Amer 16. Washington DC, pp 227–271Google Scholar
  77. Thy P, Beard JS, Lofgren GE (1990) Experimental constraints on the origin of Icelandic rhyolites. J Geol 98:417–421CrossRefGoogle Scholar
  78. Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon Rev Mineral Geochem 53, Mineral Soc Am. Washington DC, pp 343–385Google Scholar
  79. Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231CrossRefGoogle Scholar
  80. Valley JW, Bindeman IN, Peck WH (2003) Empirical calibration of oxygen isotope fractionation in zircon. Geochim Cosmochim Acta 67:3257–3266CrossRefGoogle Scholar
  81. Valley J, Lackey J, Cavosie A, Clechenko C, Spicuzza M, Basei M, Bindeman I, Ferreira V, Sial A, King E, Peck W, Sinha A, Wei C (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561–580CrossRefGoogle Scholar
  82. Walker G (1966) Acid volcanic rocks in Iceland. Bull Volcanol 29:375–402CrossRefGoogle Scholar
  83. Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models and implications for isotopic inheritance. Earth Sci 87:43–56Google Scholar
  84. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304CrossRefGoogle Scholar
  85. Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844CrossRefGoogle Scholar
  86. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433CrossRefGoogle Scholar
  87. Zhao Z-F, Zheng Y-F (2003) Calculation of oxygen isotope fractionation in magmatic rocks. Chem Geol 193:59–80CrossRefGoogle Scholar
  88. Zheng Y-F (1991) Calculation of oxygen isotope fractionation in metal oxides. Geochim Cosmochim Acta 55:2299–2307CrossRefGoogle Scholar
  89. Zheng Y-F (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrey A. Gurenko
    • 1
    • 2
    • 3
    Email author
  • Ilya N. Bindeman
    • 4
  • Ingvar A. Sigurdsson
    • 5
  1. 1.Centre de Recherches Pétrographiques et Géochimiques, UMR 7358Université de LorraineVandoeuvre-lès-NancyFrance
  2. 2.Geology and GeophysicsWoods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.Max-Planck-Institut für ChemieMainzGermany
  4. 4.Department of Geological Sciences1272 University of OregonEugeneUSA
  5. 5.South Iceland Nature CentreVestmannaeyjarIceland

Personalised recommendations