CO2 bubble generation and migration during magma–carbonate interaction

  • L. S. Blythe
  • F. M. Deegan
  • C. Freda
  • E. M. Jolis
  • M. Masotta
  • V. Misiti
  • J. Taddeucci
  • V. R. Troll
Original Paper


We conducted quantitative textural analysis of vesicles in high temperature and pressure carbonate assimilation experiments (1200 °C, 0.5 GPa) to investigate CO2 generation and subsequent bubble migration from carbonate into magma. We employed Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) compositions as magmatic starting materials and present three experimental series using (1) a dry basaltic-andesite, (2) a hydrous basaltic-andesite (2 wt% H2O), and (3) a hydrous shoshonite (2 wt% H2O). The duration of the experiments was varied from 0 to 300 s, and carbonate assimilation produced a CO2-rich fluid and CaO-enriched melts in all cases. The rate of carbonate assimilation, however, changed as a function of melt viscosity, which affected the 2D vesicle number, vesicle volume, and vesicle size distribution within each experiment. Relatively low-viscosity melts (i.e. Vesuvius experiments) facilitated efficient removal of bubbles from the reaction site. This allowed carbonate assimilation to continue unhindered and large volumes of CO2 to be liberated, a scenario thought to fuel sustained CO2-driven eruptions at the surface. Conversely, at higher viscosity (i.e. Merapi experiments), bubble migration became progressively inhibited and bubble concentration at the reaction site caused localised volatile over-pressure that can eventually trigger short-lived explosive outbursts. Melt viscosity therefore exerts a fundamental control on carbonate assimilation rates and, by consequence, the style of CO2-fuelled eruptions.


CO2 Carbonate assimilation Melt viscosity Bubble size distribution Eruption style 



Lucia Civetta is thanked for providing the samples for the Vesuvius experiments and Giovanni Orsi for discussion on Vesuvius magmatic processes. Claus Siebe, Ben van Wyk de Vries, and Silvio Mollo are thanked for encouraging discussion on the experiments. We also thank Michael Heap and two anonymous reviewers for their constructive comments that helped to improve the manuscript and Jochen Hoefs for editorial handling. This work was supported by Istituto Nazionale di Geofisica e Vulcanologia (INGV), the Irish Research Council for Science, Engineering and Technology (IRCSET), the Center for Natural Disaster Studies (CNDS) at Uppsala University (UU), and by the Swedish Science Foundation (VR).


  1. Abramoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42Google Scholar
  2. Allard P (1983) The origin of hydrogen, carbon, sulphur, nitrogen and rare gases in volcanic exhalations; evidence from isotope geochemistry. In: Tazieff H, Sabroux J (eds) Forecasting volcanic events. Elsiever, New York, pp 337–386Google Scholar
  3. Auger E, Gasparini P, Virieux J, Zollo A (2001) Seismic evidence of an extended magmatic sill under Mt Vesuvius. Science 294:1510–1512CrossRefGoogle Scholar
  4. Barberi F, Bizouard H, Clocchiatti R, Metrich N, Santacroce R, Sbrana A (1981) The somma-vesuvius magma chamber: a petrological and volcanological approach. Bull Volcanol 44:295–315CrossRefGoogle Scholar
  5. Barnes CG, Prestvik T, Barnes MAW, Anthony EY, Allen CM (2003) Geology of a magma transfer zone: the Hortavær Igneous Complex, north-central Norway. Nor J Geol 83:187–208Google Scholar
  6. Barnes CG, Prestvik T, Sundvoll B, Surratt D (2005) Pervasive assimilation of carbonate and silicate rocks in the Hortavær igneous complex, north-central Norway. Lithos 80:179–199CrossRefGoogle Scholar
  7. Barnes CG, Prestvik T, Li Y, McCulloch L, Yoshinobu AS, Frost CD (2009) Growth and zoning of the Hortavaer intrusive complex, a layered alkaline pluton in the Norwegian Caledonides. Geosphere 5:286–301CrossRefGoogle Scholar
  8. Borisova AY, Martel C, Gouy S, Pratomo I, Surmarti S, Toutain J-P, Bindeman IN, de Parseval P, Metaxian J-P, Surono (2013) Highly explosive 2010 Merapi eruption: evidence for shallow-level crustal assimilation and hybrid fluid. J Volcanol Geotherm Res 261:193–208CrossRefGoogle Scholar
  9. Botcharnikov R, Freise M, Holtz F, Behrens H (2005) Solubility of C–O–H mixtures in natural melts: new experimental data and application range of recent models. Ann Geophys 48:633–646Google Scholar
  10. Botcharnikov RE, Behrens H, Holtz F (2006) Solubility and speciation of C-O-H fluids in andesitic melt at T = 1100-1300 °C and P = 200 and 500 MPa. Chem Geol 229:125–143CrossRefGoogle Scholar
  11. Bruno PPG, Cippitelli G, Rapolla A (1998) Seismic study of the Mesozoic carbonate basement around Mt. Somma-Vesuvius Italy. J Volcanol Geotherm Res 84:311–322CrossRefGoogle Scholar
  12. Camus G, Gourgaud A, Mossand-Berthommier P-C, Vincent P-M (2000) Merapi (Central Java, Indonesia): an outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events. J Volcanol Geotherm Res 100:139–163CrossRefGoogle Scholar
  13. Chadwick JP, Troll VR, Ginibre C, Morgan D, Gertisser R, Waight TE, Davidson JP (2007) Carbonate assimilation at Merapi Volcano, Java, Indonesia: insights from crystal isotope stratigraphy. J Petrol 48:1793–1812CrossRefGoogle Scholar
  14. Chadwick JP, Troll VR, Waight TE, van der Zwan FM, Schwarzkopf LM (2013) Petrology and geochemistry of igneous inclusion in recent Merapi deposits: a window into the sub-volcanic plumbing system. Contrib Mineral Petrol 165:259–282CrossRefGoogle Scholar
  15. Civetta L, D’Antonio M, de Lorenzo S, De Renzo V, Gasparini P (2004) Thermal and geochemical constraints on the ‘deep’ magmatic structure of Mt Vesuvius. J Volcanol Geotherm Res 113:1–12CrossRefGoogle Scholar
  16. Curray JR, Shor GG Jr, Raitt RW, Henry M (1977) seismic refraction and reflection studies of crustal structure of the Eastern Sunda and Western Banda Arcs. J Geophys Res 82:2479–2489CrossRefGoogle Scholar
  17. Dallai L, Cioni R, Boschi C, D’Oriano C (2011) Carbonate-derived CO2 purging magma at depth: influence on the eruptive activity of Somma-Vesuvius, Italy. Earth Planet Sci Lett 310:84–95CrossRefGoogle Scholar
  18. Dasgupta R (2013) Ingassing, storage, and outgassing of terrestrial carbon through geological time. Rev Mineral Geochem 75:183–229CrossRefGoogle Scholar
  19. Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP, McLeod CL, Davidson JP (2010) Magma–Carbonate interaction processes and associated CO2 release at Merapi Volcano, Indonesia: insights from experimental petrology. J Petrol 51:1027–1051CrossRefGoogle Scholar
  20. Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP (2011) Fast and furious: crustal CO2 release at Merapi volcano, Indonesia. Geol Today 27:63–64Google Scholar
  21. Del Moro A, Fulignati P, Marianelli P, Sbrana A (2001) Magma contamination by direct wall rock interaction: constraints from xenoliths from the walls of a carbonate-hosted magma chamber (Vesuvius 1944 eruption). J Volcanol Geotherm Res 112:15–24CrossRefGoogle Scholar
  22. Dixon JE (1997) Degassing of alkali basalts. Am Miner 82:368–378Google Scholar
  23. Freda C, Gaeta M, Palladino DM, Trigila R (1997) The Villa Senni eruption (Alban Hills, central Italy): the role of H2O and CO2 on the magma chamber evolution and on the eruptive scenario. J Volcanol Geotherm Res 78:103–120CrossRefGoogle Scholar
  24. Freda C, Gaeta M, Misiti V, Mollo S, Dolfi D, Scarlato P (2008) Magma–carbonate interaction: an experimental study on ultrapotassic rocks from Alban Hills (Central Italy). Lithos 101:397–415CrossRefGoogle Scholar
  25. Freda C, Gaeta M, Giaccio B, Marra F, Palladino DM, Scarlato P, Sottili G (2011) CO2-driven large mafic explosive eruptions: the Pozzolane Rosse case study from the Colli Albani Volcanic District (Italy). Bull Volcanol 73:241–256CrossRefGoogle Scholar
  26. Fulignati P, Marianelli P, Santacroce R, Sbrana A (2000) The skarn shell of the 1944 Vesuvius magma chamber. Genesis and P-T-X conditions from melt and fluid inclusion data. Eur J Mineral 12:1025–1039CrossRefGoogle Scholar
  27. Fulignati P, Marianelli P, Santacroce R, Sbrana A (2004a) Probing the Vesuvius magma chamber-host rock interface through xenoliths. Geol Mag 151:417–428CrossRefGoogle Scholar
  28. Fulignati P, Marianelli P, Métrich N, Santacroce R, Sbrana A (2004b) Towards a reconstruction of the magmatic feeding system of the 1944 eruption of Vesuvius. J Volcanol Geotherm Res 133:13–22CrossRefGoogle Scholar
  29. Gaeta M, Di Rocco T, Freda C (2009) Carbonate assimilation in open magmatic systems: the role of melt-bearing skarns and cumulate-forming processes. J Petrol 50:361–385CrossRefGoogle Scholar
  30. Ganino C, Arndt NT (2009) Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37:323–326CrossRefGoogle Scholar
  31. Gardner JE, Hilton M, Carroll MR (1999) Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure. Earth Planet Sci Lett 122168:201–218CrossRefGoogle Scholar
  32. Gertisser R, Keller J (2003) Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc magma genesis. J Petrol 44:457–489CrossRefGoogle Scholar
  33. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134CrossRefGoogle Scholar
  34. Goff F, Love SP, Warren RG, Counce D, Obenholzner J, Siebe C, Schmidt SC (2001) Passive infrared remote sensing evidence for large, intermittent CO emissions at Popocatépetl volcano, Mexico. Chem Geol 177:133–156CrossRefGoogle Scholar
  35. Graham DW, Allard P, Kilburn CRJ, Spera FJ, Lupton JE (1993) Helium isotopes in some historical lavas from Mount Vesuvius. J Volcanol Geotherm Res 58:359–366CrossRefGoogle Scholar
  36. Hamilton W (1979) Tectonics of the Indonesian Region. USGS Prof Pap 1078:1–345Google Scholar
  37. Heap MJ, Mollo S, Vinciguerra S, Lavallée Y, Hess K-U, Dingwell DB, Baud P, Iezzi G (2013) Thermal weakening of the carbonate basement under Mt. Etna volcano (Italy): implications for volcano instability. J Volcanol Geotherm Res 250:42–60CrossRefGoogle Scholar
  38. Heap MJ, Lavallée Y, Petrakova L, Baud P, Reuschlé T, Varley N, Dingwell DB (2014) Microstructural controls on the physical and mechanical properties of edifice-forming andesites at Volcán de Colima, Mexico. J Volcanol Geotherm Res 119:2925–2963Google Scholar
  39. Holloway JR, Blank JG (1994) Application of experimental results to C-O-H species in natural melts. In: Carroll MR, Holloway JR (eds) Volatiles in Magmas. Rev Miner 30:187-230Google Scholar
  40. Hurwitz S, Navon O (1994) Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature and water content. Earth Planet Sci Lett 122:267–280CrossRefGoogle Scholar
  41. Iacono Marziano G, Gaillard F, Scaillet B, Pichavant M, Giovanni C (2009) Role of non-mantle CO2 in the dynamics of volcano degassing: the Mount Vesuvius example. Geology 37:319–322CrossRefGoogle Scholar
  42. Johnston FKB, Turchyn AV, Edmonds M (2011) Decarbonation efficiency in subduction zones: implications for warm Cretaceous climates. Earth Plan Sci Lett 303:143–152CrossRefGoogle Scholar
  43. Jolis EM, Freda C, Troll VR, Deegan FM, Blythe LS, McLeod C, Davidson JP (2013) Experimental simulation of magma-carbonate interaction beneath Mt. Vesuvius Italy. Contrib Mineral and Petrol 166:1335–1353CrossRefGoogle Scholar
  44. Kerrick DM, Connolly JAD (2001) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411:293–296CrossRefGoogle Scholar
  45. Lee CTA, Shen B, Slotnick BS, Liao K, Dickens GR, Yookoyama Y, Lenardic A, Dasgupta R, Jellinek M, Lackey JS, Schneider T, Tice MM (2013) Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change. Geosphere 9:21–36CrossRefGoogle Scholar
  46. Martelli M, Nuccio PM, Stuart FM, Burgess R, Ellam RM, Italiano F (2004) Helium-strontium isotope constraints on mantle evolution beneath the Roman Comagmatic Province, Italy. Earth Planet Sci Lett 224:295–308CrossRefGoogle Scholar
  47. Masotta M, Ni H, Keppler H (2014) In situ observations of bubble growth in basaltic, andesitic and rhyodacitic melts. Contrib Mineral and Petrol 167:976. doi: 10.1007/s00410-014-0976-8 CrossRefGoogle Scholar
  48. Mollo S, Gaeta M, Freda C, Di Rocco T, Misiti V, Scarlato P (2010) Carbonate assimilation in magmas: a reappraisal based on experimental petrology. Lithos 114:503–514CrossRefGoogle Scholar
  49. Mollo S, Heap MJ, Iezzi G, Hess K-U, Scarlato P, Dingwell DB (2012) Volcanic edifice weakening via decarbonation: a self-limiting process? Geophys Res Lett 36, L15307.
  50. Newman S, Lowenstern JB (2002) Volatilecalc: a silicate melt-H2O-CO2 solution model written in visual basic for excel. Comput Geosci 28:597–604Google Scholar
  51. Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95CrossRefGoogle Scholar
  52. Peccerillo A (2005) Plio-quaternary volcanism in Italy: petrology, geochemistry, geodynamics. Springer, Berlin, pp 129–171Google Scholar
  53. Sahagian DL, Proussevitch AA (1998) 3D particle size distributions from 2D observations: stereology for natural applications. J Volcanol Geotherm Res 84:173–196CrossRefGoogle Scholar
  54. Scaillet B, Pichavant M, Cioni R (2008) Upward migration of Vesuvius magma chamber over the past 20,000 years. Nature 455:216–220CrossRefGoogle Scholar
  55. Schaaf P, Stimac J, Siebe C, Macías JL (2005) Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, Central Mexico. J Petrol 46:1243–1282CrossRefGoogle Scholar
  56. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190:271–289CrossRefGoogle Scholar
  57. Smyth H, Hall R, Hamilton J. Kinny P (2005) East Java: Cenozoic basins, volcanoes and ancient basement. In: Proceedings, Indonesian Petroleum Association thirtieth annual convention & exhibition, August 2005. IPA05-G-045Google Scholar
  58. Spera FJ, Bohrson WA (2001) Energy-constrained open-system magmatic processes I: general model and energy constrained assimilation and fractional crystallisation (EC-AFC) Formulation. J Petrol 42:999–1018CrossRefGoogle Scholar
  59. Surono Jousset P, Pallister J, Boichu M, Fabrizia Buongiorno M, Budisantoso A, Costa F, Andreastuti S, Prata F, Schneider D, Clarisse L, Humaida H, Sumarti S, Bignami C, Griswold J, Carn S, Oppenheimer C, Lavigne F (2012) The 2010 explosive eruption of Java’s Merapi volcano—a ‘100-year’ event. J Volcanol Geotherm Res 241:121–135CrossRefGoogle Scholar
  60. Svensen H, Planke S, Polozov AG, Schmidbauer N, Corfu F, Podladchikov YY, Jamtveit B (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Plan Sci Lett 277:490–500CrossRefGoogle Scholar
  61. Tregoning P, Brunner FK, Bock Y, Puntodewo SSO, McCaffrey R, Genrich JF, Calais E, Rais J, Subarya C (1994) First geodetic measurement of convergence across the Java Trench. Geophys Res Lett 21:2135–2138CrossRefGoogle Scholar
  62. Troll VR, Hilton DR, Jolis EM, Chadwick JP, Blythe LS, Deegan FM, Schwarzkopf LM, Zimmer M (2012) Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia. Geophys Res Lett 39:L11302. doi: 10.1029/2012GL051307 CrossRefGoogle Scholar
  63. Troll VR, Deegan FM, Jolis EM, Harris C, Chadwick JP, Gertisser R, Schwarkopf LM, Borisova AY, Bindeman IN, Sumarti S, Preece K (2013) Magmatic differentiation processes at Merapi volcano: inclusion petrology and oxygen isotopes. J Volcanol Geotherm Res 261:38–49CrossRefGoogle Scholar
  64. Troll VR, Deegan FM, Jolis EM, Budd DA, Dahren B, Schwarzkopf LM (2015) Ancient oral tradition describes volcano-earthquake interaction at Merapi volcano, Indonesia. Geogr Ann 97:137–166CrossRefGoogle Scholar
  65. van Bemmelen RW (1949) The geology of Indonesia. Government Printing Office, The Hague, pp 1–732Google Scholar
  66. van der Zwan F, Chadwick JP, Troll VR (2013) Textural history of recent basaltic-andesites and plutonic inclusions from Merapi volcano. Contrib Mineral Petrol 166:43–63CrossRefGoogle Scholar
  67. Vetere F, Botcharnikov RE, Holtz F, Behrens H, De Rosa R (2011) Solubility of H2O and CO2 in shoshonitic melts at 1250 °C and pressures from 50 to 400 Mpa: implications for Campi Flegrei magmatic systems. J Volcanol Geotherm Res 202:251–261CrossRefGoogle Scholar
  68. Watkinson DH, Wyllie PJ (1964) The limestone assimilation hypothesis. Nature 204:1053–1054CrossRefGoogle Scholar
  69. Watkinson DH, Wyllie PJ (1969) Phase equilibrium studies bearing on the limestone-assimilation hypothesis. Geol Soc Am Bull 80:1565–1576CrossRefGoogle Scholar
  70. Werner C, Brantley S (2003) CO2 emissions from the Yellowstone volcanic system. Geochem Geophys Geosys 4:1061. doi: 10.1029/2002GC000473 Google Scholar
  71. Zollo A, Gasparini P, Virieux J, le Meur H, de Natale G, Biella G, Boschi E, Capuano P, de Franco R, dell’Aversana P, de Matteis R, Guerra I, lannaccone G, Mirabile L, Vilardo G (1996) Seismic evidence for a low-velocity zone in the Upper Crust Beneath Mount Vesuvius. Science 274:592–594CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • L. S. Blythe
    • 1
    • 2
  • F. M. Deegan
    • 1
    • 3
  • C. Freda
    • 4
  • E. M. Jolis
    • 1
  • M. Masotta
    • 5
  • V. Misiti
    • 4
  • J. Taddeucci
    • 4
  • V. R. Troll
    • 1
    • 4
  1. 1.Department of Earth Sciences, Centre for Experimental Mineralogy, Petrology, and Geochemistry (CEMPEG)Uppsala UniversityUppsalaSweden
  2. 2.School of Physical and Geographical ScienceKeele UniversityKeeleUK
  3. 3.Department of Geological SciencesStockholm UniversityStockholmSweden
  4. 4.Istituto Nazionale di Geofisica e Vulcanologia (INGV)RomeItaly
  5. 5.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany

Personalised recommendations