Anatexis at the roof of an oceanic magma chamber at IODP Site 1256 (equatorial Pacific): an experimental study

  • Martin ErdmannEmail author
  • Lennart A. Fischer
  • Lydéric France
  • Chao Zhang
  • Marguerite Godard
  • Jürgen Koepke
Original Paper


Replenished axial melt lenses at fast-spreading mid-oceanic ridges may move upward and intrude into the overlying hydrothermally altered sheeted dikes, resulting in high-grade contact metamorphism with the potential to trigger anatexis in the roof rocks. Assumed products of this process are anatectic melts of felsic composition and granoblastic, two-pyroxene hornfels, representing the residue after partial melting. Integrated Ocean Drilling Program Expeditions 309, 312, and 335 at Site 1256 (eastern equatorial Pacific) sampled such a fossilized oceanic magma chamber. In this study, we simulated magma chamber roof rock anatectic processes by performing partial melting experiments using six different protoliths from the Site 1256 sheeted dike complex, spanning a lithological range from poorly to strongly altered basalts to partially or fully recrystallized granoblastic hornfels. Results show that extensively altered starting material lacking primary magmatic minerals cannot reproduce the chemistry of natural felsic rocks recovered in ridge environments, especially elements sensitive to hydrothermal alteration (e.g., K, Cl). Natural geochemical trends are reproduced through partial melting of moderately altered basalts from the lower sheeted dikes. Two-pyroxene hornfels, the assumed residue, were reproduced only at low melting degrees (<20 vol%). The overall amphibole absence in the experiments confirms the natural observation that amphibole is not produced during peak metamorphism. Comparing experimental products with the natural equivalents reveals that water activity (aH2O) was significantly reduced during anatectic processes, mainly based on lower melt aluminum oxide and lower plagioclase anorthite content at lower aH2O. High silica melt at the expected temperature (1000–1050 °C; peak thermal overprint of two-pyroxene hornfels) could only be reproduced in the experimental series performed at aH2O = 0.1.


Experimental petrology Partial melting Fast-spreading mid-ocean ridge Oceanic plagiogranite Granoblastic hornfels Conductive boundary layer 



We thank Otto Dietrich and Julian Feige for their careful sample preparation. The manuscript has been substantially improved after thorough reviews by M. Perfit and two anonymous reviewers. This research used samples and/or data provided by the International Ocean Drilling Program (IODP). IODP is sponsored by the US National Science Foundation (NSF) and participating countries under management of the Consortium for Ocean Leadership (COL). Funding for this research was provided by grants from the Deutsche Forschungsgemeinschaft (KO 1723/13).

Supplementary material

410_2015_1136_MOESM1_ESM.xlsx (83 kb)
Supplementary material 1 (XLSX 82 kb)
410_2015_1136_MOESM2_ESM.tif (27.3 mb)
Supplementary material 2 N-MORB normalized (Gale et al. 2013) trace elements contents of the starting materials of this study. Additionally shown is the calculated residual assemblage composition of the experiment with the lowest degree of partial melting (at 955 °C) published by France et al. (2014) (TIFF 27926 kb)


  1. Alt JC, Laverne C, Coggon RM, Teagle DAH, Banerjee NR, Morgan S, Smith-Duque CE, Harris M, Galli L (2010) Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256. Geochem Geophys Geosyst 11(10):Q10010. doi: 10.1029/2010gc003144 Google Scholar
  2. Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: a pascal program to assess equilibria among Fe–Mg–Mn–Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19(9):1333–1350CrossRefGoogle Scholar
  3. Barker F (1979) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, 659 ppGoogle Scholar
  4. Beard JS (1990) Partial melting of metabasites in the contact aureoles of gabbroic plutons in the Smartville complex, Sierra Nevada, California. The nature and origin of Cordilleran magmatism. Geol Soc Am Mem 174:303–313CrossRefGoogle Scholar
  5. Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol 32(2):365–401. doi: 10.1093/petrology/32.2.365 CrossRefGoogle Scholar
  6. Berndt J, Liebske C, Holtz F, Freise M, Nowak M, Ziegenbein D, Hurkuck W, Koepke J (2002) A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts. Am Mineral 87(11–12):1717–1726Google Scholar
  7. Berndt J, Koepke J, Holtz FO (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46(1):135–167. doi: 10.1093/petrology/egh066 CrossRefGoogle Scholar
  8. Bézos A, Humler E (2005) The Fe3+/[Σ]Fe ratios of MORB glasses and their implications for mantle melting. Geochim Cosmochim Acta 69(3):711–725CrossRefGoogle Scholar
  9. Blackman DK, Ildefonse B, John BE, MacLeod CJ, Ohara Y, Miller DJ, Team tEP (2004) Oceanic core complex formation, Atlantis Massif—oceanic core complex formation, Atlantis Massif, Mid-Atlantic Ridge: drilling into the footwall and hanging wall of a tectonic exposure of deep, young oceanic lithosphere to study deformation, alteration, and melt generation. IODP Sci Prosp 304–305. doi: 10.2204/iodp.sp.304305.2004
  10. Brey GP, Koehler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31(6):1353–1378. doi: 10.1093/petrology/31.6.1353 CrossRefGoogle Scholar
  11. Brophy J (2008) A study of rare earth element (REE)SiO2 variations in felsic liquids generated by basalt fractionation and amphibolite melting: a potential test for discriminating between the two different processes. Contrib Miner Petrol 156:337–357CrossRefGoogle Scholar
  12. Brophy J (2009) La–SiO[2] and Yb–SiO[2] systematics in mid-ocean ridge magmas: implications for the origin of oceanic plagiogranite. Contrib Miner Petrol 158(1):99–111. doi: 10.1007/s00410-008-0372-3 CrossRefGoogle Scholar
  13. Burnham CW (1979) The importance of volatile constituents. In: Yoder HS (ed) The evolution of the igneous rocks: fiftieth anniversary perspectives. Princeton University Press, Princeton, pp 439–482Google Scholar
  14. Byerly GR, Melson WG, Vogt PR (1976) Rhyodacites, andesites, ferro-basalts and ocean tholeiites from the galapagos spreading center. Earth Planet Sci Lett 30(2):215–221CrossRefGoogle Scholar
  15. Caress DW, Burnett MS, Orcutt JA (1992) Tomographic image of the axial low-velocity zone at 12°50′N on the East Pacific Rise. J Geophys Res Solid Earth 97(B6):9243–9263. doi: 10.1029/92jb00287 CrossRefGoogle Scholar
  16. Coleman RG, Peterman ZE (1975) Oceanic plagiogranite. J Geophys Res 80(8):1099–1108. doi: 10.1029/JB080i008p01099 CrossRefGoogle Scholar
  17. Coogan LA, Mitchell NC, O’Hara MJ (2003) Roof assimilation at fast spreading ridges: an investigation combining geophysical, geochemical, and field evidence. J Geophys Res 108(B1):2002CrossRefGoogle Scholar
  18. Cottrell E, Kelley KA (2011) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth Planet Sci Lett 305(3–4):270–282CrossRefGoogle Scholar
  19. Crawford WC, Webb SC, Hildebrand JA (1999) Constraints on melt in the lower crust and Moho at the East Pacific Rise, 9°48′N, using seafloor compliance measurements. J Geophys Res Solid Earth 104(B2):2923–2939. doi: 10.1029/1998jb900087 CrossRefGoogle Scholar
  20. Detrick RS, Buhl P, Vera E, Mutter J, Orcutt J, Madsen J, Brocher T (1987) Multi-channel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326(6108):35–41CrossRefGoogle Scholar
  21. Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80(3–4):319–328Google Scholar
  22. Dick HJB, Natland JH, Alt JC et al (2000) A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet Sci Lett 179(1):31–51CrossRefGoogle Scholar
  23. Dunn RA, Toomey DR, Solomon SC (2000) Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9°30′N. J Geophys Res Solid Earth 105(B10):23537–23555. doi: 10.1029/2000jb900210 CrossRefGoogle Scholar
  24. Ernst WG, Liu JUN (1998) Experimental phase-equilibrium study of Al and Ti-contents of calcic amphibole in MORB—a semiquantitative thermobarometer. Am Mineral 83:952–969Google Scholar
  25. Feig S, Koepke J, Snow J (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Miner Petrol 152(5):611–638. doi: 10.1007/s00410-006-0123-2 CrossRefGoogle Scholar
  26. France L, Ildefonse B, Koepke J (2009) Interactions between magma and hydrothermal system in Oman ophiolite and in IODP Hole 1256D: fossilization of a dynamic melt lens at fast spreading ridges. Geochem Geophys Geosyst 10(10):Q10O19. doi: 10.1029/2009gc002652 Google Scholar
  27. France L, Koepke J, Ildefonse B, Cichy S, Deschamps F (2010) Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contrib Miner Petrol 160(5):683–704. doi: 10.1007/s00410-010-0502-6 CrossRefGoogle Scholar
  28. France L, Ildefonse B, Koepke J (2013) Hydrous magmatism triggered by assimilation of hydrothermally altered rocks in fossil oceanic crust (northern Oman ophiolite). Geochem Geophys Geosyst 14(8):2598–2614. doi: 10.1002/ggge.20137 CrossRefGoogle Scholar
  29. France L, Koepke J, MacLeod CJ, Ildefonse B, Godard M, Deloule E (2014) Contamination of MORB by anatexis of magma chamber roof rocks: constraints from a geochemical study of experimental melts and associated residues. Lithos 202–203:120–137. doi: 10.1016/j.lithos.2014.05.018 CrossRefGoogle Scholar
  30. Freund S (2014) The generation of felsic magmas in the oceanic crust: assimilation-fractional crystallization processes versus re-melting of the crust. Dissertation, Friedrich-Alexander-Universitaet Erlangen-NuernbergGoogle Scholar
  31. Freund S, Beier C, Krumm S, Haase KM (2013) Oxygen isotope evidence for the formation of andesitic–dacitic magmas from the fast-spreading Pacific–Antarctic Rise by assimilation–fractional crystallisation. Chem Geol 347:271–283. doi: 10.1016/j.chemgeo.2013.04.013 CrossRefGoogle Scholar
  32. Gaetani GA, Grove TL, Bryan WB (1993) The influence of water on the petrogenesis of subduction related igneous rocks. Nature 365(6444):332–334CrossRefGoogle Scholar
  33. Gale A, Dalton CA, Langmuir CH, Su Y, Schilling J-G (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14(3):489–518. doi: 10.1029/2012gc004334 CrossRefGoogle Scholar
  34. Gillis KM (2008) The roof of an axial magma chamber: a hornfelsic heat exchanger. Geology 36(4):299–302. doi: 10.1130/g24590a.1 CrossRefGoogle Scholar
  35. Gillis KM, Coogan LA (2002) Anatectic migmatites from the roof of an ocean ridge magma chamber. J Petrol 43(11):2075–2095. doi: 10.1093/petrology/43.11.2075 CrossRefGoogle Scholar
  36. Gillis KM, Roberts MD (1999) Cracking at the magma–hydrothermal transition: evidence from the Troodos Ophiolite, Cyprus. Earth Planet Sci Lett 169:227–244. doi: 10.1016/S0012-821X(99)00087-4 CrossRefGoogle Scholar
  37. Grimes CB, Ushikubo T, Kozdon R, Valley JW (2013) Perspectives on the origin of plagiogranite in ophiolites from oxygen isotopes in zircon. Lithos 179:48–66. doi: 10.1016/j.lithos.2013.07.026 CrossRefGoogle Scholar
  38. Haase KM, Stroncik NA, Hekinian R, Stoffers P (2005) Nb-depleted andesites from the Pacific–Antarctic Rise as analogs for early continental crust. Geology 33(12):921–924. doi: 10.1130/g21899.1 CrossRefGoogle Scholar
  39. Haase KM, Freund S, Koepke J, Hauff V, Erdmann M (2015) Melts of sediments in the mantle wedge of the Oman ophiolite. Geology. doi: 10.1130/G36451.1 Google Scholar
  40. Helz RT (1973) Phase relations of basalts in their melting range at PH2O = 5 kb as a function of oxygen fugacity: part I. Mafic phases. J Petrol 14(2):249–302. doi: 10.1093/petrology/14.2.249 CrossRefGoogle Scholar
  41. Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry. Contrib Miner Petrol 116(4):433–447. doi: 10.1007/bf00310910 CrossRefGoogle Scholar
  42. Holloway JR, Burnham C (1972) Melting relations of basalt with equilibrium water pressure less than total pressure. J Petrol 13:1–29CrossRefGoogle Scholar
  43. Holtz F, Pichavant M, Barbey P, Johannes W (1992) Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar. Am Mineral 77(11–12):1223–1241Google Scholar
  44. Holtz F, Johannes W, Tamic N, Behrens H (2001) Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications. Lithos 56(1):1–14CrossRefGoogle Scholar
  45. Johannes W, Holtz F (1996) Petrogenesis and experimental petrology of granitic rocks. Springer, HeidelbergCrossRefGoogle Scholar
  46. Johannes W, Koepke J (2001) Incomplete reaction of plagioclase in experimental dehydration melting of amphibolite. Aust J Earth Sci 48(4):581–590CrossRefGoogle Scholar
  47. Kawamoto T (1996) Experimental constraints on differentiation and H2O abundance of calc-alkaline magmas. Earth Planet Sci Lett 144(3–4):577–589. doi: 10.1016/S0012-821X(96)00182-3 CrossRefGoogle Scholar
  48. Koepke J, Goetze N (2015) Data report: Microanalytical and geothermometric investigations on granoblastic dikes from the gabbro–dike transition from Hole 1256D (IODP Expedition 335, East Pacific Rise). In: Teagle DAH, Ildefonse B, Blum P, the Expedition 335 Scientists (eds) Proceedings of the IODP, vol 335. Integrated Ocean Drilling Program Management International, Tokyo. doi: 10.2204/iodp.proc.335.201.2015
  49. Koepke J, Berndt J, Bussy F (2003) An experimental study on the shallow-level migmatization of ferrogabbros from the Fuerteventura Basal Complex, Canary Islands. Lithos 69(3–4):105–125CrossRefGoogle Scholar
  50. Koepke J, Feig S, Snow J, Freise M (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Miner Petrol 146(4):414–432. doi: 10.1007/s00410-003-0511-9 CrossRefGoogle Scholar
  51. Koepke J, Feig S, Snow J (2005a) Late stage magmatic evolution of oceanic gabbros as a result of hydrous partial melting: evidence from the Ocean Drilling Program (ODP) Leg 153 drilling at the Mid-Atlantic Ridge. Geochem Geophys Geosyst 6(2):Q02001. doi: 10.1029/2004gc000805 Google Scholar
  52. Koepke J, Feig ST, Snow J (2005b) Hydrous partial melting within the lower oceanic crust. Terra Nova 17(3):286–291. doi: 10.1111/j.1365-3121.2005.00613.x CrossRefGoogle Scholar
  53. Koepke J, Berndt J, Feig S, Holtz F (2007) The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contrib Miner Petrol 153(1):67–84. doi: 10.1007/s00410-006-0135-y CrossRefGoogle Scholar
  54. Koepke J, Christie DM, Dziony W, Holtz F, Lattard D, Maclennan J, Park S, Scheibner B, Yamasaki T, Yamazaki S (2008) Petrography of the dike-gabbro transition at IODP Site 1256 (equatorial Pacific): the evolution of the granoblastic dikes. Geochem Geophys Geosyst 9(7):Q07O09. doi: 10.1029/2008gc001939 Google Scholar
  55. Koepke J, Schoenborn S, Oelze M, Wittmann H, Feig ST, Hellebrand E, Boudier F, Schoenberg R (2009) Petrogenesis of crustal wehrlites in the Oman ophiolite: experiments and natural rocks. Geochem Geophys Geosyst 10(10):Q10002. doi: 10.1029/2009gc002488 Google Scholar
  56. Koepke J, France L, Müller T, Faure F, Goetze N, Dziony W, Ildefonse B (2011) Gabbros from IODP Site 1256, equatorial Pacific: insight into axial magma chamber processes at fast spreading ocean ridges. Geochem Geophys Geosyst 12(9):Q09014. doi: 10.1029/2011gc003655 Google Scholar
  57. Koepke J, Berndt J, Horn I, Fahle J, Wolff PE (2014) Partial melting of oceanic gabbro triggered by migrating water-rich fluids: a prime example from the Oman Ophiolite. Geol Soc Lond Spec Publ 392(1):195–212. doi: 10.1144/sp392.10 CrossRefGoogle Scholar
  58. Lamoureux G, Ildefonse B, Mainprice D (1999) Modelling the seismic properties of fast-spreading ridge crustal low-velocity zones: insights from Oman gabbro textures. Tectonophysics 312(2–4):283–301. doi: 10.1016/S0040-1951(99)00183-3 CrossRefGoogle Scholar
  59. Lister CRB (1974) On the penetration of water into hot rock. Geophys J Int 39(3):465–509. doi: 10.1111/j.1365-246X.1974.tb05468.x CrossRefGoogle Scholar
  60. MacLeod CJ, Lissenberg CJ, Bibby LE (2013) “Moist MORB” axial magmatism in the Oman ophiolite: the evidence against a mid-ocean ridge origin. Geology. doi: 10.1130/g33904.1 Google Scholar
  61. McCaig AM, Harris M (2012) Hydrothermal circulation and the dike–gabbro transition in the detachment mode of slow seafloor spreading. Geology 40(4):367–370. doi: 10.1130/g32789.1 CrossRefGoogle Scholar
  62. Michael P, Chase R (1987) The influence of primary magma composition, H2O and pressure on mid-ocean ridge basalt differentiation. Contrib Miner Petrol 96(2):245–263. doi: 10.1007/bf00375237 CrossRefGoogle Scholar
  63. Michael PJ, Cornell WC (1998) Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J Geophys Res 103(B8):18325–18356. doi: 10.1029/98jb00791 CrossRefGoogle Scholar
  64. Morgan VIGB, London D (2005) Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses. Am Mineral 90:1131–1138CrossRefGoogle Scholar
  65. Natland JH, Dick HJB (2009) Paired melt lenses at the East Pacific Rise and the pattern of melt flow through the gabbroic layer at a fast-spreading ridge. Lithos 112(1–2):73–86. doi: 10.1016/j.lithos.2009.06.017 CrossRefGoogle Scholar
  66. Nicolas A, Boudier F (1991) Rooting of the Sheeted Dike Complex in the Oman Ophiolite. In: Peters T, Nicolas A, Coleman RG (eds) Ophiolite genesis and evolution of the oceanic lithosphere, vol 5. Springer, Dordrecht, pp 39–54. doi: 10.1007/978-94-011-3358-6_4
  67. Nicolas A, Ceuleneer G, Boudier F, Misseri M (1988) Structural mapping in the Oman ophiolites: mantle diapirism along an oceanic ridge. Tectonophysics 151(1–4):27–56. doi: 10.1016/0040-1951(88)90239-9 CrossRefGoogle Scholar
  68. Nicolas A, Boudier F, Ildefonse B, Ball E (2000) Accretion of Oman and United Arab Emirates ophiolite—discussion of a new structural map. Mar Geophys Res 21(3):147–180. doi: 10.1023/a:1026769727917 CrossRefGoogle Scholar
  69. Nicolas A, Boudier F, Koepke J, France L, Ildefonse B, Mevel C (2008) Root zone of the sheeted dike complex in the Oman ophiolite. Geochem Geophys Geosyst 9(5):Q05001. doi: 10.1029/2007gc001918 Google Scholar
  70. Parat F, Holtz F, Feig S (2008) Pre-eruptive conditions of the Huerto Andesite (Fish Canyon System, San Juan Volcanic Field, Colorado): influence of Volatiles (C–O–H–S) on phase equilibria and mineral composition. J Petrol 49(5):911–935CrossRefGoogle Scholar
  71. Perfit MR, Fornari DJ, Malahoff A, Embley RW (1983) Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift 3. Trace element abundances and petrogenesis. J Geophys Res 88(B12):10551–10572CrossRefGoogle Scholar
  72. Perfit MR, Ridley WI, Jonasson IR (1999) Geologic, petrologic, and geochemical relationships between magmatism and massive sulfide mineralization along the Eastern Galapagos Spreading Center. Soc Econ Geol Rev Econ Geol 10:75–100Google Scholar
  73. Prowatke S, Klemme S (2006) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70(17):4513–4527. doi: 10.1016/j.gca.2006.06.162 CrossRefGoogle Scholar
  74. Purdy GM, Kong LSL, Christeson GL, Solomon SC (1992) Relationship between spreading rate and the seismic structure of mid-ocean ridges. Nature 355(6363):815–817CrossRefGoogle Scholar
  75. Rollinson H (2009) New models for the genesis of plagiogranites in the Oman ophiolite. Lithos 112(3–4):603–614CrossRefGoogle Scholar
  76. Rothery DA (1983) The base of a sheeted dyke complex, Oman ophiolite: implications for magma chambers at oceanic spreading axes. J Geol Soc 140(2):287–296. doi: 10.1144/gsjgs.140.2.0287 CrossRefGoogle Scholar
  77. Rutherford MJ, Devine JD (2003) Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2002 Soufrière Hills Magma. J Petrol 44(8):1433–1453CrossRefGoogle Scholar
  78. Scaillet B, Pichavant M, Roux J, Humbert G, Lefevre A (1992) Improvements of the Shaw membrane technique for measurement and control of fH2 at high temperatures and pressures. Am Mineral 77(5–6):647–655Google Scholar
  79. Scaillet B, Pichavant M, Roux J (1995) Experimental crystallization of leucogranite magmas. J Petrol 36(3):663–705. doi: 10.1093/petrology/36.3.663 CrossRefGoogle Scholar
  80. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefGoogle Scholar
  81. Schwab RG, Küstner D (1981) Die Gleichgewichtsfugazitaten technologisch und petrologisch wichtiger Sauerstoffpuffer. Neues Jahrb Mineral Abh 140:111–142Google Scholar
  82. Teagle DAH, Alt JC, Umino S, Miyashita S, Banerjee NR, Wilson DS, the Expedition 309/312 Scientists (2006) Proceedings of the IODP, vols 309 and 312. Integrated Ocean Drilling Program Management International, Washington, DCGoogle Scholar
  83. Teagle DAH, Ildefonse B, Blum P, the Expedition 335 scientists (2012) Proceedings of the IODP, vol 335. Integrated Ocean Drilling Program Management International, TokyoGoogle Scholar
  84. Umino S, Miyashita S, Hotta F, Adachi Y (2003) Along-strike variation of the sheeted dike complex in the Oman Ophiolite: insights into subaxial ridge segment structures and the magma plumbing system. Geochem Geophys Geosyst 4(9):8618. doi: 10.1029/2001gc000233 Google Scholar
  85. Wanless VD, Perfit MR, Ridley WI, Klein E (2010) Dacite petrogenesis on mid-ocean ridges: evidence for oceanic crustal melting and assimilation. J Petrol 51(12):2377–2410. doi: 10.1093/petrology/egq056 CrossRefGoogle Scholar
  86. Wanless VD, Perfit MR, Ridley WI, Wallace PJ, Grimes CB, Klein EM (2011) Volatile abundances and oxygen isotopes in basaltic to dacitic lavas on mid-ocean ridges: the role of assimilation at spreading centers. Chem Geol 287(1–2):54–65CrossRefGoogle Scholar
  87. Wilson DS (1996) Fastest known spreading on the Miocene Cocos-Pacific Plate Boundary. Geophys Res Lett 23(21):3003–3006. doi: 10.1029/96gl02893 CrossRefGoogle Scholar
  88. Wilson DS, Teagle DAH, Alt JC et al (2006) Drilling to gabbro in intact ocean crust. Science 312(5776):1016–1020. doi: 10.1126/science.1126090 CrossRefGoogle Scholar
  89. Wolf M, Wyllie P (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Miner Petrol 115(4):369–383. doi: 10.1007/bf00320972 CrossRefGoogle Scholar
  90. Wolff PE, Koepke J, Feig ST (2013) The reaction mechanism of fluid-induced partial melting of gabbro in the oceanic crust. Eur J Mineral 25(3):279–298Google Scholar
  91. Zhang C, Koepke J, Kirchner C, Goetze N, Behrens H (2014) Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge. Sci Rep 4:6342. doi: 10.1038/srep06342 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Martin Erdmann
    • 1
    • 2
    Email author
  • Lennart A. Fischer
    • 1
  • Lydéric France
    • 2
  • Chao Zhang
    • 1
  • Marguerite Godard
    • 3
  • Jürgen Koepke
    • 1
  1. 1.Institut für MineralogieLeibniz Universität HannoverHannoverGermany
  2. 2.CRPG, UMR 7358, CNRSUniversité de LorraineVandœuvre-lès-NancyFrance
  3. 3.GéosciencesUniversité Montpellier 2MontpellierFrance

Personalised recommendations