Redox state of iron during high-pressure serpentinite dehydration

  • Baptiste Debret
  • Nathalie Bolfan-Casanova
  • José Alberto Padrón-Navarta
  • Fatima Martin-Hernandez
  • Muriel Andreani
  • Carlos J. Garrido
  • Vicente López Sánchez-Vizcaíno
  • María Teresa Gómez-Pugnaire
  • Manuel Muñoz
  • Nicolas Trcera
Original Paper


The Cerro del Almirez massif (Spain) represents a unique fragment of serpentinized oceanic lithosphere that has been first equilibrated in the antigorite stability field (Atg-serpentinites) and then dehydrated into chlorite–olivine–orthopyroxene (Chl-harzburgites) at eclogite facies conditions during subduction. The massif preserves a dehydration front between Atg-serpentinites and Chl-harzburgites. It constitutes a suitable place to study redox changes in serpentinites and the nature of the released fluids during their dehydration. Relative to abyssal serpentinites, Atg-serpentinites display a low Fe3+/FeTotal(BR) (=0.55) and magnetite modal content (=2.8–4.3 wt%). Micro-X-ray absorption near-edge structure (μ-XANES) spectroscopy measurements of serpentines at the Fe–K edge show that antigorite has a lower Fe3+/FeTotal ratio (=0.48) than oceanic lizardite/chrysotile assemblages. The onset of Atg-serpentinites dehydration is marked by the crystallization of a Fe3+-rich antigorite (Fe3+/FeTotal = 0.6–0.75) in equilibrium with secondary olivine and by a decrease in magnetite amount (=1.6–2.2 wt%). This suggests a preferential partitioning of Fe3+ into serpentine rather than into olivine. The Atg-breakdown is marked by a decrease in Fe3+/FeTotal(BR) (=0.34–0.41), the crystallization of Fe2+-rich phases and the quasi-disappearance of magnetite (=0.6–1.4 wt.%). The observation of Fe3+-rich hematite and ilmenite intergrowths suggests that the O2 released by the crystallization of Fe2+-rich phases could promote hematite crystallization and a subsequent increase in fo2 inside the portion of the subducted mantle. Serpentinite dehydration could thus produce highly oxidized fluids in subduction zones and contribute to the oxidization of the sub-arc mantle wedge.


Antigorite breakdown Redox Iron XANES Subduction 

Supplementary material

410_2015_1130_MOESM1_ESM.doc (116 kb)
Supplementary material 1 (DOC 116 kb)
410_2015_1130_MOESM2_ESM.doc (58 kb)
Supplementary material 2 (DOC 58 kb)


  1. Alt JC, Shanks WC III (2003) Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling. Geochim Cosmochim Acta 67:641–653CrossRefGoogle Scholar
  2. Alt JC, Garrido CJ, Shanks WC III, Turchyn A, Padrón-Navarta JA, López-Sánchez-Vizcaíno V, Gómez Pugnaire MT, Marchesi C (2012) Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain. Earth Planet Sci Lett 327–328:50–60CrossRefGoogle Scholar
  3. Andersen T, Neumann ER (2001) Fluid inclusions in mantle xenoliths. Lithos 55:301–320CrossRefGoogle Scholar
  4. Andreani M, Muñoz M, Marcaillou C, Delacour A (2013) μXANES study of iron redox state in serpentine during oceanic serpentinization. Lithos 178:70–83CrossRefGoogle Scholar
  5. Arculus RJ (1994) Aspects of magma genesis in arcs. Lithos 33:189–208CrossRefGoogle Scholar
  6. Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris S (2006) Unravelling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP leg 209, site 1274). Geophys Res Lett 33:L13306CrossRefGoogle Scholar
  7. Bali E, Audetat A, Keppler H (2011) The mobility of U and Th in subduction zone fluids: an indicator of oxygen fugacity and fluid salinity. Contrib Mineral Petrol 161:597–613CrossRefGoogle Scholar
  8. Berndt ME, Allen DE, Seyfried WE (1996) Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar. Geology 24:351–354CrossRefGoogle Scholar
  9. Bouilhol P, Burg JP, Bodinier JL, Schmidt MW, Bernasconi S, Dawood D (2012) Gem olivine and calcite mineralization precipitated from subduction-derived fluids in the Kohistan arc-mantle (Pakistan). Can Mineral 50:1291–1304CrossRefGoogle Scholar
  10. Bromiley GD, Pawley AR (2003) The stability of antigorite in the systems MgO–SiO2–H2O (MSH) and MgO–Al2O3–SiO2–H2O (MASH): the effects of Al3+ substitution on high-pressure stability. Am Mineral 88:99–108Google Scholar
  11. Burton BP, Davidson PM (1988) Multicritical phase relations in minerals. In: ESS Ghose, JMD Coey (eds), Advances in physical geochemistry, volume 7, 60. Springer, New YorkGoogle Scholar
  12. Canil D, O’Neill HStC (1996) Distribution of ferric iron in some upper-mantle assemblages. J Petrol 37:609–635CrossRefGoogle Scholar
  13. Charlou J, Donval JP, Fouquet Y, Jean Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem Geol 191:345–359CrossRefGoogle Scholar
  14. De Faria DLA, Venancio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878CrossRefGoogle Scholar
  15. Debret B, Andreani M, Godard M, Nicollet C, Schwartz S, Lafay R (2013a) Trace element behaviour during serpentinization/deserpentinization of an eclogitized oceanic lithosphere: a LA-ICPMS study of the Lanzo ultramafic massif (Western Alps). Chem Geol 357:117–133CrossRefGoogle Scholar
  16. Debret B, Nicollet C, Andreani M, Schwartz S, Godard M (2013b) Three steps of serpentinization in an eclogitized oceanic serpentinization front (Lanzo Massif—Western Alps). J Metamorph Geol 31:165–186CrossRefGoogle Scholar
  17. Debret B, Koga K, Nicollet C, Andreani M, Schwartz S (2014a) F, Cl and S input via serpentinite in subduction zones: implications on the nature of the fluid released at depth. Terra Nova 26:96–101CrossRefGoogle Scholar
  18. Debret B, Andreani M, Munoz M, Bolfan-Casanova N, Carlut J, Nicollet C, Schwartz S, Trcera N (2014b) Evolution of Fe redox state in serpentine during subduction. Earth Planet Sci Lett 400:206–218CrossRefGoogle Scholar
  19. Delacour A, Früh-Green GL, Bernasconi SM (2008a) Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309). Geochim Cosmochim Acta 72:5111–5127CrossRefGoogle Scholar
  20. Delacour A, Früh-Green GL, Bernasconi SM, Schaeffer P, Kelley DS (2008b) Carbon geochemistry of serpentinites in the Lost City hydrothermal system. Geochim Cosmochim Acta 72:3681–3702CrossRefGoogle Scholar
  21. Dunlop DJ, Özdemir Ö (1997) Rock magnetism. Cambridge University Press, Cambridge, p 573CrossRefGoogle Scholar
  22. Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46:479–506CrossRefGoogle Scholar
  23. Evans BW (2010) Lizardite versus antigorite serpentinite: magnetite, hydrogen, and life(?). Geology 38:879–882CrossRefGoogle Scholar
  24. Evans KA (2012) The redox budget of subduction zones. Earth Sci Rev 113:11–32CrossRefGoogle Scholar
  25. Evans KA, Tomkins A (2011) The relationship between subduction zone redox budget and arc magma fertility. Earth Planet Sci Lett 308:401–409CrossRefGoogle Scholar
  26. Evans BW, Trommsdorff V (1978) Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. Earth Planet Sci Lett 40:333–348CrossRefGoogle Scholar
  27. Evans BW, Dyar MD, Kuehner SM (2012) Implications of ferrous and ferric iron in antigorite. Am Mineral 97:184–196CrossRefGoogle Scholar
  28. Frost BR (1985) On the stability of sulfides, oxides, and native metals in serpentinite. J Petrol 26:31–63CrossRefGoogle Scholar
  29. Frost BR (1991) Introduction to oxygen fugacity and its petrologic importance. In: DH Lindsley (ed), Oxide minerals: petrologic and magnetic significance. Rev mineral 25: 1–8Google Scholar
  30. Frost BR, Evans KA, Swapp SM, Beard JS, Mothersole FE (2013) The process of serpentinization in dunite from New Caledonia. Lithos 178:24–39CrossRefGoogle Scholar
  31. Fuchs Y, Linares J, Mellini M (1998) Mössbauer and infrared spectrometry of lizardite-1T from Monte Fico, Elba. Phys Chem Mineral 26:111–115CrossRefGoogle Scholar
  32. Garrido CJ, López-Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Trommsdorff V, Alard O, Bodinier JL, Godard M (2005) Enrichment of HFSE in chlorite-harzburgite produced by high-pressure dehydration of antigorite-serpentinite: implications for subduction magmatism. Geochem Geophys Geosyst 6:Q01J15Google Scholar
  33. Godard M, Lagabrielle Y, Alard O, Harvey J (2008) Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (fifteen-twenty fracture zone, Mid-Atlantic Ridge): implications for mantle dynamics beneath a slow spreading ridge. Earth Planet Sci Lett 267:410–425CrossRefGoogle Scholar
  34. Gómez-Pugnaire MT, Galindo-Zaldivar J, Rubatto D, González-Lodeiro F, López-Sánchez-Vizcaíno V, Jabaloy A (2004) A reinterpretation of the Nevado-Filabride and Alpujarride complexes (Betic Cordillera): field, petrography and U-Pb ages from orthogneisses (western Sierra Nevada, S Spain). Schweiz Mineral Petrogr Mitt 84:303–322Google Scholar
  35. Jasonov PG, Nougaliev DK, Burov BV, Heller F (1998) A modernized coercivity spectrometer. Geol Carpath 49:224–225Google Scholar
  36. Kelley K, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607CrossRefGoogle Scholar
  37. Klein F, Bach W (2009) Fe–Ni–Co–O–S phase relations in peridotite seawater interactions. J Petrol 50:37–59CrossRefGoogle Scholar
  38. Klein F, Bach W, Humphris SE, Kahl W-A, Jöns N, Moskowitz B, Berquó TS (2013) Magnetite in seafloor serpentinite—Some like it hot. Geology. doi:10.1130/g35068.1 Google Scholar
  39. Kodolanyi J, Pettke T, Spandler C, Kamber BS, Gméling K (2012) Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J Petrol 53:235–270CrossRefGoogle Scholar
  40. Laubier M, Grove TL, Langmuir CH (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet Sci Lett 392:265–278CrossRefGoogle Scholar
  41. Lee CTA, Leeman WP, Canil D, Li ZXA (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46:2313–2336CrossRefGoogle Scholar
  42. Lee CTA, Luffi P, Le Roux V, Dasgupta R, Albarede F, Leeman W (2010) The redox of arc mantle using Zn/Fe systematics. Nature 468:681–685CrossRefGoogle Scholar
  43. López-Sánchez-Vizcaíno V, Trommsdorff V, Gómez-Pugnaire MT, Garrido CJ, Müntener O, Connolly JAD (2005) Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain). Contrib Mineral Petrol 149:627–646CrossRefGoogle Scholar
  44. Malaspina N, Tumiati S (2012) The role of C–O–H and oxygen fugacity in subduction-zone garnet peridotites. Eur J Mineral 24:607–618CrossRefGoogle Scholar
  45. Marcaillou C, Muñoz M, Vidal O, Parra T, Harfouche M (2011) Mineralogical evidence for H2 degassing during serpentinization at 300°C/300 bar. Earth Planet Sci Lett 303:281–290CrossRefGoogle Scholar
  46. Marchesi C, Garrido CJ, Padrón-Navarta JA, López-Sánchez-Vizcaíno V, Gómez-Pugnaire MT (2013) Element mobility from seafloor serpentinization to high-pressure dehydration of antigorite in subducted serpentinite: insights from the Cerro del Almirez ultramafic massif (southern Spain). Lithos 178:128–142CrossRefGoogle Scholar
  47. Maurice J, Bolfan-Casanova N (2014) Experimental study of serpentine dehydration. Lherzolite conference, Marrakech, Maroc, abstrGoogle Scholar
  48. McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73:856–875CrossRefGoogle Scholar
  49. Muñoz M, Vidal O, Marcaillou C, Sakura P, Mathon O, Farges F (2013) Iron oxidation state in phyllosilicate single crystals using Fe–K edge and XANES spectroscopy: effects of the linear polarization of the synchrotron X-ray beam. Am Mineral 98:1187–1197CrossRefGoogle Scholar
  50. O’Hanley DS, Dyar MD (1993) The composition of lizardite 1 T and the formation of magnetite in serpentinites. Am Mineral 78:391–404Google Scholar
  51. Oufi O, Cannat M, Horen H (2002) Magnetic properties of variably serpentinized abyssal peridotites. J Geophys Res 107-1978-2012Google Scholar
  52. Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ, Gómez-Pugnaire MT, Jabaloy A, Capitani G, Mellini M (2008) Highly ordered antigorite from Cerro del Almirez HP–HT serpentinites, SE Spain. Contrib Mineral Petrol 156:679–688CrossRefGoogle Scholar
  53. Padrón-Navarta JA, Tommasi A, Garrido CJ, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Jabaloy A, Vauchez A (2010a) Fluid transfer into the wedge controlled by high-pressure hydrofracturing in the cold top-slab mantle. Earth Planet Sci Lett 297:271–286CrossRefGoogle Scholar
  54. Padrón-Navarta JA, Hermann J, Garrido CJ, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT (2010b) An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite. Contrib Mineral Petrol 159:25–42CrossRefGoogle Scholar
  55. Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ, Gomez-Pugnaire MT (2011) metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filabride complex, Southern Spain). J Petrol 52:2047–2078CrossRefGoogle Scholar
  56. Padrón-Navarta JA, López Sánchez-Vizcaíno V, Hermann J, Connolly JAD, Garrido CJ, Gómez-Pugnaire MT, Marchesi C (2013) Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos 178:186–196CrossRefGoogle Scholar
  57. Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160:409–423CrossRefGoogle Scholar
  58. Ruiz Cruz MD, Puga E, Nieto JM (1999) Silicate and oxide exsolution in pseudospinifex olivine from metaultramafic rocks of the Betic Ophiolitic association: a TEM study. Am Mineral 84:1915–1924Google Scholar
  59. Savov IP, Ryan JG, D’Antonio M, Fryer P (2007) Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana fore arc. J Geophys Res. doi:10.1029/2006JB004749 Google Scholar
  60. Scambelluri M, Tonarini S (2012) Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology 40:907–910CrossRefGoogle Scholar
  61. Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, Gómez- Pugnaire MT, López-Sánchez-Vizcaíno V (2001) Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet Sci Lett 192:457–470CrossRefGoogle Scholar
  62. Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004) Serpentinite subduction: implications for fluid processes and trace-element recycling. Int Geol Rev 46:595–613CrossRefGoogle Scholar
  63. Schwartz S, Guillot S, Reynard B, Lafay R, Debret B, Nicollet C, Lanari P, Auzende AL (2013) Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 178:197–210CrossRefGoogle Scholar
  64. Song S, Su L, Niu Y, Lai Y, Zhang L (2009) CH4 inclusions in orogenic harzburgite: evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochim Cosmochim Acta 73:1737–1754CrossRefGoogle Scholar
  65. Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66:1189–1201Google Scholar
  66. Stolper E, Newman S (1994) The role of water in petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121:293–325CrossRefGoogle Scholar
  67. Tauxe L (2009) Essentials of paleomagnetism. University of California Press, San Diego, p 512Google Scholar
  68. Thompson JB (1982) Composition space: an algebraic and geometric approach. Rev Mineral Geochem 10:1–31Google Scholar
  69. Torres-Roldán RL, García-Casco A, García-Sanchez PA (2000) CSpace: an integrated workplace for the graphical and algebraic analysis of phase assemblages on 32-bit wintel platforms. Comput Geosci 26:779–793CrossRefGoogle Scholar
  70. Trommsdorff V, López Sánchez-Vizcaíno V, Gomez-Pugnaire MT, Müntener O (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contrib Mineral Petrol 132:139–148CrossRefGoogle Scholar
  71. Tumiati S, Godard G, Martin S, Malaspina N, Poli S (2015) Ultra-oxidized rocks in subduction mélanges? Decoupling between oxygen fugacity and oxygen availability in a Mn-rich metasomatic environment. Lithos. doi:10.1016/j.lithos.2014.12.008 Google Scholar
  72. Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861CrossRefGoogle Scholar
  73. Vils F, Pelletier L, Kalt A, Müntener O, Ludwig T (2008) The Lithium, Boron and Beryllium content of serpentinized peridotites from ODP Leg 209 (Sites 1272A and 1274A): implications for lithium and boron budgets of oceanic lithosphere. Geochim Cosmochim Acta 72:5475–5504CrossRefGoogle Scholar
  74. Vils F, Müntener O, Kalt A, Ludwig T (2011) Implications of the serpentine phase transition on the behaviour of beryllium and lithium-boron of subducted ultramafic rocks. Geochim Cosmochim Acta 75:1249–1271CrossRefGoogle Scholar
  75. Wilke M, Farges F, Petit PE, Gordon EB, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K-XANES spectroscopic study. Am Mineral 86:714–730Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Baptiste Debret
    • 1
    • 2
    • 3
  • Nathalie Bolfan-Casanova
    • 2
    • 3
  • José Alberto Padrón-Navarta
    • 4
  • Fatima Martin-Hernandez
    • 5
    • 6
  • Muriel Andreani
    • 7
  • Carlos J. Garrido
    • 8
  • Vicente López Sánchez-Vizcaíno
    • 9
  • María Teresa Gómez-Pugnaire
    • 10
  • Manuel Muñoz
    • 11
  • Nicolas Trcera
    • 12
  1. 1.Department of Earth SciencesDurham UniversityDurhamUK
  2. 2.Laboratoire Magmas et Volcans, Clermont UniversitéUniversité Blaise PascalClermont-FerrandFrance
  3. 3.UMR6524 - IRD, R163, LMVCNRSClermont-FerrandFrance
  4. 4.Géosciences MontpellierUniversité Montpellier 2MontpellierFrance
  5. 5.Departamento de Física de la Tierra, Astronomía y Astrofísica I, Fac. PhysicsUniversidad Complutense de MadridMadridSpain
  6. 6.Dpto. de Física de la TierraInstituto de Geociencias (UCM,CSIC)MadridSpain
  7. 7.Laboratoire de Géologie de LyonUMR5276, ENS — Université Lyon 1VilleurbanneFrance
  8. 8.Instituto Andaluz de Ciencias de la Tierra (IACT)CSIC-UGRArmillaSpain
  9. 9.Departamento de Geología, Escuela Politécnica SuperiorUniversidad de Jaén (Unidad Asociada al CSIC-IACT Granada)LinaresSpain
  10. 10.Departamento de Mineralogía y Petrología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  11. 11.Institut des Sciences de la TerreUniversité Grenoble IGrenobleFrance
  12. 12.Synchrotron SOLEILParisFrance

Personalised recommendations