Redox state of iron during high-pressure serpentinite dehydration

  • Baptiste DebretEmail author
  • Nathalie Bolfan-Casanova
  • José Alberto Padrón-Navarta
  • Fatima Martin-Hernandez
  • Muriel Andreani
  • Carlos J. Garrido
  • Vicente López Sánchez-Vizcaíno
  • María Teresa Gómez-Pugnaire
  • Manuel Muñoz
  • Nicolas Trcera
Original Paper


The Cerro del Almirez massif (Spain) represents a unique fragment of serpentinized oceanic lithosphere that has been first equilibrated in the antigorite stability field (Atg-serpentinites) and then dehydrated into chlorite–olivine–orthopyroxene (Chl-harzburgites) at eclogite facies conditions during subduction. The massif preserves a dehydration front between Atg-serpentinites and Chl-harzburgites. It constitutes a suitable place to study redox changes in serpentinites and the nature of the released fluids during their dehydration. Relative to abyssal serpentinites, Atg-serpentinites display a low Fe3+/FeTotal(BR) (=0.55) and magnetite modal content (=2.8–4.3 wt%). Micro-X-ray absorption near-edge structure (μ-XANES) spectroscopy measurements of serpentines at the Fe–K edge show that antigorite has a lower Fe3+/FeTotal ratio (=0.48) than oceanic lizardite/chrysotile assemblages. The onset of Atg-serpentinites dehydration is marked by the crystallization of a Fe3+-rich antigorite (Fe3+/FeTotal = 0.6–0.75) in equilibrium with secondary olivine and by a decrease in magnetite amount (=1.6–2.2 wt%). This suggests a preferential partitioning of Fe3+ into serpentine rather than into olivine. The Atg-breakdown is marked by a decrease in Fe3+/FeTotal(BR) (=0.34–0.41), the crystallization of Fe2+-rich phases and the quasi-disappearance of magnetite (=0.6–1.4 wt.%). The observation of Fe3+-rich hematite and ilmenite intergrowths suggests that the O2 released by the crystallization of Fe2+-rich phases could promote hematite crystallization and a subsequent increase in fo2 inside the portion of the subducted mantle. Serpentinite dehydration could thus produce highly oxidized fluids in subduction zones and contribute to the oxidization of the sub-arc mantle wedge.


Antigorite breakdown Redox Iron XANES Subduction 



We acknowledge SOLEIL for provision of synchrotron radiation facilities on LUCIA beamline (Project No. 20121036). We thank J.-L. Devidal (LMV, Clermont-Ferrand) for his assistance during microprobe analyses, P. Boulhiol (Durham University) for instructive discussions, and MR Reyes-González for sample preparation. We thank N. Malaspina and K. Evans for critical comments on an earlier version of this article, and O. Müntener for his careful editorial handling. The Raman spectroscopy facility at the ENS Lyon is supported by CNRS INSU. This work was supported by ANR11JS5601501 HYDEEP, grant to Nathalie Bolfan-Casanova. The first author is supported by the ERC HabitablePlanet (306655), grant attributed to Helen Williams (Durham University, UK). JAPN has been supported by a EU-FP7-funded Marie Curie postdoctoral grant under contract agreement PIOF-GA-2010-273017. JAPN, VLSV, MTGP, and CJG are supported by “Ministerio de Economía y Competitividad” Grants CGL2012-32067 and CGL2013-42349-Pand Junta de Andalucía Grants RNM-145, RNM-131, and P09-RNM-4495, funded by the European Regional Development Fund. The authors further acknowledge support by the Marie Curie ITN-ZIP funded under Grant agreement PITN-GA-2013-604713.

Supplementary material

410_2015_1130_MOESM1_ESM.doc (116 kb)
Supplementary material 1 (DOC 116 kb)
410_2015_1130_MOESM2_ESM.doc (58 kb)
Supplementary material 2 (DOC 58 kb)


  1. Alt JC, Shanks WC III (2003) Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling. Geochim Cosmochim Acta 67:641–653CrossRefGoogle Scholar
  2. Alt JC, Garrido CJ, Shanks WC III, Turchyn A, Padrón-Navarta JA, López-Sánchez-Vizcaíno V, Gómez Pugnaire MT, Marchesi C (2012) Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain. Earth Planet Sci Lett 327–328:50–60CrossRefGoogle Scholar
  3. Andersen T, Neumann ER (2001) Fluid inclusions in mantle xenoliths. Lithos 55:301–320CrossRefGoogle Scholar
  4. Andreani M, Muñoz M, Marcaillou C, Delacour A (2013) μXANES study of iron redox state in serpentine during oceanic serpentinization. Lithos 178:70–83CrossRefGoogle Scholar
  5. Arculus RJ (1994) Aspects of magma genesis in arcs. Lithos 33:189–208CrossRefGoogle Scholar
  6. Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris S (2006) Unravelling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP leg 209, site 1274). Geophys Res Lett 33:L13306CrossRefGoogle Scholar
  7. Bali E, Audetat A, Keppler H (2011) The mobility of U and Th in subduction zone fluids: an indicator of oxygen fugacity and fluid salinity. Contrib Mineral Petrol 161:597–613CrossRefGoogle Scholar
  8. Berndt ME, Allen DE, Seyfried WE (1996) Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar. Geology 24:351–354CrossRefGoogle Scholar
  9. Bouilhol P, Burg JP, Bodinier JL, Schmidt MW, Bernasconi S, Dawood D (2012) Gem olivine and calcite mineralization precipitated from subduction-derived fluids in the Kohistan arc-mantle (Pakistan). Can Mineral 50:1291–1304CrossRefGoogle Scholar
  10. Bromiley GD, Pawley AR (2003) The stability of antigorite in the systems MgO–SiO2–H2O (MSH) and MgO–Al2O3–SiO2–H2O (MASH): the effects of Al3+ substitution on high-pressure stability. Am Mineral 88:99–108Google Scholar
  11. Burton BP, Davidson PM (1988) Multicritical phase relations in minerals. In: ESS Ghose, JMD Coey (eds), Advances in physical geochemistry, volume 7, 60. Springer, New YorkGoogle Scholar
  12. Canil D, O’Neill HStC (1996) Distribution of ferric iron in some upper-mantle assemblages. J Petrol 37:609–635CrossRefGoogle Scholar
  13. Charlou J, Donval JP, Fouquet Y, Jean Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem Geol 191:345–359CrossRefGoogle Scholar
  14. De Faria DLA, Venancio Silva S, de Oliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878CrossRefGoogle Scholar
  15. Debret B, Andreani M, Godard M, Nicollet C, Schwartz S, Lafay R (2013a) Trace element behaviour during serpentinization/deserpentinization of an eclogitized oceanic lithosphere: a LA-ICPMS study of the Lanzo ultramafic massif (Western Alps). Chem Geol 357:117–133CrossRefGoogle Scholar
  16. Debret B, Nicollet C, Andreani M, Schwartz S, Godard M (2013b) Three steps of serpentinization in an eclogitized oceanic serpentinization front (Lanzo Massif—Western Alps). J Metamorph Geol 31:165–186CrossRefGoogle Scholar
  17. Debret B, Koga K, Nicollet C, Andreani M, Schwartz S (2014a) F, Cl and S input via serpentinite in subduction zones: implications on the nature of the fluid released at depth. Terra Nova 26:96–101CrossRefGoogle Scholar
  18. Debret B, Andreani M, Munoz M, Bolfan-Casanova N, Carlut J, Nicollet C, Schwartz S, Trcera N (2014b) Evolution of Fe redox state in serpentine during subduction. Earth Planet Sci Lett 400:206–218CrossRefGoogle Scholar
  19. Delacour A, Früh-Green GL, Bernasconi SM (2008a) Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309). Geochim Cosmochim Acta 72:5111–5127CrossRefGoogle Scholar
  20. Delacour A, Früh-Green GL, Bernasconi SM, Schaeffer P, Kelley DS (2008b) Carbon geochemistry of serpentinites in the Lost City hydrothermal system. Geochim Cosmochim Acta 72:3681–3702CrossRefGoogle Scholar
  21. Dunlop DJ, Özdemir Ö (1997) Rock magnetism. Cambridge University Press, Cambridge, p 573CrossRefGoogle Scholar
  22. Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46:479–506CrossRefGoogle Scholar
  23. Evans BW (2010) Lizardite versus antigorite serpentinite: magnetite, hydrogen, and life(?). Geology 38:879–882CrossRefGoogle Scholar
  24. Evans KA (2012) The redox budget of subduction zones. Earth Sci Rev 113:11–32CrossRefGoogle Scholar
  25. Evans KA, Tomkins A (2011) The relationship between subduction zone redox budget and arc magma fertility. Earth Planet Sci Lett 308:401–409CrossRefGoogle Scholar
  26. Evans BW, Trommsdorff V (1978) Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. Earth Planet Sci Lett 40:333–348CrossRefGoogle Scholar
  27. Evans BW, Dyar MD, Kuehner SM (2012) Implications of ferrous and ferric iron in antigorite. Am Mineral 97:184–196CrossRefGoogle Scholar
  28. Frost BR (1985) On the stability of sulfides, oxides, and native metals in serpentinite. J Petrol 26:31–63CrossRefGoogle Scholar
  29. Frost BR (1991) Introduction to oxygen fugacity and its petrologic importance. In: DH Lindsley (ed), Oxide minerals: petrologic and magnetic significance. Rev mineral 25: 1–8Google Scholar
  30. Frost BR, Evans KA, Swapp SM, Beard JS, Mothersole FE (2013) The process of serpentinization in dunite from New Caledonia. Lithos 178:24–39CrossRefGoogle Scholar
  31. Fuchs Y, Linares J, Mellini M (1998) Mössbauer and infrared spectrometry of lizardite-1T from Monte Fico, Elba. Phys Chem Mineral 26:111–115CrossRefGoogle Scholar
  32. Garrido CJ, López-Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Trommsdorff V, Alard O, Bodinier JL, Godard M (2005) Enrichment of HFSE in chlorite-harzburgite produced by high-pressure dehydration of antigorite-serpentinite: implications for subduction magmatism. Geochem Geophys Geosyst 6:Q01J15Google Scholar
  33. Godard M, Lagabrielle Y, Alard O, Harvey J (2008) Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (fifteen-twenty fracture zone, Mid-Atlantic Ridge): implications for mantle dynamics beneath a slow spreading ridge. Earth Planet Sci Lett 267:410–425CrossRefGoogle Scholar
  34. Gómez-Pugnaire MT, Galindo-Zaldivar J, Rubatto D, González-Lodeiro F, López-Sánchez-Vizcaíno V, Jabaloy A (2004) A reinterpretation of the Nevado-Filabride and Alpujarride complexes (Betic Cordillera): field, petrography and U-Pb ages from orthogneisses (western Sierra Nevada, S Spain). Schweiz Mineral Petrogr Mitt 84:303–322Google Scholar
  35. Jasonov PG, Nougaliev DK, Burov BV, Heller F (1998) A modernized coercivity spectrometer. Geol Carpath 49:224–225Google Scholar
  36. Kelley K, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607CrossRefGoogle Scholar
  37. Klein F, Bach W (2009) Fe–Ni–Co–O–S phase relations in peridotite seawater interactions. J Petrol 50:37–59CrossRefGoogle Scholar
  38. Klein F, Bach W, Humphris SE, Kahl W-A, Jöns N, Moskowitz B, Berquó TS (2013) Magnetite in seafloor serpentinite—Some like it hot. Geology. doi: 10.1130/g35068.1 Google Scholar
  39. Kodolanyi J, Pettke T, Spandler C, Kamber BS, Gméling K (2012) Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. J Petrol 53:235–270CrossRefGoogle Scholar
  40. Laubier M, Grove TL, Langmuir CH (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet Sci Lett 392:265–278CrossRefGoogle Scholar
  41. Lee CTA, Leeman WP, Canil D, Li ZXA (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46:2313–2336CrossRefGoogle Scholar
  42. Lee CTA, Luffi P, Le Roux V, Dasgupta R, Albarede F, Leeman W (2010) The redox of arc mantle using Zn/Fe systematics. Nature 468:681–685CrossRefGoogle Scholar
  43. López-Sánchez-Vizcaíno V, Trommsdorff V, Gómez-Pugnaire MT, Garrido CJ, Müntener O, Connolly JAD (2005) Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain). Contrib Mineral Petrol 149:627–646CrossRefGoogle Scholar
  44. Malaspina N, Tumiati S (2012) The role of C–O–H and oxygen fugacity in subduction-zone garnet peridotites. Eur J Mineral 24:607–618CrossRefGoogle Scholar
  45. Marcaillou C, Muñoz M, Vidal O, Parra T, Harfouche M (2011) Mineralogical evidence for H2 degassing during serpentinization at 300°C/300 bar. Earth Planet Sci Lett 303:281–290CrossRefGoogle Scholar
  46. Marchesi C, Garrido CJ, Padrón-Navarta JA, López-Sánchez-Vizcaíno V, Gómez-Pugnaire MT (2013) Element mobility from seafloor serpentinization to high-pressure dehydration of antigorite in subducted serpentinite: insights from the Cerro del Almirez ultramafic massif (southern Spain). Lithos 178:128–142CrossRefGoogle Scholar
  47. Maurice J, Bolfan-Casanova N (2014) Experimental study of serpentine dehydration. Lherzolite conference, Marrakech, Maroc, abstrGoogle Scholar
  48. McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73:856–875CrossRefGoogle Scholar
  49. Muñoz M, Vidal O, Marcaillou C, Sakura P, Mathon O, Farges F (2013) Iron oxidation state in phyllosilicate single crystals using Fe–K edge and XANES spectroscopy: effects of the linear polarization of the synchrotron X-ray beam. Am Mineral 98:1187–1197CrossRefGoogle Scholar
  50. O’Hanley DS, Dyar MD (1993) The composition of lizardite 1 T and the formation of magnetite in serpentinites. Am Mineral 78:391–404Google Scholar
  51. Oufi O, Cannat M, Horen H (2002) Magnetic properties of variably serpentinized abyssal peridotites. J Geophys Res 107-1978-2012Google Scholar
  52. Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ, Gómez-Pugnaire MT, Jabaloy A, Capitani G, Mellini M (2008) Highly ordered antigorite from Cerro del Almirez HP–HT serpentinites, SE Spain. Contrib Mineral Petrol 156:679–688CrossRefGoogle Scholar
  53. Padrón-Navarta JA, Tommasi A, Garrido CJ, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Jabaloy A, Vauchez A (2010a) Fluid transfer into the wedge controlled by high-pressure hydrofracturing in the cold top-slab mantle. Earth Planet Sci Lett 297:271–286CrossRefGoogle Scholar
  54. Padrón-Navarta JA, Hermann J, Garrido CJ, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT (2010b) An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite. Contrib Mineral Petrol 159:25–42CrossRefGoogle Scholar
  55. Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ, Gomez-Pugnaire MT (2011) metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filabride complex, Southern Spain). J Petrol 52:2047–2078CrossRefGoogle Scholar
  56. Padrón-Navarta JA, López Sánchez-Vizcaíno V, Hermann J, Connolly JAD, Garrido CJ, Gómez-Pugnaire MT, Marchesi C (2013) Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos 178:186–196CrossRefGoogle Scholar
  57. Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160:409–423CrossRefGoogle Scholar
  58. Ruiz Cruz MD, Puga E, Nieto JM (1999) Silicate and oxide exsolution in pseudospinifex olivine from metaultramafic rocks of the Betic Ophiolitic association: a TEM study. Am Mineral 84:1915–1924Google Scholar
  59. Savov IP, Ryan JG, D’Antonio M, Fryer P (2007) Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana fore arc. J Geophys Res. doi: 10.1029/2006JB004749 Google Scholar
  60. Scambelluri M, Tonarini S (2012) Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle. Geology 40:907–910CrossRefGoogle Scholar
  61. Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, Gómez- Pugnaire MT, López-Sánchez-Vizcaíno V (2001) Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet Sci Lett 192:457–470CrossRefGoogle Scholar
  62. Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004) Serpentinite subduction: implications for fluid processes and trace-element recycling. Int Geol Rev 46:595–613CrossRefGoogle Scholar
  63. Schwartz S, Guillot S, Reynard B, Lafay R, Debret B, Nicollet C, Lanari P, Auzende AL (2013) Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 178:197–210CrossRefGoogle Scholar
  64. Song S, Su L, Niu Y, Lai Y, Zhang L (2009) CH4 inclusions in orogenic harzburgite: evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochim Cosmochim Acta 73:1737–1754CrossRefGoogle Scholar
  65. Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron-titanium oxides. Am Mineral 66:1189–1201Google Scholar
  66. Stolper E, Newman S (1994) The role of water in petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121:293–325CrossRefGoogle Scholar
  67. Tauxe L (2009) Essentials of paleomagnetism. University of California Press, San Diego, p 512Google Scholar
  68. Thompson JB (1982) Composition space: an algebraic and geometric approach. Rev Mineral Geochem 10:1–31Google Scholar
  69. Torres-Roldán RL, García-Casco A, García-Sanchez PA (2000) CSpace: an integrated workplace for the graphical and algebraic analysis of phase assemblages on 32-bit wintel platforms. Comput Geosci 26:779–793CrossRefGoogle Scholar
  70. Trommsdorff V, López Sánchez-Vizcaíno V, Gomez-Pugnaire MT, Müntener O (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contrib Mineral Petrol 132:139–148CrossRefGoogle Scholar
  71. Tumiati S, Godard G, Martin S, Malaspina N, Poli S (2015) Ultra-oxidized rocks in subduction mélanges? Decoupling between oxygen fugacity and oxygen availability in a Mn-rich metasomatic environment. Lithos. doi: 10.1016/j.lithos.2014.12.008 Google Scholar
  72. Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861CrossRefGoogle Scholar
  73. Vils F, Pelletier L, Kalt A, Müntener O, Ludwig T (2008) The Lithium, Boron and Beryllium content of serpentinized peridotites from ODP Leg 209 (Sites 1272A and 1274A): implications for lithium and boron budgets of oceanic lithosphere. Geochim Cosmochim Acta 72:5475–5504CrossRefGoogle Scholar
  74. Vils F, Müntener O, Kalt A, Ludwig T (2011) Implications of the serpentine phase transition on the behaviour of beryllium and lithium-boron of subducted ultramafic rocks. Geochim Cosmochim Acta 75:1249–1271CrossRefGoogle Scholar
  75. Wilke M, Farges F, Petit PE, Gordon EB, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K-XANES spectroscopic study. Am Mineral 86:714–730Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Baptiste Debret
    • 1
    • 2
    • 3
    Email author
  • Nathalie Bolfan-Casanova
    • 2
    • 3
  • José Alberto Padrón-Navarta
    • 4
  • Fatima Martin-Hernandez
    • 5
    • 6
  • Muriel Andreani
    • 7
  • Carlos J. Garrido
    • 8
  • Vicente López Sánchez-Vizcaíno
    • 9
  • María Teresa Gómez-Pugnaire
    • 10
  • Manuel Muñoz
    • 11
  • Nicolas Trcera
    • 12
  1. 1.Department of Earth SciencesDurham UniversityDurhamUK
  2. 2.Laboratoire Magmas et Volcans, Clermont UniversitéUniversité Blaise PascalClermont-FerrandFrance
  3. 3.UMR6524 - IRD, R163, LMVCNRSClermont-FerrandFrance
  4. 4.Géosciences MontpellierUniversité Montpellier 2MontpellierFrance
  5. 5.Departamento de Física de la Tierra, Astronomía y Astrofísica I, Fac. PhysicsUniversidad Complutense de MadridMadridSpain
  6. 6.Dpto. de Física de la TierraInstituto de Geociencias (UCM,CSIC)MadridSpain
  7. 7.Laboratoire de Géologie de LyonUMR5276, ENS — Université Lyon 1VilleurbanneFrance
  8. 8.Instituto Andaluz de Ciencias de la Tierra (IACT)CSIC-UGRArmillaSpain
  9. 9.Departamento de Geología, Escuela Politécnica SuperiorUniversidad de Jaén (Unidad Asociada al CSIC-IACT Granada)LinaresSpain
  10. 10.Departamento de Mineralogía y Petrología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  11. 11.Institut des Sciences de la TerreUniversité Grenoble IGrenobleFrance
  12. 12.Synchrotron SOLEILParisFrance

Personalised recommendations