A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U–Pb geochronology of Apollo 14 melt breccia zircons

Original Paper

Abstract

New zircon U–Pb and trace element investigations from Apollo 14 lunar impact breccia sample #14311 reveal at least three distinct (Concordia, 2σ) age populations at 4334 ± 10, 4245 ± 10 and 3953 ± 10 Ma. Titanium-in-zircon thermometry (Tixln) results correlated with U–Pb ages range from ~800–1200 ºC. Lattice strain models used to infer zircon versus whole-rock rare earth element contents, and partitioning calculations against lunar impact breccia component compositions, quantitatively constrain formation conditions for the different age populations. A compilation of new data with published work shows that Apollo 14 zircons older than ca. 4300 Ma formed by igneous processes associated with lunar crust formation. Compositional variability in the ca. 4240 Ma zircon age population is interpretable, however, via a mixture of inherited and melt-generated components from one or more large impacts perhaps related to a marked increase in bombardment flux. Ages from the youngest zircon group at ca. 3950 Ma coincide with the classical “late heavy bombardment” (LHB) as documented from previous lunar geochronologies. These results lend support to the idea that instead of a simple unimodal LHB scenario, or a monotonic decline in impacts, the Moon was battered by multiple cataclysms since ca. 4240 Ma. Such a “Picket fence”-like bombardment to the Moon best describes the mode and tempo of impacts that accompanied the late stages of solar system formation and giant planet migration.

Keywords

Zircon Bombardment Trace elements Apollo 14 LHB 

Supplementary material

410_2015_1123_MOESM1_ESM.pdf (50.3 mb)
Supplementary material 1 (PDF 51458 kb)
410_2015_1123_MOESM2_ESM.pdf (56 kb)
Supplementary material 2 (PDF 56 kb)
410_2015_1123_MOESM3_ESM.pdf (44 kb)
Supplementary material 3 (PDF 44 kb)
410_2015_1123_MOESM4_ESM.pdf (29 kb)
Supplementary material 4 (PDF 28 kb)

References

  1. Abbott SS, Harrison TM, Schmitt AK, Mojzsis SJ (2012) A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti–U–Th–Pb depth profiles. Proc Natl Acad Sci 109:13486–13492Google Scholar
  2. Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–422Google Scholar
  3. Abramov O, Kring DA, Mojzsis SJ (2013) The impact environment of the Hadean Earth. Chemie der Erde - Geochem 73:227–248Google Scholar
  4. Alexander EC, Davis PK (1974) 40Ar-39Ar ages and trace element contents of Apollo 14 breccias: an interlaboratory cross calibration of 40Ar–39Ar standards. Geochim Cosmochim Acta 38:911–928Google Scholar
  5. Anders E, Grevesse N (1989) Abundances of the elements—meteoritic and solar. Geochim Cosmochim Acta 53:197–214Google Scholar
  6. Arai T, Yoshitake M, Tomiyama T, Niihahra T, Yokoyama T, Kaiden H, Misawa K, Irving AJ (2010) Support for a prolonged KREEP magmatism: U–Pb age of zircon and baddeleyite in lunar meteorite NWA 4485. Lunar Planet Sci 41:2379Google Scholar
  7. Baldwin RB (1963) The measure of the Moon. University of Chicago, Chicago, p 488 Google Scholar
  8. Black LP, Kamo AL, Williams IS, Mundil R, Davis DW, Korsch RJ, Foudoulis C (2003) The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chem Geol 200:171–188Google Scholar
  9. Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454Google Scholar
  10. Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397Google Scholar
  11. Bottke WF, Levison HF, Nesvorný D, Dones L (2007) Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment? Icarus 190:203–223Google Scholar
  12. Bottke WF, Walker RJ, Day JMD, Nesvorný D, Elkins-Tanton L (2010) Stochastic late accretion to Earth, the Moon, and Mars. Science 330:1527–1530Google Scholar
  13. Bottke WF, Vokrouhlický D, Minton D, Nesvorný D, Morbidelli A, Brasser R, Simonson B, Levison HF (2012) An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485:78–81Google Scholar
  14. Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249–253Google Scholar
  15. Chou C-L (1978) Fractionation of siderophile elements in the Earth’s upper mantle. Proc Lunar Planet Sci Conf 9:163–165Google Scholar
  16. Cohen BA, Swindle TD, Kring DA (2005) Geochemistry and 40Ar–39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: implication for lunar bombardment history. Meteorit Planet Sci 40:755–777Google Scholar
  17. Coogan LA, Hinton RW (2006) Do the trace element compositions of detrital zircons require Hadean continental crust? Geology 34:633–636Google Scholar
  18. Day JMD, Walker RJ, Qin L, Rumble D III (2012) Late accretion as a natural consequence of planetary growth. Nat Geosci 5:614–617Google Scholar
  19. Fassett CI, Minton DA (2013) Impact bombardment of the terrestrial planets and the early history of the solar system. Nat Geosci 6:520–524Google Scholar
  20. Fernandes VA, Fritz J, Weiss BP, Garrick-Bethell I, Shuster DL (2013) The bombardment history of the Moon as recorded by 40Ar–39Ar chronology. Meteorit Planet Sci 48:241–269Google Scholar
  21. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437Google Scholar
  22. Fischer-Göde M, Becker H (2012) Osmium isotope and highly siderophile element constraints on ages and nature of meteoritic components in ancient lunar impact rocks. Geochim Cosmochim Acta 77:135–156Google Scholar
  23. Fritz J, Bitsch B, Kürt E, Morbidelli A, Tornow C, Wünnemann K, Fernandes VA, Grenfell JL, Rauer H, Wagner R, Werner SC (2014) Earth-like habitats in planetary systems. Planet Space Sci 98:254–267Google Scholar
  24. Gnos E, Hofmann BA, Al-Kathiri A, Lorenzetti S, Eugster O, Whitehouse MJ, Villa IM, Jull AJT, Eikenberg J, Spettel B, Krähenbühl U, Franchi IA, Greenwood RC (2004) Pinpointing the source of a lunar meteorite: implications for the evolution of the Moon. Science 305:657–659Google Scholar
  25. Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:466–469Google Scholar
  26. Grange ML, Nemchin AA, Pidgeon RT, Timms N, Muhling JR, Kennedy AK (2009) Thermal history recorded by the Apollo 17 impact melt breccia 73217. Geochim Cosmochim Acta 73:3093–3107Google Scholar
  27. Grange ML, Nemchin AA, Timms N, Pidgeon RT, Meyer C (2011) Complex magmatic and impact history prior to 4.1 Ga recorded in zircon from Apollo 17 South Massif aphanitic breccia 73235. Geochim Cosmochim Acta 75:2213–2232Google Scholar
  28. Grange ML, Pidgeon RT, Nemchin AA, Timms NE, Meyer C (2013) Interpreting U–Pb data from primary and secondary features in lunar zircon. Geochim Cosmochim Acta 101:112–132Google Scholar
  29. Grieve RAF, Cintala MJ (1997) Planetary differences in impact melting. Adv Space Res 20:1551–1560Google Scholar
  30. Hanchar JM, Van Westrenen W (2007) Rare earth element behavior in zircon-melt systems. Elements 3:37–42Google Scholar
  31. Harrison TM, Schmitt AK (2007) High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet Sci Lett 261:9–19Google Scholar
  32. Hartmann WK (1965) Terrestrial and lunar flux of large meteorites in the last two billion years. Icarus 4:157–165Google Scholar
  33. Hartmann WK (1966) Early lunar cratering. Icarus 5:406–418Google Scholar
  34. Hartmann WK (1975) Lunar “cataclysm”: A misconception? Icarus 24:181–187Google Scholar
  35. Hartmann WK, Ryder G, Dones L, Grinspoon DH (2000) The time-dependent intense bombardment of the primordial Earth/Moon system. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. University of Arizona Press, Tucson, pp 493–512Google Scholar
  36. Hiess J, Nutman AP, Bennett VC, Holden P (2008) Ti-in-zircon thermometry applied to contrasting Archean metamorphic and igneous systems. Chem Geol 247:323–338Google Scholar
  37. Hopkins MD, Mojzsis SJ, Bottke WF, Abramov O (2015) Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus 245:367–378Google Scholar
  38. Hoskin PWO, Black LP (2001) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Met Geol 18:423–439Google Scholar
  39. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62Google Scholar
  40. Husain L, Schaeffer OA (1975) Lunar evolution: the first 600 million years. Geophys Res Lett 2:29–32Google Scholar
  41. Ivanov BA, Melosh HJ (2003) Impacts do not initiate volcanic eruptions I: eruptions close to the crater. Geology 31:869–872Google Scholar
  42. Jackson ED, Sutton RL, Wilshire HG (1975) Structure and petrology of a cumulus norite boulder sampled by Apollo 17 in Taurus–Littrow valley, the Moon. Geol Soc Am Bull 86:433Google Scholar
  43. Johnson BC, Melosh HJ (2012) Impact spherules as a record of an ancient heavy bombardment of Earth. Nature 485:75–77Google Scholar
  44. Kirkland CL, Smithies RH, Taylor RJM, Evans N, McDonald B (2015) Zircon Th/U in magmatic environs. Lithos 212–215:397–414Google Scholar
  45. Liu D, Jolliff BL, Zeigler RA, Korotev RL, Wan Y, Xie H, Zhang Y, Dong C, Wang W (2012) Comparative zircon U–Pb geochronology of impact melt breccias from Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact. Earth Planet Sci Lett 319–320:277–286Google Scholar
  46. Ludwig KR (2003) User’s manual for Isoplot/Ex: a geochronological toolkit for Microsoft Excel. Berkley Geochron Cent Spec Publ 4Google Scholar
  47. Marchi S, Bottke WF, Elkins-Tanton LT, Bierhaus M, Wuennemann K, Morbidelli A, Kring DA (2014) Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511:578–582Google Scholar
  48. Mattinson J, Graubard C, Parkinson DL, McClelland WC (1996) U–Pb reverse discordance in zircons: the role of fine-scale oscillatory zoning and sub-micron transport of Pb. In: Basu A, Hart S (eds) Earth processes: reading the isotopic code. American Geophysical Union, Washington, DC, pp 355–370Google Scholar
  49. Maurer P, Eberhart P, Geiss J, Grögler N, Stettler A, Brown GM, Pickett A, Krähenbühl K (1978) Pre-Imbrian craters and basins—ages, compositions and excavation depths of Apollo 16 breccias. Geochim Cosmochim Acta 42:1687–1720Google Scholar
  50. Meyer C, Williams IS, Compston W (1996) Uranium-lead ages for lunar zircons: evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga. Meteorit Planet Sci 31:370–387Google Scholar
  51. Mojzsis SJ, Krishnamurthy R, Arrhenius G (1999) Before RNA and After: geophysical and geochemical constraints on molecular evolution. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world, 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor, pp 1–47Google Scholar
  52. Mojzsis SJ, Cates NL, Caro G, Trail D, Abramov O, Guitreau M, Blichert-Toft J, Hopkins MD, Bleeker W (2014) Component geochronology in the polyphase ca. 3920 Ma Acasta Gneiss. Geochim Cosmochim Acta 133:68–96Google Scholar
  53. Morbidelli A, Marchi S, Bottke WF, Kring DA (2012) A Sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet Sci Lett 355–356:144–151Google Scholar
  54. Nemchin AA, Pidgeon RT, Whitehouse MJ, Vaughan JP, Meyer C (2008) SIMS U–Pb study of zircon from Apollo 14 and 17 breccias: implications for the evolution of lunar KREEP. Geochim Cosmochim Acta 72:668–689Google Scholar
  55. Nemchin AA, Pidgeon RT, Healy D, Grange ML, Whitehouse MJ, Vaughan J (2009a) The comparative behavior of apatite–zircon U–Pb systems in Apollo 14 breccias: implications for the thermal history of the Fra Mauro Formation. Meteorit Planet Sci 44:1717–1734Google Scholar
  56. Nemchin AA, Timms N, Pidgeon R, Geisler T, Reddy S, Meyer C (2009b) Timing and crystallization of the lunar magma ocean constrained by the oldest zircon. Nat Geosci 2:133–136Google Scholar
  57. Nemchin AA, Grange ML, Pidgeon RT (2010) Distribution of rare earth elements in lunar zircon. Am Mineral 95:273–283Google Scholar
  58. Nemchin AA, Grange ML, Pidgeon RT, Meyer C (2012) Lunar zirconology. Aust J Earth Sci 59:277–290Google Scholar
  59. Nesvorný D (2011) Young solar system’s fifth giant planet? Astrophys J Lett 742:L22Google Scholar
  60. Nesvorný D, Morbidelli A (2012) Statistical study of the early solar system’s instability with four, five and six giant planets. Astrophys J 144:117Google Scholar
  61. Neukum G, Ivanov BA (1994) Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroidal cratering data. In: Gehrels T, Matthews MS, Schumann A (eds) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 359–416Google Scholar
  62. Neukum G, Ivanov B, Hartmann WK (2001) Cratering records in the inner solar system. In: Kallenbach R, Giess J, Hartmann WK (eds) Chronology and evolution of Mars. Kluwer, Dordrecht, pp 55–86Google Scholar
  63. Newton RC, Aranovich LY, Hansen EC, Van den Heuvel BE (1998) Hypersaline fluids in Precambrian deep-crustal metamorphism. Precamb Res 91:41–63Google Scholar
  64. Norman MD, Nemchin AA (2014) A 4.2 billion year old impact basin on the Moon: U–Pb dating of zirconolite and apatite in lunar melt rock 67955. Earth Planet Sci Lett 388:387–398Google Scholar
  65. Norman MD, Borg LE, Nyquist LE, Bogard DD (2003) Chronology, geochemistry and petrology of a ferroan anorthosite clast from Descartes breccia 67215: clues to the age, origin, and impact history of the lunar crust. Meteorit Planet Sci 38:645–661Google Scholar
  66. Nyquist L, Bogard D, Yamaguchi A, Shih C-Y, Karouji Y, Ebihara M, Reese Y, Garrison D, McKay G, Takeda H (2006) Feldspathic clasts in Yamato-86032: remnants of the lunar crust with implications for its formation and impact history. Geochim Cosmochim Acta 70:5990–6015Google Scholar
  67. Onuma N, Higuchi H, Wakita H, Nagasawa H (1968) Trace element partition between two pyroxenes and the host lava. Earth Planet Sci Lett 5:47–51Google Scholar
  68. Öpik EJ (1960) The lunar surface as an impact counter. Mon Not R Astron Soc 120:404–411Google Scholar
  69. Paces JB, Miller JD (1993) Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. J Geophys Res 98:13997–14013Google Scholar
  70. Papanastassiou DA, Wasserburg GJ (1971) Rb–Sr ages of igneous rocks from the Apollo 14 mission and the age of the Fra Mauro Formation. Earth Planet Sci Lett 12:36–48Google Scholar
  71. Pearce NJG, Westgate JA, Perkins WT (1996) Developments in the analysis of volcanic glass shards by laser ablation ICP-MS: quantitative and single internal standard—multi-element methods. Quat Int 34–36:213–227Google Scholar
  72. Pidgeon RT, Nemchin AA, van Bronswijk W, Geisler T, Meyer C, Compston W, Williams IS (2007) Complex history of a zircon aggregate from lunar breccia 73235. Geochim Cosmochim Acta 71:1370–1381Google Scholar
  73. Pidgeon RT, Nemchin AA, Grange ML, Meyer C (2010) Evidence for a lunar “cataclysm” at 4.34 Ga from zircon U–Pb systems. Proc Lunar Sci Conf 411126Google Scholar
  74. Reid MR, Vazquez JA, Schmitt AK (2011) Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer. Contrib Mineral Petrol 161:293–311Google Scholar
  75. Righter K, Humayun M, Danielson L (2008) Partitioning of palladium at high pressures and temperatures during core formation. Nat Geosci 1:321–323Google Scholar
  76. Ryder G (1990) Lunar samples, lunar accretion and the early bombardment of the Moon. Eos 71:313–323Google Scholar
  77. Ryder G (2002) Mass flux in the ancient Earth–Moon system and benign implications for the origin of life on Earth. J Geophys Res. doi:10.1029/2001JE001583 Google Scholar
  78. Ryder G, Koeberl C, Mojzsis SJ (2000) Heavy bombardment of the Earth at ∼3.85 Ga: the search for petrographic and geochemical evidence. In: Canup RM, Righter K (eds) Origin of the Earth and Moon. The University of Arizona Press, Tucson, AZ, pp 475–492Google Scholar
  79. Schmitt AK, Vazquez JA (2006) Alteration and remelting of nascent oceanic crust during continental rupture: evidence from zircon geochemistry of rhyolites and xenoliths from the Salton Trough, California. Earth Planet Sci Lett 252:260–274Google Scholar
  80. Schmitz MD, Bowring SA, Ireland TR (2003) Evaluation of Duluth Complex anorthositic series (AS3) zircon as a U–Pb geochronological standard: new high-precision isotope dilution thermal ionization mass spectrometry results. Geochim Cosmochim Acta 67:3665–3672Google Scholar
  81. Schonfeld E, Meyer C (1972) The abundance of components of the lunar soils by a least-squares mixing model and the formation age of KREEP. Proc Lunar Sci Conf 4:1397–1420Google Scholar
  82. Schuhmacher M, de Chambost E, McKeegan KD, Harrison TM, Migeon H (1994) Dating of zircon with the CAMECA IMS 1270. In: Benninghoven A, Nihei Y, Shimizu R, Werner HW (eds) Secondary ion mass spectrometry SIMS IX. Wiley, New York, pp 912–922Google Scholar
  83. Schuster DL, Balco G, Cassata WS, Fernandes VA, Garrick-Bethell I, Weiss BP (2010) A record of impacts preserved in the lunar regolith. Earth Planet Sci Lett 290:155–165Google Scholar
  84. Scoates JS, Chamberlain KR (1995) Baddeleyite (ZrO2) and zircon (ZrSiO4) from anorthositic rocks of the Laramie anorthosite complex, Wyoming: petrological consequences and U–Pb ages. Am Mineral 80:1317–1327Google Scholar
  85. Simonds CH, Phinney WC, Warner JL, McGee P, Geeslin J, Brown R, Rhodes J (1977) Apollo 14 revisited, or breccias aren’t so bad after all. Proc Lunar Sci Conf 81869–1893Google Scholar
  86. Taylor SR (1982) Planetary science: a lunar perspective. Lunar and Planetary Institute, HoustonGoogle Scholar
  87. Taylor GJ, Warren PH, Ryder G, Delano J, Pieters C (1991) Lunar rocks. In: Heiken GH, Vaniman D, French B (eds) Lunar sourcebook: a user’s guide to the Moon. Cambridge University Press, New York, pp 183–284Google Scholar
  88. Taylor DJ, McKeegan KD, Harrison TM (2009) Lu–Hf zircon evidence for rapid lunar differentiation. Earth Planet Sci Lett 279:157–164Google Scholar
  89. Taylor RJM, Harley SL, Hinton RW, Elphick S, Clark C, Kelly NM (2014) Experimental determination of REE partition coefficients between zircon, garnet and melt: a key to understanding high-T crustal processes. J Metamorph Geol. doi:10.1111/jmg.12118 Google Scholar
  90. Tera F, Papanastassiou DA, Wasserburg GJ (1974) Isotopic evidence for a terminal lunar cataclysm. Earth Planet Sci Lett 22:1–21Google Scholar
  91. Terada K, Anand M, Sokol AK, Bischoff A, Sano Y (2007) Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature 450:849–852Google Scholar
  92. Timms NE, Reddy SM, Healy D, Nemchin AA, Grange ML, Pidgeon RT, Hart R (2012) Resolution of impact-related microstructures in lunar zircon: a shock-deformation mechanism map. Meteorit Planet Sci 47:120–141Google Scholar
  93. Touboul M, Puchtel IS, Walker RJ (2012) 182W evidence for long-term preservation of early mantle differentiation products. Science 335:1065–1069Google Scholar
  94. Trail D, Mojzsis SJ, Harrison TM (2007) Thermal events documented in Hadean zircons by ion microprobe depth profiles. Geochim Cosmochim Acta 71:4044–4065Google Scholar
  95. Tsiganis K, Gomes R, Morbidelli A, Levison HF (2005) Origin of the orbital architecture of the giant planets of the Solar System. Nature 435:459–461Google Scholar
  96. Turner G, Cadogan PH, Yonge CJ (1973) Argon selenochronology. Proc Lunar Planet Sci Conf 2:1889–1914Google Scholar
  97. Turner G, Enright MC, Hennessey J (1979) Dating heavenly bodies and Monte Carlo models. Proc Lunar Planet Sci Conf 10:1247–1249Google Scholar
  98. Valley JW, Spicuzza MJ, Ushikubo T (2014) Correlated δ18O and [Ti] in lunar zircons: a terrestrial perspective for magma temperatures and water content on the Moon. Contrib Mineral Petrol 167:956Google Scholar
  99. Walker RJ (2009) Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chemie der Erde-– geochemistry 69:101–125Google Scholar
  100. Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209Google Scholar
  101. Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844Google Scholar
  102. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433Google Scholar
  103. Werner S (2014) Moon, Mars, Mercury: basin formation ages and implications for the maximum surface age and the migration of gaseous planets. Earth Planet Sci Lett 400:54–65Google Scholar
  104. White W (2013) Trace elements in igneous processes. Geochemistry. Wiley, Hoboken, pp 268–318Google Scholar
  105. Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23Google Scholar
  106. Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard JP, Greenwood RC, Hinton R, Kita N, Mason PRD, Norman M, Ogasawara M, Piccoli PM, Rhede D, Satoh H, Schulz-Dobrick B, Skår Ø, Spicuzza MJ, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng Y (2004) Further characterization of the 91500 zircon crystal. Geostand Geoanal Res 28:9–39Google Scholar
  107. Wielicki M, Harrison TM, Boehnke P, Sciences S, Angeles L (2012a) Modeling zircon saturation within simulated impact events: implication on impact histories of planetary bodies. Lunar Planet Sci Conf 43:2912Google Scholar
  108. Wielicki MM, Harrison TM, Schmitt AK (2012b) Geochemical signatures and magmatic stability of terrestrial impact produced zircon. Earth Planet Sci Lett 321–322:20–31Google Scholar
  109. Wilhelms DE (1987) The geological history of the Moon. United States geological survey professional paper 1348, p 302Google Scholar
  110. Willbold M, Elliot T, Moorbath S (2011) The tungsten isotopic composition of the Earth's mantle before the terminal bombardment. Nature 477:195–198Google Scholar
  111. Zahnle KJ, Arndt J, Cockell C, Halliday A, Nisbet E, Selsis F, Sleep NH (2007) Emergence of a habitable planet. Space Sci Rev 129:35–78Google Scholar
  112. Zhou Q, Yin Q, Young ED, Li X-H, Wu F-Y, Li Q-L, Liu Y, Tang G-Q (2013) SIMS Pb–Pb and U–Pb age determination of eucrite zircons at <5 μm scale at the first 50 Ma of the thermal history of Vesta. Geochim Cosmochim Acta 110:152–175Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Geological Sciences, NASA Lunar Science Institute Center for Lunar Origin and Evolution (CLOE)University of ColoradoBoulderUSA
  2. 2.Laboratoire de Géologie de Lyon, École Normale Supérieure de Lyon, CNRS UMR 5276Université Claude Bernard Lyon 1LyonFrance
  3. 3.Research Center for Astronomy and Earth Sciences, Institute for Geological and Geochemical ResearchHungarian Academy of SciencesBudapestHungary
  4. 4.Department of Earth ScienceSanta Monica CollegeSanta MonicaUSA

Personalised recommendations