Localization of submicron inclusion re-equilibration at healed fractures in host garnet

  • T. A. GriffithsEmail author
  • G. Habler
  • D. Rhede
  • R. Wirth
  • F. Ram
  • R. Abart
Original Paper


Microstructures in Permian inclusion-bearing metapegmatite garnets from the Koralpe (Eastern Alps, Austria) reveal re-equilibration by coarsening of abundant submicron-sized inclusions (1 μm–2 nm diameter) at the site of healed brittle cracks. The microstructures developed during Cretaceous eclogite-facies deformation and the related overprinting of the host–inclusion system. Trails of coarsened inclusions (1–10 μm diameter) crosscut the garnet, defining traces of former fractures with occasional en-echelon overlaps. Trails are flanked by 10- to 100-μm-wide ‘bleaching zones’ characterized by the absence of ≤1-μm-sized inclusions in optical and SE images. FEG-microprobe data show that trails and bleaching zones can form isochemically, although some trails exhibit non-isochemical coarsening. Cross-correlation-based EBSD analysis reveals garnet lattice rotation of up to 0.45°, spatially correlated with bleaching zones. The garnet lattice in the center of trails is misoriented around different axes with respect to the lattice either side of the trail. Elevated dislocation density within bleaching zones is confirmed by TEM observations. Dislocations represent a plastic wake formed by crystal plastic deformation at the crack tip. Fracture enhanced diffusion rates in the lattice adjacent to crack planes by introducing dislocations, priming these areas to behave differently to the bulk of the garnet during Cretaceous metamorphism and facilitating localized coarsening of inclusions. Diffusion within the bleaching zone was enhanced by a minimum factor of 102. The partially closed host–inclusion system records the influence of deformation mechanisms on re-equilibration and contributes to understanding of the interaction between deformation and chemical reaction during metamorphism.


Diffusion EBSD Garnet Inclusions Fracturing Re-equilibration 



The authors acknowledge funding by the University of Vienna doctoral school IK052 Deformation of Geological Materials (DOGMA) and the project of the Austrian Science fund (FWF): I471-N19, as part of the international DFG-FWF funded research network FOR741-DACH. Dr. Stefan Zaefferer of the Max Planck Institute for Iron research is thanked for his provision of access to the Cross Court 3 software. T. L. Grove (editor), D. L. Whitney (reviewer) and an anonymous reviewer are thanked for their constructive and insightful comments which greatly improved the manuscript.

Supplementary material

410_2014_1077_MOESM1_ESM.doc (55 kb)
Table of mean compositions with standard deviations for rutile grains inside and outside trails in domain KII, and for rutile within one trail in domain KVK (DOC 55 kb)
410_2014_1077_MOESM2_ESM.doc (61 kb)
Table of mean compositions with standard deviations for ilmenite within three different trails of domain KVK (DOC 61 kb)
410_2014_1077_MOESM3_ESM.eps (1.1 mb)
Histograms showing the frequency distribution of the radii of wyllieite group phosphate inclusions in domain KII. Radii were calculated as the radius of a circle with equivalent area to the ellipse manually drawn around each inclusion on BSE images. Out-trail inclusions in a, in-trail and in-BZ inclusions in b. The values chosen as representing the ‘mean radius’ 〈R〉 of each population are marke (EPS 1154 kb)


  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics Int 11:36–41Google Scholar
  2. Anderson TL (2005) Fracture mechanics: fundamentals and applications, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  3. Armstrong JT (1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray-analysis of thick polished materials, thin films, and particles. Microbeam Anal 4:177–200Google Scholar
  4. Bachmann F, Hielscher R, Schaeben H (2010) Texture analysis with MTEX - Free and open source software toolbox. Solid State Phenom 160:63–68Google Scholar
  5. Balluffi RW, Allen S, Carter WC (2005) Kinetics of materials. Wiley, HobokenCrossRefGoogle Scholar
  6. Bate PS, Knutsen RD, Brough I, Humphreys FJ (2005) The characterization of low-angle boundaries by EBSD. J Microsc 220:36–46. doi: 10.1111/j.1365-2818.2005.01513.x
  7. Bestel M, Gawronski T, Abart R, Rhede D (2009) Compositional zoning of garnet porphyroblasts from the polymetamorphic Wölz Complex, Eastern Alps. Mineral Petrol 97:173–188. doi: 10.1007/s00710-009-0084-z CrossRefGoogle Scholar
  8. Bestmann M, Habler G, Heidelbach F, Thoni M (2008) Dynamic recrystallization of garnet and related diffusion processes. J Struct Geol 30:777–790. doi: 10.1016/j.jsg.2008.02.007 CrossRefGoogle Scholar
  9. Carstens H (1971) Plastic stress relaxation around solid inclusions in pyrope. Contrib Mineral Petrol 32:289–294. doi: 10.1007/BF00373346 CrossRefGoogle Scholar
  10. Chakraborty S, Ganguly J (1991) Compositional zoning and cation diffusion in garnets. In: Ganguly J (ed) Diffus. At. Ordering Mass Transp. Springer US, pp 120–175Google Scholar
  11. Cooke RA, O’Brien PJ, Carswell DA (2000) Garnet zoning and the identification of equilibrium mineral compositions in high-pressure-temperature granulites from the Moldanubian Zone, Austria. J Metamorph Geol 18:551–569CrossRefGoogle Scholar
  12. Crone WC, Shield TW, Creuziger A, Henneman B (2004) Orientation dependence of the plastic slip near notches in ductile FCC single crystals. J Mech Phys Solids 52:85–112. doi: 10.1016/S0022-5096(03)00077-2 CrossRefGoogle Scholar
  13. Danyushevsky LV, Sokolov S, Falloon TJ (2002) Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of Olivine-phyric volcanic rocks. J Petrol 43:1651–1671CrossRefGoogle Scholar
  14. De Ronde AA, Stünitz H, Tullis J, Heilbronner R (2005) Reaction-induced weakening of plagioclase–olivine composites. Tectonophysics 409:85–106. doi: 10.1016/j.tecto.2005.08.008 CrossRefGoogle Scholar
  15. Erambert M, Austrheim H (1993) The effect of fluid and deformation on zoning and inclusion patterns in poly-metamorphic garnets. Contrib Mineral Petrol 115:204–214. doi: 10.1007/BF00321220 CrossRefGoogle Scholar
  16. Gaidies F, Capitani C, Abart R, Schuster R (2008) Prograde garnet growth along complex P–T–t paths: results from numerical experiments on polyphase garnet from the Wölz Complex (Austroalpine basement). Contrib Mineral Petrol 155:673–688. doi: 10.1007/s00410-007-0264-y CrossRefGoogle Scholar
  17. Gourgues A-F (2002) Electron backscatter diffraction and cracking. Mater Sci Technol 18:119–133. doi: 10.1179/026708301125000320 CrossRefGoogle Scholar
  18. Gregurek D, Abart R, Hoinkes G (1997) Contrasting eoalpine P–T evolutions in the southern Koralpe, Eastern Alps. Mineral Petrol 60:61–80CrossRefGoogle Scholar
  19. Habler G, Thöni M (2001) Preservation of Permo-Triassic low-pressure assemblages in the Cretaceous high-pressure metamorphic Saualpe crystalline basement (Eastern Alps, Austria). J Metamorph Geol 19:679–697. doi: 10.1046/j.0263-4929.2001.00338.x CrossRefGoogle Scholar
  20. Habler G, Thöni M, Miller C (2007) Major and trace element chemistry and Sm-Nd age correlation of magmatic pegmatite garnet overprinted by eclogite-facies metamorphism. Chem Geol 241:4–22. doi: 10.1016/j.chemgeo.2007.01.026 CrossRefGoogle Scholar
  21. Hames WE, Menard T (1993) Fluid-assisted modification of garnet composition along rims, cracks, and mineral inclusion boundaries in samples of amphibolite facies schists. Am Mineral 78:338–344Google Scholar
  22. Hatert F, Baijot M, Philippo S, Wouters J (2010) Qingheiite-(Fe2 +), Na2Fe2+MgAl(PO4)3, a new phosphate mineral from the Sebastião Cristino pegmatite, Minas Gerais, Brazil. Eur J Mineral 22:459–467Google Scholar
  23. Heidelbach F, Terry MP, Bystricky M et al (2009) A simultaneous deformation and diffusion experiment: quantifying the role of deformation in enhancing metamorphic reactions. Earth Planet Sci Lett 278:386–394. doi: 10.1016/j.epsl.2008.12.026 CrossRefGoogle Scholar
  24. Hielscher R, Schaeben H, Siemes H (2010) Orientation distribution within a single hematite crystal. Math Geosci 42:359–375. doi: 10.1007/s11004-010-9271-z CrossRefGoogle Scholar
  25. Hwang SL, Shen P, Yui TF, Chu HT (2007) TiO2 nanoparticle trails in garnet: implications of inclusion pressure-induced microcracks and spontaneous metamorphic-reaction healing during exhumation. J Metamorph Geol 25:451–460. doi: 10.1111/j.1525-1314.2007.00705.x CrossRefGoogle Scholar
  26. Ji S, Martignole J (1994) Ductility of garnet as an indicator of extremely high temperature deformation. J Struct Geol 16:985–996. doi: 10.1016/0191-8141(94)90080-9 CrossRefGoogle Scholar
  27. Keller LM, Abart R, Wirth R et al (2006) Enhanced mass transfer through short-circuit diffusion: growth of garnet reaction rims at eclogite facies conditions. Am Mineral 91:1024–1038CrossRefGoogle Scholar
  28. Konrad-Schmolke M, O’Brien PJ, Heidelbach F (2007) Compositional re-equilibration of garnet: the importance of sub-grain boundaries. Eur J Mineral 19:431–438. doi: 10.1127/0935-1221/2007/0019-1749 CrossRefGoogle Scholar
  29. Ma Z, Shi N, Peng Z (1983) Crystal structure of a new phosphatic mineral—qingheiite. Sci Sin Ser B 26:876–884Google Scholar
  30. Mancktelow NS, Pennacchioni G (2005) The control of precursor brittle fracture and fluid–rock interaction on the development of single and paired ductile shear zones. J Struct Geol 27:645–661. doi: 10.1016/j.jsg.2004.12.001 CrossRefGoogle Scholar
  31. Martelat J-E, Malamoud K, Cordier P et al (2012) Garnet crystal plasticity in the continental crust, new example from south Madagascar. J Metamorph Geol 30:435–452. doi: 10.1111/j.1525-1314.2012.00974.x CrossRefGoogle Scholar
  32. Massey MA, Prior DJ, Moecher DP (2011) Microstructure and crystallographic preferred orientation of polycrystalline microgarnet aggregates developed during progressive creep, recovery, and grain boundary sliding. J Struct Geol 33:713–730. doi: 10.1016/j.jsg.2010.12.009 CrossRefGoogle Scholar
  33. Miller C, Thöni M (1997) Eo-Alpine eclogitisation of Permian MORB-type gabbros in the Koralpe (Eastern Alps, Austria): new geochronological, geochemical and petrological data. Chem Geol 137:283–310CrossRefGoogle Scholar
  34. Miller C, Thöni M, Konzett J et al (2005) Eclogites from the Koralpe and Saualpe type-localities, eastern Alps, Austria. Mitt Österr Miner Ges 150:227–263Google Scholar
  35. Miller C, Zanetti A, Thöni M, Konzett J (2007) Eclogitisation of gabbroic rocks: redistribution of trace elements and Zr in rutile thermometry in an Eo-Alpine subduction zone (Eastern Alps). Chem Geol 239:96–123. doi: 10.1016/j.chemgeo.2007.01.001 CrossRefGoogle Scholar
  36. Moore P, lto J (1979) Alluaudites, wyllieites, arrojadites: crystal chemistry and nomenclature. Mineral Mag 43:227–235CrossRefGoogle Scholar
  37. Morauf W (1982) Rb-Sr-and K-Ar-evidence for intensive alpidic influence of the paragneisses of Kor-and Saualpe, SE-Eastern Alps, Austria. TMPM Tschermaks Mineral Petrogr Mitteilungen 29:255–281. doi: 10.1007/BF01091796 CrossRefGoogle Scholar
  38. Ohr SM (1985) An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture. Mater Sci Eng 72:1–35. doi: 10.1016/0025-5416(85)90064-3 CrossRefGoogle Scholar
  39. Pippan R, Strobl G, Kreuzer H, Motz C (2004) Asymmetric crack wake plasticity—A reason for roughness induced crack closure. Acta Mater 52:4493–4502. doi: 10.1016/j.actamat.2004.06.014 CrossRefGoogle Scholar
  40. Prior DJ, Wheeler J, Peruzzo L et al (2002) Some garnet microstructures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies. J Struct Geol 24:999–1011. doi: 10.1016/S0191-8141(01)00087-6 CrossRefGoogle Scholar
  41. Rice JR, Thomson R (1974) Ductile versus brittle behaviour of crystals. Phil Mag 29:73–97CrossRefGoogle Scholar
  42. Røhr TS, Austrheim H, Erambert M (2007) Stress-induced redistribution of yttrium and heavy rare-earth elements (HREE) in garnet during high-grade polymetamorphism. Am Mineral 92:1276–1287. doi: 10.2138/am.2007.2479 CrossRefGoogle Scholar
  43. Ruoff AL, Balluffi RW (1963) Strain-enhanced diffusion in metals. II. Dislocation and grain-boundary short-circuiting models. J Appl Phys 34:1848–1853. doi: 10.1063/1.1729698 CrossRefGoogle Scholar
  44. Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol Helvetiae 97:93–117. doi: 10.1007/s00015-004-1113-x CrossRefGoogle Scholar
  45. Storey CD, Prior DJ (2005) Plastic deformation and recrystallization of garnet: a mechanism to facilitate diffusion creep. J Petrol 46:2593–2613. doi: 10.1093/petrology/egi067 CrossRefGoogle Scholar
  46. Stuwe K, Schuster R (2010) Initiation of subduction in the Alps: continent or ocean? Geology 38:175–178. doi: 10.1130/G30528.1 CrossRefGoogle Scholar
  47. Tenczer V, Stüwe K (2003) The metamorphic field gradient in the eclogite type locality, Koralpe region, Eastern Alps. J Metamorph Geol 21:377–393CrossRefGoogle Scholar
  48. Tenczer V, Powell R, Stüwe K (2006) Evolution of H2O content in a polymetamorphic terrane: the Plattengneiss Shear Zone (Koralpe, Austria). J Metamorph Geol 24:281–295. doi: 10.1111/j.1525-1314.2006.00637.x CrossRefGoogle Scholar
  49. Terry MP, Heidelbach F (2006) Deformation-enhanced metamorphic reactions and the rheology of high-pressure shear zones, Western Gneiss Region, Norway. J Metamorph Geol 24:3–18. doi: 10.1111/j.1525-1314.2005.00618.x CrossRefGoogle Scholar
  50. Thöni M (2002) Sm-Nd isotope systematics in garnet from different lithologies (Eastern Alps): age results, and an evaluation of potential problems for garnet Sm-Nd chronometry. Chem Geol 185:255–281. doi: 10.1016/S0009-2541(01)00410-7 CrossRefGoogle Scholar
  51. Thöni M (2006) Dating eclogite-facies metamorphism in the Eastern Alps—Approaches, results, interpretations: a review. Mineral Petrol 88:123–148CrossRefGoogle Scholar
  52. Thöni M, Miller C (1996) Garnet Sm–Nd data from the Saualpe and the Koralpe (Eastern Alps, Austria): chronological and P–T constraints on the thermal and tectonic history. J Metamorph Geol 14:453–466. doi: 10.1046/j.1525-1314.1996.05995.x CrossRefGoogle Scholar
  53. Thöni M, Miller C (2000) Permo-triassic pegmatites in the eo-alpine eclogite-facies Koralpe complex, Austria: Age and magma source constraints from mineral chemical, Rb-Sr and Sm-Nd isotope data. Schweiz Mineral Petrogr Mitteilungen 80:169–186Google Scholar
  54. Thöni M, Miller C (2009) The “Permian event” in the Eastern European Alps: Sm–Nd and P–T data recorded by multi-stage garnet from the Plankogel unit. Chem Geol 260:20–36. doi: 10.1016/j.chemgeo.2008.11.017 CrossRefGoogle Scholar
  55. Thöni M, Miller C, Zanetti A et al (2008) Sm-Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain multiple Permian–Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chem Geol 254:216–237CrossRefGoogle Scholar
  56. Timms NE, Reddy SM, Fitz Gerald JD et al (2012) Inclusion-localised crystal-plasticity, dynamic porosity, and fast-diffusion pathway generation in zircon. J Struct Geol 35:78–89. doi: 10.1016/j.jsg.2011.11.005 CrossRefGoogle Scholar
  57. Trepmann CA, Stöckhert B (2002) Cataclastic deformation of garnet: a record of synseismic loading and postseismic creep. J Struct Geol 24:1845–1856. doi: 10.1016/S0191-8141(02)00004-4 CrossRefGoogle Scholar
  58. Tucker AT, Wilkinson AJ, Henderson MB et al (2000) Measurement of fatigue crack plastic zones in fine grained materials using electron backscattered diffraction. Mater Sci Technol 16:457–462. doi: 10.1179/026708300101507910 CrossRefGoogle Scholar
  59. Uğuz A, Martin JW (1996) Plastic zone size measurement techniques for metallic materials. Mater Charact 37:105–118. doi: 10.1016/S1044-5803(96)00074-5 CrossRefGoogle Scholar
  60. Vernooij MGC, Kunze K, den Brok B (2006) “Brittle” shear zones in experimentally deformed quartz single crystals. J Struct Geol 28:1292–1306. doi: 10.1016/j.jsg.2006.03.018 CrossRefGoogle Scholar
  61. Voegelé V, Ando JI, Cordier P, Liebermann RC (1998a) Plastic deformation of silicate garnets: I. High-pressure experiments. Phys Earth Planet Inter 108:305–318. doi: 10.1016/S0031-9201(98)00110-1 CrossRefGoogle Scholar
  62. Voegelé V, Cordier P, Sautter V et al (1998b) Plastic deformation of silicate garnets: II. Deformation microstructures in natural samples. Phys Earth Planet Inter 108:319–338. doi: 10.1016/S0031-9201(98)00111-3 CrossRefGoogle Scholar
  63. Vollbrecht A, Pawlowski J, Leiss B et al (2006) Ductile deformation of garnet in mylonitic gneisses from the Münchberg Massif (Germany). Tectonophysics 427:153–170. doi: 10.1016/j.tecto.2006.05.024 CrossRefGoogle Scholar
  64. Whitney DL (1991) Calcium depletion halos and Fe–Mn–Mg zoning around faceted plagioclase inclusions in garnet from a high-grade pelitic gneiss. Am Mineral 76:493–500Google Scholar
  65. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187. doi: 10.2138/am.2010.3371 CrossRefGoogle Scholar
  66. Whitney DL, Mechum TA, Dilek Y, Kuehner SM (1996) Modification of garnet by fluid infiltration during regional metamorphism in garnet through sillimanite-zone rocks, Dutchess County, New York. Am Mineral 81:696–705Google Scholar
  67. Whitney DL, Cooke ML, Frane SAD (2000) Modeling of radial microcracks at corners of inclusions in garnet using fracture mechanics. J Geophys Res 105:2843–2853CrossRefGoogle Scholar
  68. Wilkinson AJ, Meaden G, Dingley DJ (2006) High resolution mapping of strains and rotations using electron backscatter diffraction. Mater Sci Technol 22:1271–1278. doi: 10.1179/174328406X130966 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • T. A. Griffiths
    • 1
    Email author
  • G. Habler
    • 1
  • D. Rhede
    • 2
  • R. Wirth
    • 2
  • F. Ram
    • 3
  • R. Abart
    • 1
  1. 1.Department of Lithospheric Research, Center for Earth SciencesUniversity of ViennaViennaAustria
  2. 2.GFZ German Research Center for Earth SciencesPotsdamGermany
  3. 3.Department of Microstructure Physics and Alloy DesignMax-Planck-Institut für Eisenforschung (MPIE) GmbHDüsseldorfGermany

Personalised recommendations