Advertisement

Fractional crystallization of high-K arc magmas: biotite- versus amphibole-dominated fractionation series in the Dariv Igneous Complex, Western Mongolia

  • Claire E. Bucholz
  • Oliver Jagoutz
  • Max W. Schmidt
  • Oyungerel Sambuu
Original Paper

Abstract

Many studies have documented hydrous fractionation of calc-alkaline basalts producing tonalitic, granodioritic, and granitic melts, but the origin of more alkaline arc sequences dominated by high-K monzonitic suites has not been thoroughly investigated. This study presents results from a combined field, petrologic, and whole-rock geochemical study of a paleo-arc alkaline fractionation sequence from the Dariv Range of the Mongolian Altaids. The Dariv Igneous Complex of Western Mongolia is composed of a complete, moderately hydrous, alkaline fractionation sequence ranging from phlogopite-bearing ultramafic and mafic cumulates to quartz–monzonites to late-stage felsic (63–75 wt% SiO2) dikes. A volumetrically subordinate more hydrous, amphibole-dominated fractionation sequence is also present and comprises amphibole (±phlogopite) clinopyroxenites, gabbros, and diorites. We present 168 whole-rock analyses for the biotite- and amphibole-dominated series. First, we constrain the liquid line of descent (LLD) of a primitive, alkaline arc melt characterized by biotite as the dominant hydrous phase through a fractionation model that incorporates the stepwise subtraction of cumulates of a fixed composition. The modeled LLD reproduces the geochemical trends observed in the “liquid-like” intrusives of the biotite series (quartz–monzonites and felsic dikes) and follows the water-undersaturated albite–orthoclase cotectic (at 0.2–0.5 GPa). Second, as distinct biotite- and amphibole-dominated fractionation series are observed, we investigate the controls on high-temperature biotite versus amphibole crystallization from hydrous arc melts. Analysis of a compilation of hydrous experimental starting materials and high-Mg basalts saturated in biotite and/or amphibole suggests that the degree of K enrichment controls whether biotite will crystallize as an early high-T phase, whereas the degree of water saturation is the dominant control of amphibole crystallization. Therefore, if a melt has the appropriate major-element composition for early biotite and amphibole crystallization, as is true of the high-Mg basalts from the Dariv Igneous Complex, the relative proximity of these two phases to the liquidus depends on the H2O concentration in the melt. Third, we compare the modeled high-K LLD and whole-rock geochemistry of the Dariv Igneous Complex to the more common calc-alkaline trend. Biotite and K-feldspar fractionation in the alkaline arc series results in the moderation of K2O/Na2O values and LILE concentrations with increasing SiO2 as compared to the more common calc-alkaline series characterized by amphibole and plagioclase crystallization and strong increases in K2O/Na2O values. Lastly, we suggest that common calc-alkaline parental melts involve addition of a moderate pressure, sodic, fluid-dominated slab component while more alkaline primitive melts characterized by early biotite saturation involve the addition of a high-pressure potassic sediment melt.

Keywords

Alkaline Biotite Cumulate Subduction zone Mongolia 

Notes

Acknowledgments

We acknowledge Lydia Zehnder for help with whole-rock XRF analyses; Markus Wälle for LA–ICPMS support; Uyanga Bold and Lkhagva-Ochir Said for helping to organize fieldwork logistics; and Adam Bockelie, Yerenburged Munkhbold, and Eson Erdene for their assistance in the field. Reviews by Cin-Ty Lee and an anonymous reviewer helped to clarify ideas presented in this manuscript and are gratefully appreciated.

Supplementary material

410_2014_1072_MOESM1_ESM.pdf (175 kb)
Supplementary material 1 (PDF 174 kb)
410_2014_1072_MOESM2_ESM.pdf (726 kb)
Supplementary material 2 (PDF 725 kb)
410_2014_1072_MOESM3_ESM.xlsx (184 kb)
Supplementary material 3 (XLSX 188 kb)

References

  1. Allan JF & Carmichael ISE (1984) Lamprophyric lavas in the Colima graben, SW Mexico. Contrib Mineral Petrol 88(3):203–216Google Scholar
  2. Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on H2O undersaturated andesitic liquids. Contrib Mineral Petrol 157:541–558CrossRefGoogle Scholar
  3. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539CrossRefGoogle Scholar
  4. Arai S (1994) Characterization of spinel peridotites by olivine–spinel compositional relationships: review and interpretation. Chem Geol 113(3):191–204CrossRefGoogle Scholar
  5. Badarch G, Cunningham WD, Windley BF (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J Asian Earth Sci 21(1):87–110CrossRefGoogle Scholar
  6. Barclay J, Carmichael I (2004) A hornblende basalt from western Mexico: water-saturated phase relations constrain a pressure, temperature window of eruptibility. J Petrol 45(3):485–506CrossRefGoogle Scholar
  7. Barth MG, McDonough WF, Rudnick RL (2000) Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165(3):197–213CrossRefGoogle Scholar
  8. Barton M, Hamilton D (1978) Water-saturated melting relations to 5 kilobars of three Leucite Hills lavas. Contrib Mineral Petrol 66(1):41–49CrossRefGoogle Scholar
  9. Barton M, Hamilton DL (1979) The melting relationships of a madupite from the Leucite Hills, Wyoming, to 30 Kb. Contrib Mineral Petrol 69(2):133–142CrossRefGoogle Scholar
  10. Bateman PC (1961) Granitic formations in the east-central Sierra Nevada near Bishop, California. Geol Soc Am Bull 72(10):1521–1537CrossRefGoogle Scholar
  11. Blatter DL, Sisson TW, Hankins WB (2013) Crystallization of oxidized, moderately hydrous arc basalt at mid-to lower-crustal pressures: implications for andesite genesis. Contrib Mineral Petrol 166(3):861–886CrossRefGoogle Scholar
  12. Blundy J, Cashman K (2001) Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986. Contrib Mineral Petrol 140(6):631–650CrossRefGoogle Scholar
  13. Bucholz CE, Jagoutz O, Schmidt MW, Sambuu O (2014) Phlogopite-and clinopyroxene-dominated fractional crystallization of an alkaline primitive melt: petrology and mineral chemistry of the Dariv Igneous Complex, Western Mongolia. Contrib Mineral Petrol 167(4):1–28CrossRefGoogle Scholar
  14. Buhlmann AL, Cavell P, Burwash RA, Creaser RA, Luth RW (2000) Minette bodies and cognate mica-clinopyroxenite xenoliths from the Milk River area, southern Alberta: records of a complex history of the northernmost part of the Archean Wyoming craton. Can J Earth Sci 37(11):1629–1650CrossRefGoogle Scholar
  15. Buslov MM, Saphonova IY, Watanabe T, Obut OT, Fujiwara Y, Iwata K, Semakov NN, Sugai Y, Smirnova LV, Kazansky AY (2001) Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collisions of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosci J 5(3):203–224CrossRefGoogle Scholar
  16. Carmichael I, Lange RA, Luhr JF (1996) Quaternary minettes and associated volcanic rocks of Mascota, western Mexico: a consequence of plate extension above a subduction modified mantle wedge. Contrib Mineral Petrol 88:203-216Google Scholar
  17. Cawthorn RG, O’Hara M (1976) Amphibole fractionation in calc-alkaline magma genesis. Am J Sci 276(3):309–329CrossRefGoogle Scholar
  18. DeBari SM, Greene AR (2011) Vertical stratification of composition, density, and inferred magmatic processes in exposed arc crustal Sections. In: Arc-Continent collision. Springer, Berlin, Heidelberg, pp 121–144Google Scholar
  19. Dessimoz M, Müntener O, Ulmer P (2012) A case for hornblende dominated fractionation of arc magmas: the Chelan Complex (Washington Cascades). Contrib Mineral Petrol 163(4):567–589CrossRefGoogle Scholar
  20. Di Carlo I, Pichavant M, Rotolo SG, Scaillet B (2006) Experimental crystallization of a high-K arc basalt: the golden pumice, Stromboli volcano (Italy). J Petrol 47(7):1317–1343CrossRefGoogle Scholar
  21. Dickinson WR (1975) Potash-depth (K-h) relations in continental margin and intra-oceanic magmatic arcs. Geology 3:53CrossRefGoogle Scholar
  22. Dijkstra AH, Brouwer FM, Cunningham WD, Buchan C, Badarch G, Mason PRD (2006) Late Neoproterozoic proto-arc ocean crust in the Dariv Range, Western Mongolia: a supra-subduction zone end-member ophiolite. J Geol Soc Lond 163:363–373CrossRefGoogle Scholar
  23. Downes H, MacDonald R, Upton BGJ, Cox KG, Bodinier J-L, Mason PRD, James D, Hill PG, Hearn BC (2004) Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton. J Petrol 45(8):1631–1662CrossRefGoogle Scholar
  24. Ducea M, Saleeby J (1998) A Case for Delamination of the Deep Batholithic Crust beneath the Sierra Nevada, California. Int Geol Rev 40:78–93. doi: 10.1080/00206819809465199 CrossRefGoogle Scholar
  25. Ebadi A, Johannes W (1991) Beginning of melting and composition of first melts in the system Qz–Ab–Or–H2O–CO2. Contrib Mineral Petrol 106(3):286–295CrossRefGoogle Scholar
  26. Edgar AD, Condliffe E (1978) Derivation of K-rich ultramafic magmas from a peridotitic mantle source. Nature 275:639–640Google Scholar
  27. Edgar A, Arima M (1983) Conditions of phlogopite crystallization in ultrapotassic volcanic rocks. Mineral Mag 47(1):11–19CrossRefGoogle Scholar
  28. Elkins-Tanton LT, Grove TL (2003) Evidence for deep melting of hydrous metasomatized mantle: Pliocene high-potassium magmas from the Sierra Nevadas. J Geophys Res 108(B7)Google Scholar
  29. Esperança S, Holloway JR (1987) On the origin of some mica-lamprophyres: experimental evidence from a mafic minette. Contrib Mineral Petrol 95(2):207–216CrossRefGoogle Scholar
  30. Farmer GL, Glazner AF, Manley CR (2002) Did lithospheric delamination trigger late Cenozoic potassic volcanism in the southern Sierra Nevada, California? Geol Soc Am Bull 114:754–768CrossRefGoogle Scholar
  31. Foley SF, Taylor WR, Green DH (1986) The effect of fluorine on phase relationships in the system KAlSiO4–Mg2SiO4–SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts. Contrib Mineral Petrol 93(1):46–55CrossRefGoogle Scholar
  32. Fowler M, Henney P (1996) Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba–Sr granite genesis. Contrib Mineral Petrol 126(1–2):199–215CrossRefGoogle Scholar
  33. Fowler M, Henney P, Darbyshire D, Greenwood P (2001) Petrogenesis of high Ba–Sr granites: the Rogart pluton, Sutherland. J Geol Soc 158(3):521–534CrossRefGoogle Scholar
  34. Frost BR, Barnes CG, Collins WJ, et al (2001) A Geochemical Classification for Granitic Rocks. J Petrol 42:2033–2048Google Scholar
  35. Giannetti B, Luhr JF (1990) Phlogopite-clinopyroxenite nodules from high-K magmas, Roccamonfina Volcano, Italy: evidence for a low-pressure metasomatic origin. Earth Planet Sci Lett 101:404–424CrossRefGoogle Scholar
  36. Green TH, Blundy JD, Adam J, Yaxley GM (2000) SIMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2–7.5 GPa and 1080-1200 °C. Lithos 53:165–187CrossRefGoogle Scholar
  37. Greene AR, DeBari SM, Kelemen PB, Blusztajn J, Clift PD (2006) A detailed geochemical study of island arc crust: the Talkeetna arc section, South-Central Alaska. J Petrol 47(6):1051–1093CrossRefGoogle Scholar
  38. Grove T, Parman S, Bowring S et al (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142:375–396CrossRefGoogle Scholar
  39. Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145:515–533CrossRefGoogle Scholar
  40. Hermann J, Spandler CJ (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49:717–740CrossRefGoogle Scholar
  41. Hochstaedter AG, Ryan JG, Luhr JF (1996) On B/Be ratios in the Mexican volcanic belt. Geochim Cosmochim Acta 60:613–628CrossRefGoogle Scholar
  42. Holloway JR, Burnham CW (1972) Melting relations of basalt with equilibrium water pressure less than total pressure. J Petrol 13(1):1–29CrossRefGoogle Scholar
  43. Holtz F, Barbey P, Johannes W, Pichavant M (1989) Composition and temperature at the minimum point in the Qz–Ab–Or system for H2O-undersaturated conditions. Experimental investigation. Terra Cognita 1:271–272Google Scholar
  44. Jagoutz OE (2010) Construction of the granitoid crust of an island arc. Part II: a quantitative petrogenetic model. Contrib Mineral Petrol 160:359–381CrossRefGoogle Scholar
  45. Jagoutz O, Schmidt MW (2012) The formation and bulk composition of modern juvenile continental crust: the Kohistan arc. Chem Geol 298–99:79–96CrossRefGoogle Scholar
  46. Jagoutz O, Schmidt MW (2013) The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth Planet Sci Lett 371:177–190Google Scholar
  47. Jagoutz O, Müntener O, Schmidt MW, Burg J-P (2011) The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: evidence from the Kohistan arc. Earth Planet Sci Lett 303(1–2):25–36CrossRefGoogle Scholar
  48. Janousek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing geochemical data toolkit (GCDkit). J Petrol 47:1255–1259CrossRefGoogle Scholar
  49. Khain EV, Bibikova EV, Salnikova EB, Kröner A, Gibsher AS, Didenko AN, Degtyarev KE, Fedotova AA (2003) The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic: new geochronological data and palaeotectonic reconstructions. Precambrian Res 122:329–358CrossRefGoogle Scholar
  50. Kovalenko DV, Mongush AA, Ageeva OA, Eenzhin G (2014) Sources and geodynamic environments of formation of Vendian-Early Paleozoic magmatic complexes in the Daribi Range, Western Mongolia. Petrology 22:389–417CrossRefGoogle Scholar
  51. Kozakov IK, Salnikova EB, Khain EV, Kovach VP, Berezhnaya NG, Yakoleva SZ, Plotkina YV (2002) Early Caledonian crystalline rocks of the lake zone in Mongolia: formation history and tectonic settings as deduced from U–Pb and Sm–Nd datings. Geotectonics 36(2):156–166Google Scholar
  52. Krawczynski MJ, Grove TL, Behrens H (2012) Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contrib Mineral Petrol 164(2):317–339CrossRefGoogle Scholar
  53. Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92CrossRefGoogle Scholar
  54. Kuno H (1966) Lateral variation of basalt magma type across continental margins and island arcs. Bull Volcanol 29(1):195–222Google Scholar
  55. Kushiro I (1987) A petrological model of the mantle wedge and lower crust in the Japanese island arcs. Physicochemical principles. Geochem Soc Spec Publ, no. 1, ed. Mysen, BOGoogle Scholar
  56. Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic magma systems, crustal recycling, and alteration in the central Sierra Nevada batholith: the oxygen isotope record. J Petrol 49(7):1397–1426CrossRefGoogle Scholar
  57. Lameyre J, Bowden P (1982) Plutonic rock types series: discrimination of various granitoid series and related rocks. J Volcanol Geotherm Res 14(1):169–186CrossRefGoogle Scholar
  58. LaTourrette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135:13–30CrossRefGoogle Scholar
  59. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750CrossRefGoogle Scholar
  60. Lee C-TA, Morton DM, Kistler RW, Baird AK (2007) Petrology and tectonics of Phanerozoic continent formation: from island arcs to accretion and continental arc magmatism. Earth Planet Sci Lett 263(3):370–387CrossRefGoogle Scholar
  61. Lobach-Zhuchenko SB, Rollinson H, Chekulaev VP, Savatenkov VM, Kovalenko AV, Martin H, Guseva NS, Arestova NA (2008) Petrology of a Late Archaean, highly potassic, sanukitoid pluton from the Baltic Shield: insights into Late Archaean mantle metasomatism. J Petrol 49(3):393–420CrossRefGoogle Scholar
  62. Longerich HP, Jackson SE, Günther D (1996) Inter-laboratory note. Laser ablation inductively coupled plasma massspectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11:899–904Google Scholar
  63. Luhr JF, Carmichael I (1985) Jorullo Volcano, Michoacán, Mexico (1759–1774): the earliest stages of fractionation in calc-alkaline magmas. Contrib Mineral Petrol 90:142–161Google Scholar
  64. Luhr JF, Allan JF, Carmichael I, Nelson SA, Hasenaka T (1989) Primitive calc‐alkaline and alkaline rock types from the Western Mexican Volcanic Belt. J Geophys Res 94:4515–4530Google Scholar
  65. Luth WC, Jahns RH, Tuttle OF (1964) The granite system at pressures of 4 to 10 kilobars. J Geophys Res 69(4):759–773CrossRefGoogle Scholar
  66. Maria AH, Luhr JF (2008) Lamprophyres, basanites, and basalts of the western Mexican volcanic belt: volatile contents and a vein-wallrock melting relationship. J Petrol 49:2123–2156Google Scholar
  67. Middlemost EAK (1994) Naming materials in the magma/igneous rock system. Earth Sci Rev 37(3–4):215–224CrossRefGoogle Scholar
  68. Miller CF (1977) Early alkalic plutonism in the calc-alkalic batholithic belt of California. Geology 5(11):685–688CrossRefGoogle Scholar
  69. Miller CF (1978) Monzonitic plutons, California, and a model for generation of alkali-rich, near silica-saturated magmas. Contrib Mineral Petrol 67(4):349–355CrossRefGoogle Scholar
  70. Müntener O, Ulmer P (2006) Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophys Res Lett 33(21):L21308CrossRefGoogle Scholar
  71. Müntener O, Kelemen P, Grove T (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141(6):643–658CrossRefGoogle Scholar
  72. Naney MT (1983) Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am J Sci 283:993–1033Google Scholar
  73. Nicholls I, Whitford D (1983) Potassium-rich volcanic rocks of the Muriah complex, Java, Indonesia: products of multiple magma sources? J Volcanol Geotherm Res 18(1):337–359CrossRefGoogle Scholar
  74. Ownby SE, Lange RA, Hall CM (2008) The eruptive history of the Mascota volcanic field, western Mexico: age and volume constraints on the origin of andesite among a diverse suite of lamprophyric and calc-alkaline lavas. J Volcanol Geotherm Res 177:1077–1091Google Scholar
  75. Peccerillo A, Taylor SR (1976) Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58(1):63–81CrossRefGoogle Scholar
  76. Rapela C, Pankhurst R (1996) Monzonite suites: the innermost Cordilleran plutonism of Patagonia. Trans R Soc Edinb Earth Sci 87(1):193–204CrossRefGoogle Scholar
  77. Righter K, Carmichael ISE (1996) Phase equilibria of phlogopite lamprophyres from western Mexico: biotite-liquid equilibria and P-T; estimates for biotite-bearing igneous rocks. Contrib Mineral Petrol 123(1):1–21CrossRefGoogle Scholar
  78. Righter K, Rosas-Elguera J (2001) Alkaline lavas in the volcanic front of the western Mexican Volcanic Belt: geology and petrology of the Ayutla and Tapalpa volcanic fields. J Petrol 42:2333–2361Google Scholar
  79. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289Google Scholar
  80. Sato H (1977) Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 10(2):113–120CrossRefGoogle Scholar
  81. Schmidt MW, Vielzeuf D, Auzanneau E (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett 228:65–84CrossRefGoogle Scholar
  82. Sengör AMC, Natalín BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364:299–307CrossRefGoogle Scholar
  83. Sengör AMC, Natalín BA, Burtman VS (1994) Tectonic evolution of Altaides. Russ Geol Geophys 35:33–47Google Scholar
  84. Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166CrossRefGoogle Scholar
  85. Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661CrossRefGoogle Scholar
  86. Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121:293–325. doi: 10.1016/0012-821X(94)90074-4 CrossRefGoogle Scholar
  87. Sun S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345CrossRefGoogle Scholar
  88. Sylvester AG, Miller CF, Nelson C (1978) Monzonites of the White-Inyo Range, California, and their relation to the calc-alkalic Sierra Nevada batholith. Geol Soc Am Bull 89(11):1677–1687CrossRefGoogle Scholar
  89. Tatsumi Y, Sakuyama M, Fukuyama H (1983) Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones. J Geophys Res 88:5815–5825CrossRefGoogle Scholar
  90. Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol Soc Am Bull 74:1–146Google Scholar
  91. Vigouroux N, Wallace PJ, Kent AJR (2008) Volatiles in high-K magmas from the western Trans-Mexican Volcanic Belt: evidence for fluid fluxing and extreme enrichment of the mantle wedge by subduction processes. J Petrol 49:1589–1618Google Scholar
  92. Villemant B, Jaffrezic H, Joron J-L, Treuil M (1981) Distribution coefficients of major and trace elements; fractional crystallization in the alkali basalt series of Chaîne des Puys (Massif Central, France). Geochim Cosmochim Acta 45(11):1997–2016CrossRefGoogle Scholar
  93. Wallace P, Carmichael ISE (1989) Minette lavas and associated leucitites from the western front of the Mexican Volcanic Belt: petrology, chemistry, and origin. Contrib Mineral Petrol 103:470–492Google Scholar
  94. Wallace P, Carmichael ISE, Righter K, Becker TA (1992) Volcanism and tectonism in western Mexico: A contrast of style and substance. Geology 20:625Google Scholar
  95. Wheller GE, Varne R, Foden JD, Abbott MJ (1987) Geochemistry of Quaternary volcanism in the Sunda-Banda arc, Indonesia, and three-component genesis of island-arc basaltic magmas. J Volcanol Geotherm Res 32:137–160CrossRefGoogle Scholar
  96. Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Mineral Petrol 115(4):369–383CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Claire E. Bucholz
    • 1
    • 2
  • Oliver Jagoutz
    • 2
  • Max W. Schmidt
    • 3
  • Oyungerel Sambuu
    • 4
  1. 1.Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in OceanographyCambridgeUSA
  2. 2.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Earth SciencesETHZurichSwitzerland
  4. 4.School of Geology and Petroleum EngineeringMongolian University of Science and TechnologyUlaanbaatarMongolia

Personalised recommendations