Tracking flux melting and melt percolation in supra-subduction peridotites (Josephine ophiolite, USA)

Original Paper

Abstract

Here, we investigate the scale and nature of melting and melt percolation processes recorded by 17 supra-subduction peridotites collected in a ~70 km2 area in the northern portion of the Josephine ophiolite (Western USA). We present major and trace element variations in whole rocks; major elements in olivine, orthopyroxene, clinopyroxene and spinel; and trace elements [including rare earth element (REE)] in clinopyroxene and orthopyroxene. In the Josephine peridotites, compositional variability occurs at different scales. On the one hand, large systematic changes from depleted to fertile peridotites occur on large kilometer scales. Field, petrological and geochemical data can be consistently explained if the Josephine mantle experienced variable degrees of hydrous flux melting (10 to >20–23 %), and we argue that small fractions of subduction-derived fluids (0.015–0.1 wt%) were pervasive in the ~70 km2 studied area, and continuously supplied during wedge melting. Fluid localization probably led to increased extent of flux melting in the harzburgitic areas. On the other hand, in single outcrops, sharp transitions from dunite to harzburgite to lherzolite and olivine websterite can be found on meter to centimeter scales. Thus, some fertile samples may reflect limited degrees of refertilization at the outcrop scale. In addition, clinopyroxene and orthopyroxene in ultra-depleted harzburgites (Spinel Cr# > 58) show variable degrees of LREE enrichment, which reflect percolation of and partial re-equilibration with, small fractions of boninite melt. Because the enriched samples also show the highest spinel Cr#, we argue that these enrichments are local features connected to the presence of dunite channels nearby. Lastly, trace element concentrations of pyroxenes in Josephine harzburgites show that they are one of the most depleted harzburgites among worldwide ophiolitic peridotites, indicating particularly high degrees of melting, potentially past the exhaustion of clinopyroxene.

Keywords

Supra-subduction Josephine ophiolite Hydrous melting Flux melting Melt percolation Boninite Peridotite 

Supplementary material

410_2014_1064_MOESM1_ESM.doc (58 kb)
Supplementary material 1 (DOC 58 kb)
410_2014_1064_MOESM2_ESM.xls (123 kb)
Supplementary material 2 (XLS 123 kb)

References

  1. Arai S, Ishimaru S (2008) Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a review. J Petrol 49:665–695. doi:10.1093/petrology/egm069 CrossRefGoogle Scholar
  2. Armstrong JT (1995) CITZAF—a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal 4:177–200Google Scholar
  3. Ayers JC, Dittmer SK, Layne GD (1997) Partitioning of elements between peridotite and H2O at 2.0–3.0 GPa and 900–1100 degrees C, and application to models of subduction zone processes. Earth Planet Sci Lett 150:381–398. doi:10.1016/s0012-821x(97)00096-4 CrossRefGoogle Scholar
  4. Batanova VG, Suhr G, Sobolev AV (1998) Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: ion probe study of clinopyroxenes. Geochim Cosmochim Acta 62:853–866. doi:10.1016/s0016-7037(97)00384-0 CrossRefGoogle Scholar
  5. Batanova VG, Belousov IA, Savelieva GN, Sobolev AV (2011) Consequences of channelized and diffuse melt transport in supra-subduction zone mantle: evidence from the Voykar ophiolite (Polar Urals). J Petrol 52:2483–2521. doi:10.1093/petrology/egr053 CrossRefGoogle Scholar
  6. Bizimis M, Salters VJM, Bonatti E (2000) Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem Geol 165:67–85. doi:10.1016/s0009-2541(99)00164-3 CrossRefGoogle Scholar
  7. Crawford AJ, Beccaluva L, Serri G (1981) Tectono-magmatic evolution of the West Philippine-Mariana region and the origin of boninites. Earth Planet Sci Lett 54:346–356. doi:10.1016/0012-821x(81)90016-9 CrossRefGoogle Scholar
  8. Dick HJB (1973) K–Ar dating of intrusive rocks in the Josephine peridotite and Rogue formation west of cave Junction, south western Oregon. In: programs GsoAaw (ed), vol 5. pp 33–34Google Scholar
  9. Dick HJB (1976) Origin and emplacement of the Josephine peridotite of southwestern Oregon. Dissertation, Yale UniversityGoogle Scholar
  10. Dick HJB (1977) Partial melting in Josephine peridotite. 1. Effect on mineral composition and its consequence for geobarometry and geothermometry. Am J Sci 277:801–832CrossRefGoogle Scholar
  11. Dick HJB (1989) Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society, London, Special Publications, pp 71–105Google Scholar
  12. Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76CrossRefGoogle Scholar
  13. Dick HJB, Fisher RL (1984) Mineralogic studies of the residues of mantle melting; abyssal and alpine-type peridotites. Elsevier Science, AmsterdamGoogle Scholar
  14. Dick HJB, Natland JH (1996) Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In: Mével C, Gillis KM, Allan JF, Meyer PS (eds) Proc ODP, Sci Results, 147: College Station, TX (Ocean Drilling Program), vol, pp 103–134Google Scholar
  15. Dick HJB, Sinton JM (1979) Compositional layering in alpine peridotites—evidence for pressure solution creep in the mantle. J Geol 87:403–416CrossRefGoogle Scholar
  16. Dick HJB, Fisher RL, Bryan WB (1984) Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet Sci Lett 69:88–106. doi:10.1016/0012-821x(84)90076-1 CrossRefGoogle Scholar
  17. Dickey JS Jr, Yoder HS Jr, Schairer JF (1971) Incongruent melting of chromian diopside and the origin of podiform chromite deposits. Geol Soc Am Abstr 3:543–544Google Scholar
  18. Falloon TJ, Malahoff A, Zonenshain LP, Bogdanov Y (1992) Petrology and geochemistry of back-arc basin basalts from Lau Basin spreading ridges at 15°, 18° and 19°. Mineral Petrol 47:1–35. doi:10.1007/bf01165295 CrossRefGoogle Scholar
  19. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346CrossRefGoogle Scholar
  20. Gaetani GA, Kent AJR, Grove TL, Hutcheon ID, Stolper EM (2003) Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib Mineral Petrol 145:391–405. doi:10.1007/s00410-003-0447-0 CrossRefGoogle Scholar
  21. Garcia MO (1979) Petrology of the Rogue and Galice formations, Klamath Mountains, Oregon—identification of a Jurassic Island arc sequence. J Geol 87:29–41CrossRefGoogle Scholar
  22. Garcia MO (1982) Petrology of the Rogue River Island-arc complex, southwest Oregon. Am J Sci 282:783–807CrossRefGoogle Scholar
  23. Gasparik T (1990) A thermodynamic model for the enstatite-diopside join. Am Mineral 75:1080–1091Google Scholar
  24. Gast PW (1968) Trace element fractionation and origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32:1057–1086. doi:10.1016/0016-7037(68)90108-7 CrossRefGoogle Scholar
  25. Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Mineral Petrol 15:103–190CrossRefGoogle Scholar
  26. Grove TL, Bryan WB (1983) Fractionation of pyroxene-phyric MORB at low pressure: an experimental study. Contrib Mineral Petrol 84:293–309. doi:10.1007/bf01160283 CrossRefGoogle Scholar
  27. Grove TL, Chatterjee N, Parman SW, Medard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89. doi:10.1016/j.epsl.2006.06.043 CrossRefGoogle Scholar
  28. Grove TL, Till CB, Lev E, Chatterjee N, Medard E (2009) Kinematic variables and water transport control the formation and location of arc volcanoes. Nature 459:694–697Google Scholar
  29. Harper GD (1983) A depositional contact between the Galice Formation and a Late Jurassic ophiolite in northwestern California and southwestern Oregon. Or Geol 45:3–7Google Scholar
  30. Harper GD (1984) The Josephine ophiolite, Northwestern California. Geol Soc Am Bull 95:1009–1026CrossRefGoogle Scholar
  31. Harper GD (2003a) Fe–Ti basalts and propagating-rift tectonics in the Josephine ophiolite. Geol Soc Am Bull 115:771–787. doi:10.1130/0016-7606(2003)115<0771:fbapti>2.0.co;2 CrossRefGoogle Scholar
  32. Harper GD (2003b) Tectonic implications of boninite, arc tholeiite, and MORB magma types in the Josephine ophiolite, California–Oregon. Geological Society, London, Special Publications 218:207–230. doi:10.1144/gsl.sp.2003.218.01.12
  33. Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681CrossRefGoogle Scholar
  34. Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J Petrol 43:2305–2338. doi:10.1093/petrology/43.12.2305 CrossRefGoogle Scholar
  35. Hirschmann MM, Asimow PD, Ghiorso MS, Stolper EM (1999) Calculation of peridotite partial melting from thermodynamic models of minerals and melts. III. Controls on isobaric melt production and the effect of water on melt production. J Petrol 40:831–851. doi:10.1093/petrology/40.5.831 CrossRefGoogle Scholar
  36. Jean MM, Shervais JW, Choi SH, Mukasa SB (2010) Melt extraction and melt refertilization in mantle peridotite of the coast range ophiolite: an LA–ICP–MS study. Contrib Mineral Petrol 159:113–136. doi:10.1007/s00410-009-0419-0 CrossRefGoogle Scholar
  37. Johnson KTM, Dick HJB (1992) Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II fracture zone. J Geophys Res Solid Earth 97:9219–9241. doi:10.1029/92jb00701 CrossRefGoogle Scholar
  38. Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion micropobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678CrossRefGoogle Scholar
  39. Jorgenson DB (1970) Petrology and origin of the Illinois River Gabbro, a part of the Josephine Peridotite–Gabbro Complex, Klamath Mountains, Southwestern Oregon. Dissertation, University of California, Santa Barbara, CAGoogle Scholar
  40. Kamenetsky VS, Crawford AJ, Eggins S, Muhe R (1997) Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedge melting and the addition of subduction components. Earth Planet Sci Lett 151:205–223. doi:10.1016/s0012-821x(97)81849-3 CrossRefGoogle Scholar
  41. Kelemen PB, Dick HJB (1995) Focused melt flow and localized deformation in the upper mantle: juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon. J Geophys Res 100:423–438CrossRefGoogle Scholar
  42. Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747–753CrossRefGoogle Scholar
  43. Kelemen PB, Rilling JL, Parmentier EM, Mehl L, Hacker BR (2003) Thermal structure due to solid-state flow in the mantle wedge beneath arcs. Inside the subduction factory, vol 138. AGU, Washington, pp 293–311CrossRefGoogle Scholar
  44. Kelley KA, Plank T, Newman S, Stolper EM, Grove TL, Parman S, Hauri EH (2010) Mantle melting as a function of water content beneath the Mariana arc. J Petrol 51:1711–1738. doi:10.1093/petrology/egq036 CrossRefGoogle Scholar
  45. Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727. doi:10.1038/nature03971 CrossRefGoogle Scholar
  46. Klein F, Bach W (2009) Fe–Ni–Co–O–S phase relations in peridotite–seawater interactions. J Petrol 50:37–59. doi:10.1093/petrology/egn071 CrossRefGoogle Scholar
  47. Klein F, Bach W, McCollom TM (2013) Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos 178:55–69. doi:10.1016/j.lithos.2013.03.008 CrossRefGoogle Scholar
  48. Kushiro I (2001) Partial melting experiments on peridotite and origin of mid-ocean ridge basalt. Annu Rev Earth Planet Sci 29:71–107CrossRefGoogle Scholar
  49. Kushiro I, Syono Y, Akimoto SI (1968) Melting of a peridotite nodule at high pressures and high water pressures. J Geophys Res 73:6023–6029CrossRefGoogle Scholar
  50. LaTourrette T, Wasserburg GJ, Fahey AJ (1996) Self diffusion of Mg, Ca, Ba, Nd, Yb, Ti, Zr, and U in haplobasaltic melt. Geochim Cosmochim Acta 60:1329–1340. doi:10.1016/0016-7037(96)00015-4 CrossRefGoogle Scholar
  51. Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612. doi:10.1016/jepsl.2007.05.026 CrossRefGoogle Scholar
  52. Loney RA, Himmelberg GR (1976) Structure of Vulcan peak alpine-type peridotite, Southwestern Oregon. Geol Soc Am Bull 87:259–274. doi:10.1130/0016-7606(1976)87<259:sotvpa>2.0.co;2 CrossRefGoogle Scholar
  53. Longhi J (2002) Some phase equilibrium systematics of lherzolite melting: I. Geochem Geophys Geosyst 3:1–33. doi:10.1029/2001gc000204 CrossRefGoogle Scholar
  54. Martin B, Fyfe WS (1970) Some experimental and theoretical observations on kinetics of hydration reactions with particular reference to serpentinization. Chem Geol 6:185–202. doi:10.1016/0009-2541(70)90018-5 CrossRefGoogle Scholar
  55. McDade P, Blundy JD, Wood BJ (2003a) Trace element partitioning between mantle wedge peridotite and hydrous MgO-rich melt. Am Mineral 88:1825–1831Google Scholar
  56. McDade P, Blundy JD, Wood BJ (2003b) Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa. Phys Earth Planet Inter 139:129–147CrossRefGoogle Scholar
  57. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  58. Medard E, Grove TL (2008) The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contrib Mineral Petrol 155:417–432. doi:10.1007/s00410-007-0250-4 CrossRefGoogle Scholar
  59. Meffre S, Aitchison JC, Crawford AJ (1996) Geochemical evolution and tectonic significance of boninites and tholeiites from the Koh ophiolite, New Caledonia. Tectonics 15:67–83. doi:10.1029/95tc02316 CrossRefGoogle Scholar
  60. Miyashiro A (1973) Troodos ophiolitic complex was probably formed in an island arc. Earth Planet Sci Lett 19:218–224CrossRefGoogle Scholar
  61. Morgan Z, Liang Y, Kelemen P (2008) Significance of the concentration gradients associated with dunite bodies in the Josephine and Trinity ophiolites. Geochem Geophys Geosyst 9. doi:10.1029/2008gc001954
  62. Morris JD, Leeman WP, Tera F (1990) The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics. Nature 344:31–36. doi:10.1038/344031a0 CrossRefGoogle Scholar
  63. Muntener O, Pettke T, Desmurs L, Meier M, Schaltegger U (2004) Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust–mantle relationships. Earth Planet Sci Lett 221:293–308. doi:10.1016/s0012-821x(04)00073-1 CrossRefGoogle Scholar
  64. Navon O, Stolper E (1987) Geochemical consequence of melt percolation: the upper mantle as a chromatographic column. J Geol 95:285–307CrossRefGoogle Scholar
  65. Niu YL (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45:2423–2458. doi:10.1093/petrology/egh068 CrossRefGoogle Scholar
  66. O’Hanley DS (1992) Solution to the volume problem in serpentinization. Geology 20:705–708. doi:10.1130/0091-7613(1992)020<0705:sttvpi>2.3.co;2 CrossRefGoogle Scholar
  67. Padron-Navarta JA, Tommasi A, Garrido CJ, Sanchez-Vizcaino VL, Gomez-Pugnaire MT, Jabaloy A, Vauchez A (2010) Fluid transfer into the wedge controlled by high-pressure hydrofracturing in the cold top-slab mantle. Earth Planet Sci Lett 297:271–286. doi:10.1016/j.epsl.2010.06.029 CrossRefGoogle Scholar
  68. Padron-Navarta JA, Sanchez-Vizcaino VL, Garrido CJ, Gomez-Pugnaire MT (2011) Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado–Filabride Complex, Southern Spain). J Petrol 52:2047–2078. doi:10.1093/petrology/egr039 CrossRefGoogle Scholar
  69. Parkinson IJ, Pearce JA (1998) Peridotites from the Izu–Bonin–Mariana forearc (ODP leg 125): evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting. J Petrol 39:1577–1618. doi:10.1093/petrology/39.9.1577 CrossRefGoogle Scholar
  70. Pearce JA (2003) Supra-subduction zone ophiolites: the search for modern analogues. Geol Soc Am Spec Pap 373:269–293. doi:10.1130/0-8137-2373-6.269 Google Scholar
  71. Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, London, Special Publications 16:77–94. doi:10.1144/gsl.sp.1984.016.01.06 CrossRefGoogle Scholar
  72. Pearson DG, Canil D, Shirey SB (2003) 2.05—mantle samples included in volcanic rocks: xenoliths and diamonds. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry, vol Pergamon, Oxford, pp 171–275Google Scholar
  73. Plank T, Langmuir CH (1993) Tracing trace-elements from sediment input to volcanic output at subduction zones. Nature 362:739–743. doi:10.1038/362739a0 CrossRefGoogle Scholar
  74. Quick JE (1981) The origin and significance of large, tabular dunite bodies in the Trinity peridotite, Northern California. Contrib Mineral Petrol 78:413–422CrossRefGoogle Scholar
  75. Rampone E, Piccardo GB, Vannucci R, Bottazzi P (1997) Chemistry and origin of trapped melts in ophiolitic peridotites. Geochim Cosmochim Acta 61:4557–4569CrossRefGoogle Scholar
  76. Saleeby JB, Harper GD, Snoke AW, Sharp WD (1982) Time relations and structural-stratigraphic patterns in ophiolite accretion, west central Klamath Mountains, California. J Geophys Res 87:3831–3848CrossRefGoogle Scholar
  77. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379CrossRefGoogle Scholar
  78. Seyler M, Lorand JP, Toplis MJ, Godard G (2004) Asthenospheric metasomatism beneath the mid-ocean ridge: evidence from depleted abyssal peridotites. Geology 32:301–304. doi:10.1130/g20191.1 CrossRefGoogle Scholar
  79. Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243CrossRefGoogle Scholar
  80. Shervais JW (2001) Birth, death, and resurrection: the life cycle of suprasubduction zone ophiolites. Geochem Geophys Geosyst 2:Article no 2000GC000080Google Scholar
  81. Sobolev AV, Migdisov AA, Portnyagin MV (1996) Incompatible element partitioning between clinopyroxene and basalt liquid revealed by the study of melt inclusions in minerals from Troodos lavas, Cyprus. Petrology 4:307–317Google Scholar
  82. Stolper E, Newman S (1994) The role of water in the petrogenesis of mariana trough magmas. Earth Planet Sci Lett 121:293–325. doi:10.1016/0012-821x(94)90074-4 CrossRefGoogle Scholar
  83. Sundberg M, Hirth G, Kelemen PB (2010) Trapped melt in the Josephine peridotite: implications for permeability and melt extraction in the upper mantle. J Petrol 51:185–200. doi:10.1093/petrology/egp089 CrossRefGoogle Scholar
  84. Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861. doi:10.1126/science.268.5212.858 CrossRefGoogle Scholar
  85. Vail SG (1977) Geology and geochemistry of the Oregon Mountain area, southwestern Oregon and northern California—an investigation of the origin and development of a Jurassic ophiolite in the Klamath Mountains. DissertationGoogle Scholar
  86. Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Mineral Petrol 141:687–703CrossRefGoogle Scholar
  87. Van Orman JA, Grove TL, Shimizu N (2002) Diffusive fractionation of trace elements during production and transport of melt in Earth’s upper mantle. Earth Planet Sci Lett 198:93–112. doi:10.1016/s0012-821x(02)00492-2 CrossRefGoogle Scholar
  88. Vasseur G, Vernières J, Bodinier J-L (1991) Modelling of trace element transfer between mantle melt and heterogranular peridotite matrix. J Petrol (Special Lherzolites):41–54Google Scholar
  89. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60CrossRefGoogle Scholar
  90. Walter MJ (1999) Comments on ‘mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites’ by Yaoling Niu. J Petrol 40:1187–1193CrossRefGoogle Scholar
  91. Wasylenki LE, Baker MB, Kent AJR, Stolper EM (2003) Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J Petrol 44:1163–1191CrossRefGoogle Scholar
  92. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72. doi:10.1016/j.epsl.2004.12.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations