Zircon evidence for a ~200 k.y. supereruption-related thermal flare-up in the Miocene southern Black Mountains, western Arizona, USA

  • Susanne M. McDowellEmail author
  • Calvin F. Miller
  • Roland Mundil
  • Charles A. Ferguson
  • Joseph L. Wooden
Original Paper


The Silver Creek caldera (southern Black Mountains, western Arizona) is the source of the 18.8 Ma, >700 km3 Peach Spring Tuff (PST) supereruption, the largest eruption generated in the Colorado River Extensional Corridor (CREC) of the southwestern United States. Within and immediately surrounding the caldera is a sequence of volcanics and intrusions ranging in age from ~19 to 17 Ma. These units offer a record of magmatic processes prior to, during, and immediately following the PST eruption. To investigate the thermal evolution of the magmatic center that produced the PST, we applied a combination of Ti-in-zircon thermometry, zircon saturation thermometry, and high-precision U–Pb CA–TIMS zircon dating to representative pre- and post-supereruption volcanic and intrusive units from the caldera and its environs. Similar to intracaldera PST zircons, zircons from a pre-PST trachytic lava (19 Ma) and a post-PST caldera intrusion (18.8 Ma) yield exceptionally high-Ti concentrations (most >20 ppm, some up to nearly 60 ppm), corresponding to calculated temperatures that exceed 900 °C. In these units, Ti-in-zircon temperatures typically surpass zircon saturation temperatures (ZSTs), suggesting the entrainment of zircon that had grown in hotter environments within the magmatic system. Titanium concentrations in younger volcanic and intrusive units (~18.7–17.5 Ma) decline through time, corresponding to an average cooling rate of 10−3.5 °C/year. The ~200 k.y. thermal peak evident at Silver Creek caldera is spatially limited: elsewhere in the Miocene record of the northern CREC, Ti-in-zircon concentrations and ZSTs are much lower, suggesting that felsic magmas were generally substantially cooler.


Caldera Peach Spring Tuff Zircon Zircon thermometry CA–TIMS Supereruption 

Supplementary material

410_2014_1031_MOESM1_ESM.doc (409 kb)
Supplementary material 1 (DOC 409 kb)
410_2014_1031_MOESM2_ESM.xls (535 kb)
Supplementary material 2 (XLS 535 kb)


  1. Allan AS, Wilson CJ, Millet MA, Wysoczanski RJ (2012) The invisible hand: tectonic triggering and modulation of a rhyolitic supereruption. Geology 40(6):563–566CrossRefGoogle Scholar
  2. Annen C (2009) From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet Sci Lett 284(3):409–416CrossRefGoogle Scholar
  3. Bachmann O, Bergantz G (2008) The magma reservoirs that feed supereruptions. Elements 4(1):17–21CrossRefGoogle Scholar
  4. Barth AP, Wooden JL (2010) Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem Geol 277(1–2):149–159CrossRefGoogle Scholar
  5. Bindeman IN, Valley JW (2001) Low-δ18O rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. J Petrol 42(8):1491–1517CrossRefGoogle Scholar
  6. Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205(1–2):115–140CrossRefGoogle Scholar
  7. Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334CrossRefGoogle Scholar
  8. Bromley SA, Bleick HA, Ericksen SM, Miller CF, Miller JS, Claiborne LL, Wooden JL, Mazdab FK (2008) In situ mechanical and diffusive mixing in Aztec Wash pluton, NV: evidence from zircon Ti thermometry and elemental zoning. Geol Soc Am Abstr Progr 40(1):62Google Scholar
  9. Buesch DC (1992) Incorporation and redistribution of locally derived lithic fragments within a pyroclastic flow. GSA Bull 104:1193–1207CrossRefGoogle Scholar
  10. Carley TL, Miller CF, Wooden JL, Bindeman IN, Barth AP (2011) Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas. Min Petrol 102(1–4):135–161CrossRefGoogle Scholar
  11. Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Miner Mag 70(5):517–543CrossRefGoogle Scholar
  12. Claiborne LL, Miller CF, Flanagan DM, Clynne MA, Wooden JL (2010a) Zircon reveals protracted magma storage and recycling beneath Mt. St. Helens. Geology 38(11):1011–1014CrossRefGoogle Scholar
  13. Claiborne LL, Miller CF, Wooden JL (2010b) Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib Miner Petrol 160:511–531CrossRefGoogle Scholar
  14. Colombini LL, Miller CF, Gualda GA, Wooden JL, Miller JS (2011) Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): elemental partitioning, phase relations, and influence on evolution of silicic magma. Mineral Petrol 102:29–50CrossRefGoogle Scholar
  15. DeWitt E, Thorson JP, Smith RC (1986) Geology and gold deposits of the Oatman District, northwestern Arizona. U.S. Geol Surv Bull 1857–1:I1–I28Google Scholar
  16. Faulds JE, Mawer CK, Geissman JW (1990) Structural development of a major extensional accommodation zone in the Basin and Range province, northwestern Arizona and southern Nevada: Implications for kinematic models of continental extension. In: Wernicke B (ed), Basin and Range extensional tectonics near the latitude of Las Vegas, Nevada. Geological Society of America Memoir, 176, 37–78Google Scholar
  17. Faulds JE, Feuerbach DL, Reagan M, Metcalf RV, Gans P, Walker JD (1995) The Mount Perkins block, northwestern Arizona: an exposed cross section of an evolving, preextensional to synextensional magmatic system. J Geophys Res 100(B8):15249–15266CrossRefGoogle Scholar
  18. Faulds JE, Feuerbach DL, Miller CF, Smith EI (2001) Cenozoic evolution of the northern Colorado River extensional corridor, southern Nevada and northwest Arizona. In: Erskine MC, et al. (eds), The geologic transition, High Plateaus to Great Basin—a symposium and field guide: the Makin volume: Utah Geological Association Publication 30, Pacific Section American Association of Petroleum Geologists Publication GB78, pp 239–271Google Scholar
  19. Ferguson CA, McIntosh WC, Miller CF (2013) Silver Creek caldera—the tectonically dismembered source of the Peach Spring Tuff. Geology 41(1):3–6CrossRefGoogle Scholar
  20. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Miner Petrol 154(4):429–437CrossRefGoogle Scholar
  21. Frazier WO (2013) Petrochemical constraints on generation of the Peach Spring Tuff supereruption magma, Arizona, Nevada, California. (Masters thesis). Vanderbilt University, NashvilleGoogle Scholar
  22. Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Miner Petrol 156(2):197–215CrossRefGoogle Scholar
  23. Ghiorso MS, Gualda GA (2013) A method for estimating the activity of titania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron–titanium oxides. Contrib Miner Petrol 165(1):73–81CrossRefGoogle Scholar
  24. Glazner AF, Nielson JE, Howard KE, Miller DM (1986) Correlation of the Peach Springs Tuff, a large-volume Miocene ignimbrite sheet in California and Arizona. Geology 14:840–843CrossRefGoogle Scholar
  25. Gregg PM, de Silva SL, Grosfils EB, Parmigiani JP (2012) Catastrophic caldera-forming eruptions: thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. J Volcanol Geoth Res 241:1–12CrossRefGoogle Scholar
  26. Harrison TM, Watson EB, Aikman AB (2007) Temperature spectra of zircon crystallization in plutonic rocks. Geology 35(7):635–638CrossRefGoogle Scholar
  27. Hayden LA, Watson EB (2007) Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sci Lett 258(3):561–568CrossRefGoogle Scholar
  28. Irmis RB, Mundil R, Martz JW, Parker WG (2011) High-resolution U–Pb ages from the Upper Triassic Chinle Formation (New Mexico, USA) support a diachronous rise of dinosaurs. Earth Planet Sci Lett 309(3):258–267CrossRefGoogle Scholar
  29. Lang NP (2001) Evolution of the Secret Pass Canyon Volcanic Center, Colorado River Extensional Corridor, Northwestern Arizona (M.S. Thesis): Vanderbilt University, p 228Google Scholar
  30. Lang NP, Walker BJ, Claiborne LL, Miller CF, Hazlett RW, Heizler MT (2008) The Spirit Mountain batholith and Secret Pass Canyon volcanic center: a cross-sectional view of the magmatic architecture of the uppermost crust of an extensional terrain, Colorado River, Nevada–Arizona. Geol Soc Am Field Guide 11:187–214. doi: 10.1130/2008.fld011(09) Google Scholar
  31. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27(3):745–750CrossRefGoogle Scholar
  32. Lidzbarski M, Mundil R, Miller JS, Vasquez JA (2012) Comparing pre- and post-chemical abrasion ages for Miocene Peach Springs Tuff zircon from ID-TIMS and SIMS analyses. AGU Fall Meeting, December 2012Google Scholar
  33. Lipman PW (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geosphere 3:42–70CrossRefGoogle Scholar
  34. Mazdab FK, Wooden JL (2006) Trace element analysis of accessory and rock forming minerals by ion microprobe (SHRIMP–RG). EOS Trans AGU 87:V33A–0630Google Scholar
  35. McDowell SM, Miller CF, Ferguson CA (2011) Post-supereruption (18–19 Ma) magmatic reactivation beneath the Silver Creek Caldera, Black Mountains, AZ. AGU Fall Meeting, December 2011Google Scholar
  36. Metcalf RV (2004) Volcanic-plutonic links, plutons as magma chambers and crust-mantle interaction: a lithospheric scale view of magma systems. Trans R Soc Edinb 95:357–374CrossRefGoogle Scholar
  37. Miller CF, Miller JS (2002) Contrasting stratified plutons exposed in tilt blocks, Eldorado Mountains, Colorado River Rift, NV, USA. Lithos 61(3):209–224CrossRefGoogle Scholar
  38. Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31(6):529–532CrossRefGoogle Scholar
  39. Mills RD, Coleman DS (2013) Temporal and chemical connections between plutons and ignimbrites from the Mount Princeton magmatic center. Contrib Miner Petrol 165(5):961–980CrossRefGoogle Scholar
  40. Mills JG, Saltoun BW, Vogel TA (1997) Magma batches in the Timber Mountain magmatic system, Southwestern Nevada Volcanic Field, Nevada, USA. J Volcanol Geoth Res 78:185–208CrossRefGoogle Scholar
  41. Moecher DP, McDowell SM, Samson SD, Miller CF (2014) Ti-in-zircon thermometry and crystallization modeling support hot Grenville granite hypothesis. Geology 42:267–270CrossRefGoogle Scholar
  42. Mundil R, Ludwig KR, Metcalfe I, Renne PR (2004) Age and timing of the Permian mass extinctions: u/Pb dating of closed-system zircons. Science 305:1760–1763CrossRefGoogle Scholar
  43. Murphy RT Faulds JE (2013) Preliminary geologic map of the north half of the Union Pass Quadrangle, Mohave County, Arizona. Arizona geological survey contributed map, CM-13-A, 1 map sheet, map scale 1:24,000Google Scholar
  44. McDowell SM, Miller CF, Ferguson CA, Fisher C, Frazier WO, Miller JS, Mundil R, Overton,S, Vervoort J (2012) Geochemical insights into the evolution of a supereruptive volcanic center: magmatic precursors and successors of the Miocene Peach Spring Tuff, southern Black Mountains, western AZ. GSA Abstracts with Programs, 44Google Scholar
  45. Pamukcu AS, Carley TL, Gualda GA, Miller CF, Ferguson CA (2013) The evolution of the Peach Spring giant magma body: evidence from accessory mineral textures and compositions, bulk pumice and glass geochemistry, and rhyolite-MELTS modeling. J Petrol 54(6):1109–1148CrossRefGoogle Scholar
  46. Patrick DW, Miller CF (1997) Processes in a composite, recharging magma chamber: evidence from magmatic structures in the Aztec Wash pluton, Nevada. In: Proceedings of the 30th International Geological Congress (research volume) (pp 121–135)Google Scholar
  47. Pearthree P A, Ferguson CA, Johnson BJ, Guynn J (2009) geologic map and report for the proposed state route 95 Realignment Corridor, Mohave County, Arizona, v. 1: Arizona Geological Survey DGM-65, 5 sheets, 1:24,000 scale, pp 44Google Scholar
  48. Ransome FL (1923) Geology of the Oatman gold district, Arizona. US Geol Surv Bull 743:58pGoogle Scholar
  49. Reid MR, Vazquez JA, Schmitt AK (2011) Zircon-scale insights into the history of a supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer. Contrib Miner Petrol 161(2):293–311CrossRefGoogle Scholar
  50. Simon JI, Weis D, DePaolo DJ, Renne PR, Mundil R, Schmitt AK (2014) Assimilation of preexisting Pleistocene intrusions at Long Valley by periodic magma recharge accelerates rhyolite generation: rethinking the remelting model. Contrib Miner Petrol 167(1):1–34CrossRefGoogle Scholar
  51. Spencer JE, Ferguson CA, Pearthree PA, Richard SM (2007) Geologic map of the boundary cone 7½’ quadrangle, Mohave County, Arizona. Arizona Geological Survey Digital Geologic Map DGM-54Google Scholar
  52. Tappa MJ, Coleman DS, Mills RD, Samperton KM (2011) The plutonic record of a silicic ignimbrite from the Latir volcanic field, New Mexico. Geochem Geophys Geosyst 12(10). doi: 10.1029/2011GC003700
  53. Thorson JP (1971) Igneous petrology of the Oatman district, Mohave County, Arizona (Ph.D. Thesis): University of California—Santa Barbara, p 189Google Scholar
  54. Varga RJ, Faulds JE, Snee LW, Harlan SS, Bettison Varga L (2004) Miocene extension and extensional folding in an anticlinal segment of the Black Mountains accommodation zone, Colorado River extensional corridor, southwestern United States. Tectonics 23(1). doi: 10.1029/2002TC001454
  55. Vazquez JA, Reid MR (2002) Time scales of magma storage and differentiation of voluminous high-silica rhyolites at Yellowstone caldera, Wyoming. Contrib Miner Petrol 144(3):274–285CrossRefGoogle Scholar
  56. Walker BA, Miller CF, Claiborne L, Wooden JL, Miller JS (2007) Geology and geochronology of the Spirit Mountain batholith, southern Nevada: implications for timescales and physical processes of batholith construction. J Volcanol Geoth Res 167(1):239–262CrossRefGoogle Scholar
  57. Wark DA, Hildreth W, Spear FS, Cherniak DJ, Watson EB (2007) Pre-eruption recharge of the Bishop magma system. Geology 35(3):235–238CrossRefGoogle Scholar
  58. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64(2):295–304CrossRefGoogle Scholar
  59. Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308(5723):841–844CrossRefGoogle Scholar
  60. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Miner Petrol 151(4):413–433CrossRefGoogle Scholar
  61. Watts KE, Bindeman IN, Schmitt AK (2012) Crystal scale anatomy of a dying supervolcano: an isotope and geochronology study of individual phenocrysts from voluminous rhyolites of the Yellowstone caldera. Contrib Miner Petrol 164(1):45–67CrossRefGoogle Scholar
  62. Wiebe RA (1993) The Pleasant Bay layered gabbro—diorite, coastal Maine: ponding and crystallization of basaltic injections into a silicic magma chamber. J Petrol 34(3):461–489CrossRefGoogle Scholar
  63. Wiebe RA, Adams SD (1997) Felsic enclave swarms in the Gouldsboro granite, coastal Maine: a record of eruption through the roof of a silicic magma chamber. J Geol 105(5):617–628CrossRefGoogle Scholar
  64. Young RA, Brennan WJ (1974) Peach Springs Tuff: its bearing on structural evolution of the Colorado Plateau and development of Cenozoic drainage in Mohave County, Arizona. GSA Bull 85:83–90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Susanne M. McDowell
    • 2
    Email author
  • Calvin F. Miller
    • 1
  • Roland Mundil
    • 3
  • Charles A. Ferguson
    • 4
  • Joseph L. Wooden
    • 5
  1. 1.Department of Earth and Environmental SciencesVanderbilt UniversityNashvilleUSA
  2. 2.Department of GeologyHanover CollegeHanoverUSA
  3. 3.Berkeley Geochronology CenterBerkeleyUSA
  4. 4.Arizona Geological SurveyTucsonUSA
  5. 5.Stanford UniversityPalo AltoUSA

Personalised recommendations