Advertisement

Chemical zonation in olivine-hosted melt inclusions

  • M. E. Newcombe
  • A. Fabbrizio
  • Youxue Zhang
  • C. Ma
  • M. Le Voyer
  • Y. Guan
  • J. M. Eiler
  • A. E. Saal
  • E. M. Stolper
Original Paper

Abstract

Significant zonation in major, minor, trace, and volatile elements has been documented in naturally glassy olivine-hosted melt inclusions from the Siqueiros Fracture Zone and the Galapagos Islands. Components with a higher concentration in the host olivine than in the melt (e.g., MgO, FeO, Cr2O3, and MnO) are depleted at the edges of the zoned melt inclusions relative to their centers, whereas except for CaO, H2O, and F, components with a lower concentration in the host olivine than in the melt (e.g., Al2O3, SiO2, Na2O, K2O, TiO2, S, and Cl) are enriched near the melt inclusion edges. This zonation is due to formation of an olivine-depleted boundary layer in the adjacent melt in response to cooling and crystallization of olivine on the walls of the melt inclusions, concurrent with diffusive propagation of the boundary layer toward the inclusion center. Concentration profiles of some components in the melt inclusions exhibit multicomponent diffusion effects such as uphill diffusion (CaO, FeO) or slowing of the diffusion of typically rapidly diffusing components (Na2O, K2O) by coupling to slow diffusing components such as SiO2 and Al2O3. Concentrations of H2O and F decrease toward the edges of some of the Siqueiros melt inclusions, suggesting either that these components have been lost from the inclusions into the host olivine late in their cooling histories and/or that these components are exhibiting multicomponent diffusion effects. A model has been developed of the time-dependent evolution of MgO concentration profiles in melt inclusions due to simultaneous depletion of MgO at the inclusion walls due to olivine growth and diffusion of MgO in the melt inclusions in response to this depletion. Observed concentration profiles were fit to this model to constrain their thermal histories. Cooling rates determined by a single-stage linear cooling model are 150–13,000 °C h−1 from the liquidus down to ~1,000 °C, consistent with previously determined cooling rates for basaltic glasses; compositional trends with melt inclusion size observed in the Siqueiros melt inclusions are described well by this simple single-stage linear cooling model. Despite the overall success of the modeling of MgO concentration profiles using a single-stage cooling history, MgO concentration profiles in some melt inclusions are better fit by a two-stage cooling history with a slower-cooling first stage followed by a faster-cooling second stage; the inferred total duration of cooling from the liquidus down to ~1,000 °C ranges from 40 s to just over 1 h. Based on our observations and models, compositions of zoned melt inclusions (even if measured at the centers of the inclusions) will typically have been diffusively fractionated relative to the initially trapped melt; for such inclusions, the initial composition cannot be simply reconstructed based on olivine-addition calculations, so caution should be exercised in application of such reconstructions to correct for post-entrapment crystallization of olivine on inclusion walls. Off-center analyses of a melt inclusion can also give results significantly fractionated relative to simple olivine crystallization. All melt inclusions from the Siqueiros and Galapagos sample suites exhibit zoning profiles, and this feature may be nearly universal in glassy, olivine-hosted inclusions. If so, zoning profiles in melt inclusions could be widely useful to constrain late-stage syneruptive processes and as natural diffusion experiments.

Keywords

Melt inclusions Chemical zonation Diffusion Geospeedometry 

Notes

Acknowledgments

We would like to thank Nicole Métrich and Leonid Danyushevsky for their thoughtful reviews, and Jon Blundy for editorial handling of the manuscript. We are grateful to Mike Baker for many encouraging and insightful discussions, and for informal review of the manuscript. We are also grateful for useful discussions with Paul Asimow, Keith Putirka (who shared a large quantity of olivine-melt equilibrium data with us), John Maclennan, Terry Plank, and Madeleine Humphreys. This work was funded by US National Science Foundation Grants EAR-0739091 (EMS), EAR-1019440 (YZ), and OCE-0962195 (AES), and by a NASA Earth and Space Sciences Fellowship to Megan Newcombe.

Supplementary material

410_2014_1030_MOESM1_ESM.pdf (3.8 mb)
Online Resource 1: File ESM1.pdf contains further description of the model, an error analysis, model inversion tests, a comparison of the single-stage and two-stage cooling models, conductive cooling calculations, a table of sample names/locations, a table summarizing the results of fitting MgO concentration profiles in Siqueiros and Galapagos melt inclusions to both single-stage and two-stage linear thermal histories, and 17 additional figures. The MATLAB code used to constrain thermal histories of chemically zoned melt inclusions is available from the first author on request (PDF 3912 KB)
410_2014_1030_MOESM2_ESM.xls (3.9 mb)
Online Resource 2: File ESM2.xls contains supplementary electron microprobe data and backscattered electron images of all of the melt inclusions used in this study (XLS 3998 KB)
410_2014_1030_MOESM3_ESM.pdf (787 kb)
Online Resource 3: File ESM3.pdf contains further discussion of our nanoSIMS data, including a table of compositions of glass standards, two sets of calibration curves, and concentration profiles of H2O, S, Cl, and F in melt inclusions Siq16 and Siq7 (PDF 787 KB)

References

  1. Albarede F, Bottinga Y (1972) Kinetic disequilibrium in trace element partitioning between phenocrysts and host lava. Geochim Cosmochim Acta 36(2):141–156. doi: 10.1016/0016-7037(72)90003-8 CrossRefGoogle Scholar
  2. Alletti M, Baker DR, Freda C (2007) Halogen diffusion in a basaltic melt. Geochim Cosmochim Acta 71(14):3570–3580CrossRefGoogle Scholar
  3. Anderson AT (1974) Evidence for a picritic, volatile-rich magma beneath Mt. Shasta, California. J Petrol 15(2):243. doi: 10.1093/petrology/15.2.243 CrossRefGoogle Scholar
  4. Armstrong JT (1988) Quantitative analysis of silicate and oxide minerals: comparison of Monte Carlo, ZAF and Φ(ρz) procedures. In: Newbury DE (ed) Microbeam analysis—1988. San Francisco Press, San Francisco, pp 239–246Google Scholar
  5. Baker D (1990) Chemical interdiffusion of dacite and rhyolite: anhydrous measurements at 1 atm and 10 kbar, application of transition state theory, and diffusion in zoned magma chambers. Contrib Mineral Petrol 104(4):407–423. doi: 10.1007/bf01575619 CrossRefGoogle Scholar
  6. Chen Y, Zhang Y (2008) Olivine dissolution in basaltic melt. Geochim Cosmochim Acta 72(19):4756–4777. doi: 10.1016/j.gca.2008.07.014 CrossRefGoogle Scholar
  7. Chen Y, Zhang Y (2009) Clinopyroxene dissolution in basaltic melt. Geochim Cosmochim Acta 73(19):5730–5747CrossRefGoogle Scholar
  8. Chen Y, Provost A, Schiano P, Cluzel N (2013) Magma ascent rate and initial water concentration inferred from diffusive water loss from olivine-hosted melt inclusions. Contrib Mineral Petrol 165(3):525–541. doi: 10.1007/s00410-012-0821-x CrossRefGoogle Scholar
  9. Colin A, Faure F, Burnard P (2012) Timescales of convection in magma chambers below the Mid-Atlantic ridge from melt inclusions investigations. Contrib Mineral Petrol 164(4):677–691. doi: 10.1007/s00410-012-0764-2 CrossRefGoogle Scholar
  10. Cooper AR (1968) The use and limitations of the concept of an effective binary diffusion coefficient for multi-component diffusion. Mass Transp Oxides 296:79–84Google Scholar
  11. Costa F, Dungan M (2005) Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33(10):837–840. doi: 10.1130/g21675.1 CrossRefGoogle Scholar
  12. Cottrell E, Spiegelman M, Langmuir CH (2002) Consequences of diffusive reequilibration for the interpretation of melt inclusions. Geochem Geophys Geosyst 3. doi: 10.1029/2001gc000205
  13. Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138(1):68–83. doi: 10.1007/pl00007664 CrossRefGoogle Scholar
  14. Danyushevsky LV, McNeill AW, Sobolev AV (2002a) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183(1–4):5–24. doi: 10.1016/s0009-2541(01)00369-2 CrossRefGoogle Scholar
  15. Danyushevsky LV, Sokolov S, Falloon TJ (2002b) Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J Petrol 43(9):1651–1671. doi: 10.1093/petrology/43.9.1651 CrossRefGoogle Scholar
  16. Danyushevsky LV, Perfit MR, Eggins SM, Falloon TJ (2003) Crustal origin for coupled ‘ultra-depleted’ and ‘plagioclase’ signatures in MORB olivine-hosted melt inclusions: evidence from the Siqueiros Transform Fault, East Pacific Rise. Contrib Mineral Petrol 144(5):619–637CrossRefGoogle Scholar
  17. Danyushevsky LV, Leslie RAJ, Crawford AJ, Durance P (2004) Melt inclusions in primitive olivine phenocrysts: the role of localized reaction processes in the origin of anomalous compositions. J Petrol 45(12):2531–2553CrossRefGoogle Scholar
  18. Efron B, Tibshirani R (1985) The bootstrap method for assessing statistical accuracy. DTIC documentGoogle Scholar
  19. Faure F, Schiano P (2005) Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth Planet Sci Lett 236(3–4):882–898. doi: 10.1016/j.epsl.2005.04.050 CrossRefGoogle Scholar
  20. Gaetani GA, Watson EB (2002) Modeling the major-element evolution of olivine-hosted melt inclusions. Chem Geol 183(1–4):25–41. doi: 10.1016/s0009-2541(01)00370-9 CrossRefGoogle Scholar
  21. Gaetani GA, O’Leary JA, Shimizu N, Bucholz CE, Newville M (2012) Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40(10):915–918CrossRefGoogle Scholar
  22. Geist DJ, Fornari DJ, Kurz MD, Harpp KS, Adam Soule S, Perfit MR, Koleszar AM (2006) Submarine Fernandina: magmatism at the leading edge of the Galápagos hot spot. Geochem Geophys Geosyst 7(12):n/a–n/a. doi: 10.1029/2006gc001290
  23. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2):197–212CrossRefGoogle Scholar
  24. Hauri E (2002) SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem Geol 183(1–4):115–141. doi: 10.1016/S0009-2541(01)00374-6 CrossRefGoogle Scholar
  25. Hauri E, Wang J, Dixon JE, King PL, Mandeville C, Newman S (2002) SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183(1–4):99–114. doi: 10.1016/S0009-2541(01)00375-8 CrossRefGoogle Scholar
  26. Jambon A (1982) Tracer diffusion in granitic melts: experimental results for Na, K, Rb, Cs, Ca, Sr, Ba, Ce, Eu to 1300 C and a model of calculation. J Geophys Res: Solid Earth (1978–2012) 87(B13):10797–10810CrossRefGoogle Scholar
  27. Koleszar AM, Saal AE, Hauri EH, Nagle AN, Liang Y, Kurz MD (2009) The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior in melt inclusions. Earth Planet Sci Lett 287(3–4):442–452. doi: 10.1016/j.epsl.2009.08.029 CrossRefGoogle Scholar
  28. Kress VC, Ghiorso MS (1995) Multicomponent diffusion in basaltic melts. Geochim Cosmochim Acta 59(2):313–324. doi: 10.1016/0016-7037(94)00286-u CrossRefGoogle Scholar
  29. Lagarias J, Reeds J, Wright M, Wright P (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optim 9(1):112–147. doi: 10.1137/S1052623496303470 CrossRefGoogle Scholar
  30. Lasaga AC (1979) Multicomponent exchange and diffusion in silicates. Geochim Cosmochim Acta 43(4):455–469. doi: 10.1016/0016-7037(79)90158-3 CrossRefGoogle Scholar
  31. LaTourrette T, Wasserburg GJ, Fahey AJ (1996) Self diffusion of Mg, Ca, Ba, Nd, Yb, Ti, Zr, and U in haplobasaltic melt. Geochim Cosmochim Acta 60(8):1329–1340. doi: 10.1016/0016-7037(96)00015-4 CrossRefGoogle Scholar
  32. Le Voyer M, Asimow PD, Mosenfelder JL, Guan Y, Wallace PJ, Schiano P, Stolper EM, Eiler JM (2014) Zonation of H2O and F concentrations around melt inclusions in olivines. J Petrol. doi: 10.1093/petrology/egu003 Google Scholar
  33. Lesher C, Hervig R, Tinker D (1996) Self diffusion of network formers (silicon and oxygen) in naturally occurring basaltic liquid. Geochim Cosmochim Acta 60(3):405–413CrossRefGoogle Scholar
  34. Liang Y (2010) Multicomponent diffusion in molten silicates: theory, experiments, and geological applications. Rev Mineral Geochem 72(1):409–446CrossRefGoogle Scholar
  35. Lloyd AS, Plank T, Ruprecht P, Hauri EH, Rose W (2013) Volatile loss from melt inclusions in pyroclasts of differing sizes. Contrib Mineral Petrol 165(1):1–25CrossRefGoogle Scholar
  36. Long GL, Winefordner JD (1983) Limit of detection a closer look at the IUPAC definition. Anal Chem 55(7):712A–724A. doi: 10.1021/ac00258a724 Google Scholar
  37. Lundstrom CC (2000) Rapid diffusive infiltration of sodium into partially molten peridotite. Nature 403(6769):527–530CrossRefGoogle Scholar
  38. Lundstrom C (2003) An experimental investigation of the diffusive infiltration of alkalis into partially molten peridotite: implications for mantle melting processes. Geochem Geophys Geosyst 4(9):8614. doi: 10.1029/2001GC000224 CrossRefGoogle Scholar
  39. Maclennan J, McKenzie D, Grönvold K, Shimizu N, Eiler J, Kitchen N (2003) Melt mixing and crystallization under Theistareykir, northeast Iceland. Geochem Geophys Geosyst 4(11):8624. doi: 10.1029/2003GC000558 CrossRefGoogle Scholar
  40. Massare D, Métrich N, Clocchiatti R (2002) High-temperature experiments on silicate melt inclusions in olivine at 1 atm: inference on temperatures of homogenization and H2O concentrations. Chem Geol 183(1):87–98CrossRefGoogle Scholar
  41. Matzen AK, Baker MB, Beckett JR, Stolper EM (2011) Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. J Petrol 52(7–8):1243–1263CrossRefGoogle Scholar
  42. Maury RC, Bizouard H (1974) Melting of acid xenoliths into a basanite: an approach to the possible mechanisms of crustal contamination. Contrib Mineral Petrol 48(4):275–286. doi: 10.1007/bf00951335 CrossRefGoogle Scholar
  43. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253. doi: 10.1016/0009-2541(94)00140-4 CrossRefGoogle Scholar
  44. Mercier M (2009) Abondance et signification de l’eau dans les magmas mafiques. Développement de la spectroscopie vibrationnelle (Raman et FTIR). Thesis, Université Paris Sud-Paris XIGoogle Scholar
  45. Morgan DJ, Blake S, Rogers NW, DeVivo B, Rolandi G, Macdonald R, Hawkesworth CJ (2004) Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: vesuvius 1944. Earth Planet Sci Lett 222(3–4):933–946. doi: 10.1016/j.epsl.2004.03.030 CrossRefGoogle Scholar
  46. Mosenfelder JL, Le Voyer M, Rossman GR, Guan Y, Bell DR, Asimow PD, Eiler JM (2011) Analysis of hydrogen in olivine by SIMS: evaluation of standards and protocol. Am Mineral 96(11–12):1725–1741. doi: 10.2138/am.2011.3810 CrossRefGoogle Scholar
  47. Mungall JE, Romano C, Dingwell DB (1998) Multicomponent diffusion in the molten system K2O–Na2O–Al2O3–SiO2–H2O. Am Mineral 83(7–8):685–699Google Scholar
  48. Nichols ARL, Potuzak M, Dingwell DB (2009) Cooling rates of basaltic hyaloclastites and pillow lava glasses from the HSDP2 drill core. Geochim Cosmochim Acta 73(4):1052–1066. doi: 10.1016/j.gca.2008.11.023 CrossRefGoogle Scholar
  49. Perfit MR, Fornari DJ, Ridley WI, Kirk PD, Casey J, Kastens KA, Reynolds JR, Edwards M, Desonie D, Shuster R, Paradis S (1996) Recent volcanism in the Siqueiros transform fault: picritic basalts and implications for MORB magma genesis. Earth Planet Sci Lett 141(1–4):91–108. doi: 10.1016/0012-821x(96)00052-0 CrossRefGoogle Scholar
  50. Portnyagin M, Almeev R, Matveev S, Holtz F (2008) Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet Sci Lett 272(3):541–552CrossRefGoogle Scholar
  51. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120CrossRefGoogle Scholar
  52. Qin ZW, Lu FQ, Anderson AT (1992) Diffusive reequilibration of melt and fluid inclusions. Am Mineral 77(5–6):565–576Google Scholar
  53. Richter FM, Davis AM, DePaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67(20):3905–3923. doi: 10.1016/S0016-7037(03)00174-1 CrossRefGoogle Scholar
  54. Roedder E (1984) Fluid inclusions, vol 12. Reviews in mineralogy. Mineralogical Society of America, USAGoogle Scholar
  55. Roeder P, Emslie R (1970) Olivine–liquid equilibrium. Contrib Mineral Petrol 29(4):275–289CrossRefGoogle Scholar
  56. Ryerson FJ, Hess PC (1978) Implications of liquid–liquid distribution coefficients to mineral–liquid partitioning. Geochim Cosmochim Acta 42(6):921–932. doi: 10.1016/0016-7037(78)90103-5 CrossRefGoogle Scholar
  57. Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419(6906):451–455. http://www.nature.com/nature/journal/v419/n6906/suppinfo/nature01073_S1.html
  58. Saal AE, Kurz MD, Hart SR, Blusztajn JS, Blichert-Toft J, Liang Y, Geist DJ (2007) The role of lithospheric gabbros on the composition of Galapagos lavas. Earth Planet Sci Lett 257(3–4):391–406. doi: 10.1016/j.epsl.2007.02.040 CrossRefGoogle Scholar
  59. Sato H (1975) Diffusion coronas around quartz xenocrysts in andesite and basalt from Tertiary volcanic region in northeastern Shikoku, Japan. Contrib Mineral Petrol 50(1):49–64. doi: 10.1007/bf00385221 CrossRefGoogle Scholar
  60. Smith PM, Asimow PD (2005) Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem Geophys Geosyst 6(2):Q02004CrossRefGoogle Scholar
  61. Smith V, Tiller W, Rutter J (1955) A mathematical analysis of solute redistribution during solidification. Can J Phys 33(12):723–745CrossRefGoogle Scholar
  62. Stolper E (1982) Water in silicate glasses: an infrared spectroscopic study. Contrib Mineral Petrol 81(1):1–17. doi: 10.1007/bf00371154 CrossRefGoogle Scholar
  63. Sugawara T (2000) Empirical relationships between temperature, pressure, and MgO content in olivine and pyroxene saturated liquid. J Geophys Res 105(B4):8457–8472CrossRefGoogle Scholar
  64. Taylor M, Brown GE (1979) Structure of mineral glasses—I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8. Geochim Cosmochim Acta 43(1):61–75CrossRefGoogle Scholar
  65. Tiller WA, Jackson KA, Rutter JW, Chalmers B (1953) The redistribution of solute atoms during the solidification of metals. Acta Metall 1(4):428–437. doi: 10.1016/0001-6160(53)90126-6 CrossRefGoogle Scholar
  66. Trial AF, Spera FJ (1994) Measuring the multicomponent diffusion matrix: experimental design and data analysis for silicate melts. Geochim Cosmochim Acta 58(18):3769–3783. doi: 10.1016/0016-7037(94)90362-x CrossRefGoogle Scholar
  67. Watson EB (1982) Basalt contamination by continental crust: some experiments and models. Contrib Mineral Petrol 80(1):73–87. doi: 10.1007/bf00376736 CrossRefGoogle Scholar
  68. Watson EB, Jurewicz SR (1984) Behavior of alkalies during diffusive interaction of granitic xenoliths with basaltic magma. J Geol 92(2):121–131CrossRefGoogle Scholar
  69. White WM, McBirney AR, Duncan RA (1993) Petrology and geochemistry of the Galápagos Islands: portrait of a pathological mantle plume. J Geophys Res 98(B11):19533–19563. doi: 10.1029/93JB02018 CrossRefGoogle Scholar
  70. Wilding M, Dingwell D, Batiza R, Wilson L (2000) Cooling rates of hyaloclastites: applications of relaxation geospeedometry to undersea volcanic deposits. Bull Volcanol 61(8):527–536. doi: 10.1007/s004450050003 CrossRefGoogle Scholar
  71. Xu Z, Zhang Y (2002) Quench rates in air, water, and liquid nitrogen, and inference of temperature in volcanic eruption columns. Earth Planet Sci Lett 200(3):315–330CrossRefGoogle Scholar
  72. Zhang Y (1993) A modified effective binary diffusion model. J Geophys Res: Solid Earth (1978–2012) 98(B7):11901–11920CrossRefGoogle Scholar
  73. Zhang Y (2008) Geochemical kinetics. Princeton University Press, PrincetonGoogle Scholar
  74. Zhang Y (2010) Diffusion in minerals and melts: theoretical background. Rev Mineral Geochem 72(1):5–59CrossRefGoogle Scholar
  75. Zhang Y, Stolper EM (1991) Water diffusion in a basaltic melt. Nature 351(6324):306–309CrossRefGoogle Scholar
  76. Zhang Y, Walker D, Lesher CE (1989) Diffusive crystal dissolution. Contrib Mineral Petrol 102(4):492–513. doi: 10.1007/bf00371090 CrossRefGoogle Scholar
  77. Zhang Y, Stolper EM, Ihinger P (1995) Kinetics of the reaction H2O + O=2OH in rhyolitic and albitic glasses: preliminary results. Am Mineral 80:593–612Google Scholar
  78. Zhang Y, Jenkins J, Xu Z (1997) Kinetics of the reaction H2O + O→2OH in rhyolitic glasses upon cooling: geospeedometry and comparison with glass transition. Geochim Cosmochim Acta 61(11):2167–2173CrossRefGoogle Scholar
  79. Zhang Y, Xu Z, Behrens H (2000) Hydrous species geospeedometer in rhyolite: improved calibration and application. Geochim Cosmochim Acta 64(19):3347–3355CrossRefGoogle Scholar
  80. Zhang Y, Ni H, Chen Y (2010) Diffusion data in silicate melts. Rev Mineral Geochem 72(1):311–408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. E. Newcombe
    • 1
  • A. Fabbrizio
    • 1
    • 2
  • Youxue Zhang
    • 3
  • C. Ma
    • 1
  • M. Le Voyer
    • 1
    • 4
  • Y. Guan
    • 1
  • J. M. Eiler
    • 1
  • A. E. Saal
    • 5
  • E. M. Stolper
    • 1
  1. 1.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Laboratoire Magmas et Volcans, CNRS UMR 6524Université Blaise-Pascal, OPGC-IRDClermont-Ferrand CedexFrance
  3. 3.Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborUSA
  4. 4.Department of Terrestrial MagnetismCarnegie Institution of WashingtonWashingtonUSA
  5. 5.Department of Geological SciencesBrown UniversityProvidenceUSA

Personalised recommendations