A comment on ultrahigh-temperature metamorphism from an unusual corundum + orthopyroxene intergrowth bearing Al–Mg granulite from the Southern Marginal Zone, Limpopo Complex, South Africa, by Belyanin et al.

  • Gautier NicoliEmail author
  • Gary Stevens
  • Ian Buick
  • J.-F. Moyen

Studies on the Southern Marginal Zone (SMZ) of the Limpopo Belt have generally concluded that this terrain was affected by a single granulite-facies metamorphic event at 2.67–2.66 Ga (Kröner et al. 2000; Kreissig et al. 2000; Zeh et al. 2005; Elington and Armstrong 2004; Stevens and Van Reenen 1992a, b; Barton and van Reenen 1992; Barton et al. 1992; Van den Berg and Huizenga 2001; Rigby et al. 2008), with peak metamorphic conditions of 7.5–9.5 kbar and 800–850 °C. In their recent paper, Belyanin et al. (2012) propose an ultrahigh-temperature (UHT) metamorphic event in the SMZ, with peak metamorphic conditions in excess of 1,000 °C at approximately 12 kbar. Similar conclusions were proposed by earlier work on the same rock (Belyanin et al. 2010). The proposed UHT conditions are based on Al-rich orthopyroxene and ternary feldspar thermometry using reintegrated feldspar compositions. This evidence is derived from a single outcrop containing unusual aluminous layers within...


Metamorphic Event Gray Gneiss Peak Metamorphic Temperature Feldspar Composition Southern Marginal Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baldwin JA, Powell R, Brown M, Moraes RA, Fuck RA (2005) Modelling of mineral equilibria in ultrahigh-temperature metamorphic rocks from the Anápolis–Itauçu Complex, central Brazil. J Metamorph Geol 23:511–532. doi: 10.1111/j.1525-1314.2005.00591.x CrossRefGoogle Scholar
  2. Barton JM, Van Reenen DD (1992) When was the Limpopo Orogeny? Precambrian Res 55:7–16. doi: 10.1016/0301-9268(92)90010-L CrossRefGoogle Scholar
  3. Barton JM, Doig R, Smith CB, Bohlender F, Van Reenen DD (1992) Isotopic and REE characteristics of the intrusive charnoenderbite and enderbite geographically associated with the Matok Pluton, Limpopo belt, Southern Africa. Precambrian Res 55:451–567. doi: 10.1016/0301-9268(92)90039-Q CrossRefGoogle Scholar
  4. Belyanin GA, Rajesh HM, van Reenen DD, Mouri H (2010) Corundum + orthopyroxene ± spinel intergrowths in an ultrahigh-temperature Al–Mg granulite from the Southern Marginal Zone, Limpopo Belt, South Africa. Am Mineral 95:196–199. doi: 10.2138/am.2010.3383 CrossRefGoogle Scholar
  5. Belyanin GA, Rajesh HM, Sajeev K, van Reenen DD (2012) Ultrahigh-temperature metamorphism from an unusual corundum + orthopyroxene intergrowth bearing Al–Mg granulite from the Southern Marginal Zone, Limpopo Complex, South Africa. Contrib Mineral Petrol 164:457–475. doi: 10.1007/s00410-012-0747-3 CrossRefGoogle Scholar
  6. Camacho A, McDougall I, Armstrong R, Braun J (2001) Evidence for shear heating, Musgrave Block, Central Australia. J Struct Geol 23:1007–1013. doi: 10.1016/S0191-8141(00)00172-3 CrossRefGoogle Scholar
  7. Carson CJ, Powell R, Wilson CJL, Dirks PHGM (1997) Partial melting during tectonic exhumation of a granulite terrane: an example from the Larsemann Hills, East Antarctica. J Metamorph Geol 15:105–126. doi: 10.1111/j.1525-1314.1997.00059.x CrossRefGoogle Scholar
  8. De Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Miner 95:1006–1016. doi: 10.2138/am.2010.3354 CrossRefGoogle Scholar
  9. Elington BM, Armstrong EA (2004) The Kaapvaal Craton and adjacent orogens, southern Africa: a geochronological database and overview of the geological development of the craton. S Afr J Geol 10:13–32. doi: 10.2113/107.1-2.13 CrossRefGoogle Scholar
  10. Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215Google Scholar
  11. Guiraud M, Kienast JR, Ouzegane K (1996) Corundum–quartz bearing assemblage in the Ihouhaouene area (In Ouzzal, Algeria). J Metamorph Geol 14:755–761. doi: 10.1111/j.1525-1314.1996.00046.x CrossRefGoogle Scholar
  12. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343. doi: 10.1111/j.1525-1314.1998.00140.x CrossRefGoogle Scholar
  13. Holland T, Powell R (2001) Calculation of phase relations involving haplogranitic melts using an internally consistent thermodynamic dataset. J Petrol 42:673–683. doi: 10.1093/petrology/42.4.673 CrossRefGoogle Scholar
  14. Holland T, Powell R (2003) Activity–composition relations for phase in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 10:395–406. doi: 10.1007/s00410-003-0464-z Google Scholar
  15. Kelsey DE (2007) On ultrahigh-temperature crustal metamorphism. Gondwana Res. doi: 10.1016/ Google Scholar
  16. Kelsey DE, White RW, Powell R (2003) Orthopyroxene–sillimanite–quartz assemblages; distribution, petrology, quantitative P–T–X constraints and P–T paths. J Metamorph Geol 21:439–453. doi: 10.1046/j.1525-1314.2003.00456.x CrossRefGoogle Scholar
  17. Kreissig K, Nägler TF, Kramers JD, van Reenen DD, Smit CA (2000) An isotopic and geochemical study of the northern Kaapvaal Craton and the Southern Marginal Zone of the Limpopo Belt: are they juxtaposed terranes? Lithos 50:1–25. doi: 10.1016/S0024-4937(99)00037-7 CrossRefGoogle Scholar
  18. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  19. Kröner A, Jaeckel P, Brandl G (2000) Single zircon ages for felsic to intermediate rocks from the Pietersburg and Giyani greenstone belts and bordering granitoid orthogneisses, northern Kaapvaal Craton, South Africa. J Afr Earth Sci 30:773–793. doi: 10.1016/S0899-5362(00)00052-X CrossRefGoogle Scholar
  20. Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes. 2. Compositions of minerals and melts. Contrib Mineral Petrol 128:176–196. doi: 10.1007/s004100050302 CrossRefGoogle Scholar
  21. Ouzegane K, Guiraud M, Kienast JR (2003) Prograde and retrograde evolution in high-temperature corundum granulites (FMAS and KFMASH systems) from In Ouzzal Terrane (NW Hoggar, Algeria). J Petrol 44:517–545. doi: 10.1093/petrology/44.3.517 CrossRefGoogle Scholar
  22. Patinõ Douce AE, Harris N (1998) Experimental constrains on Himalayan anatexis. J Petrol 39:689–710. doi: 10.1093/petroj/39.4.689 CrossRefGoogle Scholar
  23. Patinõ Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granites. Contrib Mineral Petrol 107:202–218. doi: 10.1007/BF00310707 CrossRefGoogle Scholar
  24. Pickering JM, Johnston AD (1998) Fluid-absent melting behavior of two-mica metapelite: experimental constraints on the origin of Black Hills granite. J Petrol 39:1797–1894. doi: 10.1093/petroj/39.10.1787 CrossRefGoogle Scholar
  25. Prakash D, Sharma IN (2008) Reaction textures and metamorphic evolution of quartz-free granulites from Namlekonda (Karimnagar), Andhra Pradesh, Southern India. Int Geol Rev 50:1008–1020CrossRefGoogle Scholar
  26. Rigby M, Mouri H, Brandl G (2008) A review of the pressure–temperature–time evolution of the Limpopo Belt: constraints for a tectonic model. J Afr Earth Sci 50:120–132. doi: 10.1016/j.jafrearsci.2007.09.010 CrossRefGoogle Scholar
  27. Shaw RK, Arima M (1998) A corundum–quartz assemblage from the Eastern Ghats Granulite Belt, India: evidence for high P–T metamorphism? J Metamorph Geol 16:189–196. doi: 10.1111/j.1525-1314.1998.00073.x CrossRefGoogle Scholar
  28. Singh J, Johannes W (1996) Dehydration melting of tonalites, Part II. Composition of melts and solids. Contrib Mineral Petrol 125:26–40. doi: 10.1007/s004100050204 CrossRefGoogle Scholar
  29. Stevens G, Clemens JD (1993) Fluid-absent melting and the roles of fluids in the lithosphere: a slanted summary? Chem Geol 108:1–17. doi: 10.1016/0009-2541(93)90314-9 CrossRefGoogle Scholar
  30. Stevens G, van Reenen DD (1992a) Partial melting and the origin of metapelitic granulites in the Southern Marginal Zone of the Limpopo Belt. S Afr Precambrian Res 55:303–319. doi: 10.1016/0301-9268(92)90030-R CrossRefGoogle Scholar
  31. Stevens G, van Reenen DD (1992b) Constraints on the form of the P–T loop in the Southern Marginal Zone of the Limpopo Belt. S Afr Precambrian Res 55:279–296. doi: 10.1016/0301-9268(92)90028-M CrossRefGoogle Scholar
  32. Stevens G, Clemens JD, Droop GTR (1997) Melt production during granulite-facies anatexis: experimental data from primitive metasedimentary protoliths. Contrib Mineral Petrol 128:352–370. doi: 10.1007/s004100050314 CrossRefGoogle Scholar
  33. Stixrude L, Lithgow-Bertelloni C (2005) Thermodynamics of mantel minerals I: physical properties. Geophys J Int 162:610–632. doi: 10.1111/j.1365-246X.2005.02642.x CrossRefGoogle Scholar
  34. Tajcmanová L, Connolly JAD, Cesare B (2009) A thermodynamic model for titanium and ferric iron solution in biotite. J Metamorph Geol 27:153–165. doi: 10.1111/j.1525-1314.2009.00812.x CrossRefGoogle Scholar
  35. Taylor J, Stevens G, Armstrong R, Kisters AFM (2010) Granulite facies anatexis in the Ancient Gneiss Complex, Swaziland, at 2.73 Ga: mid-crustal metamorphic evidence for mantle heating of the Kaapvaal craton during Ventersdorp magmatism. Precambrian Res 177:88–102. doi: 10.1016/j.precamres.2009.11.005 CrossRefGoogle Scholar
  36. Thompson JB, Hovis GL (1979) Entropy of mixing in sanidine. Am Mineral 64:57–65.
  37. Tsunogae T, Miyano T, van Reenen DD, Smit CA (2004) Ultrahigh temperature metamorphism of the Southern Marginal Zone of the Archaean Limpopo Belt, South Africa. J Mineral Petrol Sci 99:213–224. doi: 10.2465/jmps.99.213 CrossRefGoogle Scholar
  38. Van den Berg R, Huizenga JM (2001) Fluids in granulites of the Southern Marginal Zone of the Limpopo belt, South Africa. Contrib Mineral Petrol 141:529–545. doi: 10.1007/s004100100249 CrossRefGoogle Scholar
  39. Van Reenen DD (1983) Cordierite + garnet + hypersthene + biotite-bearing assemblages as a function of changing metamorphic conditions in the Southern Marginal Zone of the Limpopo metamorphic complex. S Afr Geol Soc S Afr Spec Publ 8:143–167Google Scholar
  40. Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting reactions in the pelitic system. Contrib Mineral Petrol 98:257–276. doi: 10.1007/BF00375178 CrossRefGoogle Scholar
  41. Waters DJ (2001) The significance of prograde and retrograde quartz bearing intergrowth microstructures in partially melted granulite-facies rocks. Lithos 56:97–110. doi: 10.1016/S0024-4937(00)00061-X CrossRefGoogle Scholar
  42. White RW, Powell R, Holland TJB (2001) Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). J Metamorph Geol 19:139–153. doi: 10.1046/j.0263-4929.2000.00303.x CrossRefGoogle Scholar
  43. White RW, Powell R, Clarke GL (2003) Prograde metamorphic assemblage evolution during partial melting of metasedimentary rocks at low pressures: migmatites from Mt Stafford, Central Australia. J Petrol 44:1937–1960. doi: 10.1093/petrology/egg065 CrossRefGoogle Scholar
  44. White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelite. J Metamorph Geol 25:511–527. doi: 10.1111/j.1525-1314.2007.00711.x CrossRefGoogle Scholar
  45. Zeh A, Holland TJB, Klemd R (2005) Phase relationships in grunerite–garnet bearing amphibolites in the system CFMASH, with applications to metamorphic rocks from the Central Zone of the Limpopo Belt, South Africa. J Metamorph Geol 23:1–17. doi: 10.1111/j.1525-1314.2005.00554.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Gautier Nicoli
    • 1
    Email author
  • Gary Stevens
    • 1
  • Ian Buick
    • 1
  • J.-F. Moyen
    • 2
  1. 1.Department of Earth Sciences, Centre for Crustal PetrologyStellenbosch UniversityMatielandSouth Africa
  2. 2.UMR 6524 CNRSUniversité Jean-MonnetSaint-ÉtienneFrance

Personalised recommendations