Iron speciation in minerals and glasses probed by \(\hbox{M}_{2/3}\)-edge X-ray Raman scattering spectroscopy

  • A. Nyrow
  • C. Sternemann
  • M. Wilke
  • R. A. Gordon
  • K. Mende
  • H. Yavaş
  • L. Simonelli
  • N. Hiraoka
  • Ch. J. Sahle
  • S. Huotari
  • G. B. Andreozzi
  • A. B. Woodland
  • M. Tolan
  • J. S. Tse
Original Paper


We present a spectroscopic study of the iron \(\hbox{M}_{2/3}\)-edge for several minerals and compounds to reveal information about the oxidation state and the local coordination of iron. We describe a novel approach to probe the iron \(\hbox{M}_{2/3}\)-edge bulk sensitively using X-ray Raman scattering. Significant changes in the onset and shape of the Fe \(\hbox{M}_{2/3}\)-edge were observed on ferrous and ferric model compounds with Fe in octahedral and tetrahedral coordination. Simulation of the spectra is possible using an atomic multiplet code, which potentially allows determination of, e.g., crystal-field parameters in a quantitative manner. A protocol is discussed for determination of the Fe oxidation state in compounds by linear combination of spectra of ferric and ferrous end members. The presented results demonstrate the capabilities of Fe \(\hbox{M}_{2/3}\)-edge spectroscopy by X-ray Raman scattering to extract information on the ratio of trivalent to total iron \(\hbox{Fe}^{3+}/\sum \hbox{Fe}\) and local coordination. As X-ray Raman scattering is performed with hard X-rays, this approach is suitable for in situ experiments at high pressure and temperature. It thus may provide indispensable information on oxidation state, electronic structure and local structure of materials that are important for physical and chemical processes of the deep Earth.


Iron speciation Minerals X-Ray scattering X-Ray absorption spectroscopy 



We acknowledge ESRF, APS, SPring-8 and DELTA for providing synchrotron radiation. AN and KM would like to thank BMBF (05K10PEC and 05K13PE2) for financial support. JST and RAG acknowledge the support from NSERC of Canada (MFA, Discover grant). The authors would also like to thank M. Stuff and D. Rhede (GFZ) for the electron microprobe analysis of the AOQ-2 sample and J. Pohlenz for proof reading.


  1. Andreozzi GB, Lucchesi S (2002) Intersite distribution of \({{{\rm Fe}}}^{2+}\) and Mg in the spinel (sensu stricto)-hercynite series by single-crystal X-ray diffraction. Am Min 87:1113–1120Google Scholar
  2. Antonangeli D, Siebert J, Badro J, Farber DL, Fiquet G, Morard G, Ryerson FJ (2010) Composition of the Earth’s inner core from high-pressure sound velocity measurements in Fe–Ni–Si alloys. Earth Planet Sci Lett 295:292–296CrossRefGoogle Scholar
  3. Badro J, Fiquet G, Guyot F, Rueff JP, Struzhkin VV, Vanko G, Monaco G (2003) Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science 300:789–791CrossRefGoogle Scholar
  4. Bergmann U, Groenzin H, Mullins OC, Glatzel P, Getzer J, Cramer SP (2004) X-Ray Raman spectroscopy: a new tool to study local structure of aromatic hydrocarbons and asphaltenes. Pet Sci Technol 22:863–875CrossRefGoogle Scholar
  5. Berry AJ, Yaxley GM, Woodland AB, Foran GJ (2010) A XANES calibration for determining the oxidation state of iron in mantle garnet. Chem Geol 278:31–37CrossRefGoogle Scholar
  6. Boulard E, Menguy N, Auzende AL, Benzerara K, Bureau H, Antonangeli D, Corgne A, Morard G, Siebert J, Perrillat JP, Guyot F, Fiquet G (2012) Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J Geophys Res 117:B02208Google Scholar
  7. Bourdelle F, Benzerara K, Beyssac O, Cosmidis J, Neuville DR, Brown GE Jr, Paineau E (2013) Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-ray microscopy at the Fe \({\text{L}}_{2,3}\) edges. Contrib Miner Pet 166:423–434CrossRefGoogle Scholar
  8. Bradley JA, Moore KT, van der Laan G, Bradley JP, Gordon RA (2011) Core and shallow-core d- to f-shell excitations in rare-earth metals. Phys Rev B 84:205105CrossRefGoogle Scholar
  9. Cai YQ, Chow P, Chen CC, Ishii H, Tsang L, Kao CC, Liang KS, Chen CT (2004) Optical design and performance of the Taiwan inelastic X-ray scattering beamline (BL12XU) at SPring-8. AIP Conf Proc 705:340–343CrossRefGoogle Scholar
  10. Calvert CC, Brown A, Brydson R (2005) Determination of the local chemistry of iron in inorganic and organic materials. J Electron Spectrosc Relat Phenom 143:173–187CrossRefGoogle Scholar
  11. Cavé L, Al T, Loomer D, Cogswell S, Weaver L (2006) A STEM/EELS method for mapping iron valence ratios in oxide minerals. Micron 37:301–309CrossRefGoogle Scholar
  12. Crocombette JP, Pollak M, Jollet F, Thromat N, Gautier-Soyer M (2006) X-Ray near-edge absorption study of temperature-induced low-spin-to-high-spin change in metallo-supramolecular assemblies. Phys Rev B 52:3143–3150CrossRefGoogle Scholar
  13. de Groot FMF (2005) Multiplet effects in X-ray spectroscopy. Coord Chem Rev 249:31–63CrossRefGoogle Scholar
  14. de Groot FMF, Glatzel P, Bergmann U, van Aken PA, Barrea RA, Klemme S, Hävecker M, Knop-Gericke A, Heijboer WM, Weckhuysen BM (2005) 1s2p resonant inelastic X-ray scattering of iron oxides. J Phys Chem B 109:20751–20762CrossRefGoogle Scholar
  15. de Groot FMF (2008) Ligand and metal X-ray absorption in transition metal complexes. Inorg Chem Acta 361:850–856CrossRefGoogle Scholar
  16. de Groot FMF, de Smit E, van Schooneveld MM, Aramburo LR, Weckhuysen BMX (2008) In-situ scanning transmission X-ray microscopy of catalytic solids and related nanomaterials. Chem Phys Chem 11:951–962CrossRefGoogle Scholar
  17. Ding Y, Chen CC, Zeng Q, Kim HS, Han MJ, Balasubramanian M, Gordon R, Li F, Bai L, Popov D, Heald SM, Gog T, Mao H, van Veenendaal M (2014) Novel high-pressure monoclinic metallic phase of V2O3. Phys Rev Lett 112:056401CrossRefGoogle Scholar
  18. Drewitt JE, Sanloup C, Bytchkov A, Brassamin S, Hennet L (2013) Structure of \(({\text{Fe}}_x{\text{Ca}}_{1-x}{\text{O}})_y({\text{SiO}}_2)_{1-y}\) liquids and glasses from high-energy X-ray diffraction: implications for the structure of natural basaltic magmas. Phys Rev B 87:224201CrossRefGoogle Scholar
  19. Duffy TS (2013) Mineralogy at the extremes. Nature 451:269–270CrossRefGoogle Scholar
  20. Dunlap RA, Edelman DA, Mackay GR (1998) A Mössbauer effect investigation of correlated hyperfine parameters in natural glasses (tektites). J Non-Cryst Solids 223:141–146CrossRefGoogle Scholar
  21. Edwards C, Bond PL, Druschel GK, McGuire MM, Hamers RJ, Banfield JFX (1998) Geochemical and biological aspects of sulphide mineral dissolution: lessons from Iron Mountain, California. Chem Geol 169:383–397CrossRefGoogle Scholar
  22. Fang C, Ahuja R (2008) Local structure and electronic spin transition of Fe-bearing \({\text{MgSiO}}_3\) perovskite under conditions of the Earth’s lower mantle. Phys Earth Planet Inter 166:77–82CrossRefGoogle Scholar
  23. Farges F, Lefrere Y, Rossano S, Berthereau A, Calas G, Brown GE Jr (2004) The effect of redox state on the local structural environment of iron in silicate glasses: a combined XAFS spectroscopy, molecular dynamics, and bond valence study. J Non-Cryst Solids 344:176–188CrossRefGoogle Scholar
  24. Fierro G, Moretti G, Ferraris G, Andreozzi GB (2011) A Mössbauer and structural investigation of Fe–ZSM-5 catalysts: influence of Fe oxide nanoparticles size on the catalytic behaviour for the NO-SCR by \({\text{C}}_3{\text{H}}_8\). Appl Catal B Environ 102:215–223CrossRefGoogle Scholar
  25. Fister TT, Seidler GT, Wharton L, Battle AR, Ellis TB, Cross JO, Macrander AT, Elam WT, Tyson TA, Qian Q (2006) Multielement spectrometer for efficient measurement of the momentum transfer dependence of inelastic X-ray scattering. Rev Sci Instrum 77:063901CrossRefGoogle Scholar
  26. Fister TT, Magle KP, Vila FD, Seidler GT, Hamner C, Cross JO, Rehr JJ (2009) Intermediate-range order in water ices: nonresonant inelastic X-ray scattering measurements and real-space full multiple scattering calculations. Phys Rev B 79:174117CrossRefGoogle Scholar
  27. Fuggle JC, Alvarado SF (2006) Core-level lifetimes as determined by X-ray photoelectron spectroscopy measurements. Phys Rev A 22:1615–1624CrossRefGoogle Scholar
  28. Galoisy L, Callas G, Arrio MA (2001) High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region. Chem Geol 174:307–319CrossRefGoogle Scholar
  29. Gauthier C, Sole VA, Signorato R, Goulon J, Moguiline E (1999) The ESRF beamline ID26: X-ray absorption on ultra dilute sample. J Synchrotron Radiat 6:164–166CrossRefGoogle Scholar
  30. Gordon RA, Seidler GT, Fister TT, Haverkort MW, Sawatzky GA, Tanaka A, Sham TK (2008) High multipole transitions in NIXS: valence and hybridization in 4f systems. EPL 81:26004CrossRefGoogle Scholar
  31. Gordon RA, Haverkort MW, Sen Gupta S, Sawatzky GA (2009) Orientation-dependent X-ray Raman scattering from cubic crystals: natural linear dichroism in MnO and \({\text{CeO}}_2\). J Phys Conf Ser 190:012047CrossRefGoogle Scholar
  32. Hämäläinen K, Manninen S (2001) Resonant and non-resonant inelastic X-ray scattering. J Phys Condens Matter 13:7539–7555CrossRefGoogle Scholar
  33. Haverkort MW, Tanaka A, Tjeng LH, Sawatzky GA (2007) Nonresonant Inelastic X-ray scattering involving excitonic excitations: the examples of NiO and CoO. Phys Rev Lett 99:257401CrossRefGoogle Scholar
  34. Heijboer WM, Koningsberger DC, Weckhuysen BM, de Groot FMF (2005) New frontiers in X-ray spectroscopy in heterogeneous catalysis: using Fe/ZSM-5 as test-system. Catal Today 110:228–238CrossRefGoogle Scholar
  35. Hofmeister AM (2006) Is low-spin \({\text{Fe}}^{2+}\) present in Earth’s mantle? Earth Planet Sci Lett 243:44–52CrossRefGoogle Scholar
  36. Honkanen AP, Verbeni R, Simonelli L, Moretti Sala M, Monaco G, Huotari S (2013) Study on the reflectivity properties of spherically bent analyser crystals. J Synchrotron Radiat 21:104–110CrossRefGoogle Scholar
  37. Inkinen J, Sakko A, Ruotsalainen KO, Pylkkänen T, Niskanen J, Galambosi S, Hakala M, Monaco G, Huotari S, Hämäläinen K (2013) Temperature dependence of CO2 and N2 core-electron excitation spectra at high pressure. Phys Chem Chem Phys 15:9231–9238CrossRefGoogle Scholar
  38. Irifune T, Isshiki M (1998) Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity. Nature 392:702–705CrossRefGoogle Scholar
  39. Jackson WE, Farges F, Yeager M, Mabrouk PA, Rossano S, Waychunas GA, Solomon EA, Brown GE Jr (2005) Multi-spectroscopic study of Fe(II) in silicate glasses: implications for the coordination environment of Fe(II) in silicate melts. Geochim Cosmochim Acta 69:4315–4332CrossRefGoogle Scholar
  40. Krisch M, Sette F (2002) X-ray Raman scattering from low-Z materials. Surf Rev Lett 9:969–976CrossRefGoogle Scholar
  41. Krywka C, Paulus M, Sternemann C, Volmer M, Remhof A, Nowak G, Nefedov A, Poter B, Spiegel M, Tolan M (2007) The small-angle and wide-angle X-ray scattering set-up at beamline BL9 of DELTA. J Synchrotron Radiat 14:244–251CrossRefGoogle Scholar
  42. Lee SK, Eng PJ, Mao H-K, Meng Y, Newville M, Hu MY, Shu J (2005) Probing of bonding changes in \({\text{B}}_2{\text{O}}_3\) glasses at high pressure with inelastic X-ray scattering. Nat Mater 4:851–854CrossRefGoogle Scholar
  43. Lee SK, Lin J-F, Cai YQ, Hiraoka N, Eng PJ, Okuchi T, Mao H-K, Meng Y, Hu MY, Chow P, Shu J, Li B, Fukui H, Lee BH, Kim HN, Yoo C-S (2008) X-ray Raman scattering study of \({\text{MgSiO}}_3\) glass at high pressure: implication for triclustered \({\text{MgSiO}}_3\) melt in Earth’s mantle. PNAS 105:7925–7929CrossRefGoogle Scholar
  44. Lin J-F, Mao Z, Yavaş H, Zhao J, Dubrovinsky L (2010) Shear wave anisotropy of textured hcp-Fe in the Earth’s inner core. Earth Planet Sci Lett 298:361–366CrossRefGoogle Scholar
  45. Mao WL, Mao H-k, Eng PJ, Trainor TP, Newville M, Kao C-c, Heinz DL, Shu J, Meng Y, Hemley RJ (2003) Bonding changes in compressed superhard graphite. Science 302:425–427CrossRefGoogle Scholar
  46. Mattila A, Soininen JA, Galambosi S, Huotari S, Vanko G, Zhigadlo ND, Karpinski J, Hämäläinen K (2005) Local electronic structure of MgB2 by X-ray Raman scattering at the boron K edge. Phys Rev Lett 94:247003CrossRefGoogle Scholar
  47. McCammon CA (1997) Perovskite as a possible sink for ferric iron in the lower mantle. Nature 387:694–696CrossRefGoogle Scholar
  48. McCammon CA, Frost DJ, Smyth JR, Laustsen HMS, Kawamoto T, Ross NL, van Aken PA (2004) Oxidation state of iron in hydrous mantle phases: implications for subduction and mantle oxygen fugacity. Phys Earth Planet Inter 143–144:157–169CrossRefGoogle Scholar
  49. Miot J, Benzerara K, Obst M, Kappler A, Hegler F, Schädler S, Bouchez C, Guyot F, Morin G (2009) Extracellular iron biomineralization by photoautotrophic iron-oxidizing bacteria. Appl Environ Microbiol 75(17):5586–5591CrossRefGoogle Scholar
  50. Moreau P, Boucher F (2012) Revisiting lithium K and iron \({\text{M}}_{2,3}\) edge superimposition: the case of lithium battery material \({\text{LiFePO}}_4\). Micron 43:16–21CrossRefGoogle Scholar
  51. Munoz M, De Andrade V, Vidal O, Lewin E, Pascarelli S, Susini J (2006) Redox and speciation micromapping using dispersive X-ray absorption spectroscopy: application to iron chlorite mineral of a metamorphic rock thin section. Geochem Geophys Geosyst 7:Q11020CrossRefGoogle Scholar
  52. Mysen BO (1991) Relations between structure, redox equilibria of iron, and properties of magmatic liquids. In: Perchuk LL, Kushiro I (eds) Advances in physical chemistry, vol 9. Springer, New York, pp 41–98Google Scholar
  53. Narygina O, Mattesini M, Kantor I, Pascarelli S, Wu X, Aquilanti G, McCammon CA, Dubrovinsky L (2009) High-pressure experimental and computational XANES studies of (Mg, Fe)(Si, Al)\({\text{O}}_3\) perovskite and (Mg, Fe)O ferropericlase as in the Earths lower mantle. Phys Rev B 79:174115CrossRefGoogle Scholar
  54. Newville M, Sutton S, Rivers M, Eng P (1999) Micro-beam X-ray absorption and fluorescence spectroscopies at GSECARS: APS beamline 13ID. J Synchrotron Radiat 6:353–355CrossRefGoogle Scholar
  55. Nyrow A, Tse JS, Hiraoka N, Desgreniers S, Büning T, Mende K, Tolan M, Wilke M, Sternemann C (2014, in preparation)Google Scholar
  56. Okuchi T (1997) Hydrogen partitioning into molten iron at high pressure: implications for Earths core. Science 278:1781–1784CrossRefGoogle Scholar
  57. Ono S, Ohishi Y, Kikegawa T (2007) High-pressure study of rhombohedral iron oxide, FeO, at pressures between 41 and 142 GPa. J Phys Condens Matter 19:036205CrossRefGoogle Scholar
  58. Otsuka K, McCammon CA, Karato S-I (2010) Tetrahedral occupancy of ferric iron in (Mg, Fe)O: implications for point defects in the Earth’s lower mantle. Phys Earth Planet. Inter 180:179–188CrossRefGoogle Scholar
  59. Pacella A, Andreozzi GB, Fournier J, Stievano L, Giantomassi F, Lucarini G, Rippo MR, Pugnaloni A (2012) Iron topochemistry and surface reactivity of amphibole asbestos: relations with in vitro toxicity. Anal Bioanal Chem 402(2):871–881CrossRefGoogle Scholar
  60. Parkinson IJ, Arculus RJ (1997) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160:409–423CrossRefGoogle Scholar
  61. Rossano S, Balan E, Morin G, Bauer JP, Calas G, Brouder C (1999) \(^{57}{\text{Fe}}\) Mössbauer spectroscopy of tektites. Phys Chem Miner 26:530–538CrossRefGoogle Scholar
  62. Sahle ChJ, Sternemann C, Schmidt C, Lehtola S, Jahn S, Simonelli L, Huotari S, Hakala M, Pylkkanen T, Nyrow A, Mende K, Tolan M, Hämäläinen K, Wilke M (2013) Microscopic structure of water at elevated pressures and temperatures. PNAS 110:6301–6306CrossRefGoogle Scholar
  63. Sahle ChJ, Sternemann C, Sternemann H, Tse JS, Gordon RA, Desgreniers S, Maekawa S, Yamanaka S, Lehmkühler F, Wieland DCF, Mende K, Huotari S, Tolan M (2014) The Ba 4d4f giant dipole resonance in complex Ba/Si compounds. J Phys B At Mol Opt Phys 47:045102CrossRefGoogle Scholar
  64. Schmid R, Wilke M, Oberhänsli R, Janssens K, Falkenberg G, Franz L, Gaab A (2003) Micro-XANES determination of ferric iron and its application in thermobarometry. Lithos 70:381–392CrossRefGoogle Scholar
  65. Schülke W (2007) Electron dynamics by inelastic X-ray scattering. OUP Oxford Press, OxfordGoogle Scholar
  66. Sen Gupta S, Bradley JA, Haverkort MW, Seidler GT, Tanaka A, Sawatzky GA (2011) Coexistence of bound and virtual-bound states in shallow-core to valence X-ray spectroscopies. Phys Rev B 84:075134CrossRefGoogle Scholar
  67. Smyth JR, Holl CM, Langenhorst F, Laustsen HMS, Rossmann GR, Kleppe A, McCammon CA, Kawamoto T, van Aken PA (2005) Crystal chemistry of wadsleyite II and water in the Earth’s interior. Phys Chem Miner 31:691–705CrossRefGoogle Scholar
  68. Sobolev VN, McCammon CA, Taylor LA, Snyder CA, Sobolev NV (1999) Precise Moessbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron microprobe analysis. Am Mineral 84:78–85Google Scholar
  69. Soininen JA, Ankudinov AL, Rehr JJ (2005) Inelastic scattering from core electrons: a multiple scattering approach. Phys Rev B 72:045136CrossRefGoogle Scholar
  70. Soininen JA, Mattila A, Rehr JJ, Galambosi S, Hämäläinen K (2006) Experimental determination of the core-excited electron density of states. J Phys Condens Matter 18:7327–7336CrossRefGoogle Scholar
  71. Stavitski E, de Groot FMF (2010) The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. Micron 41:687–694CrossRefGoogle Scholar
  72. Sternemann C, Soininen JA, Huotari S, Vanko G, Volmer M, Secco RA, Tse JS, Tolan M (2005) X-Ray Raman scattering at the L edges of elemental Na, Si, and the N edge of Ba in Ba8Si46. Phys Rev B 72:035104CrossRefGoogle Scholar
  73. Sternemann H, Sternemann C, Seidler GT, Fister TT, Sakko A, Tolan M (2008) An extraction algorithm for core-level excitations in non-resonant inelastic X-ray scattering spectra. J Synchrotron Radiat 15:162–169CrossRefGoogle Scholar
  74. Sternemann C, Sahle ChJ, Mende K, Schmidt C, Nyrow A, Simonelli L, Moretti Sala M, Tolan M, Wilke M (2013) X-Ray Raman scattering: an exciting tool for the study of matter at conditions of the Earth’s interior. J Phys Conf Ser 425:202011CrossRefGoogle Scholar
  75. Tan H, Verbeeck J, Abakumov A, Van Tendeloo G (2012) Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116:24–33CrossRefGoogle Scholar
  76. Terasaki H, Kamada S, Sakai T, Ohtani E, Hirao N, Ohishi Y (2011) Liquidus and solidus temperatures of a Fe–O–S alloy up to the pressures of the outer core: implication for the thermal structure of the Earth’s core. Earth Planet Sci Lett 304:559–564CrossRefGoogle Scholar
  77. Thy P, Lofgren GE (1994) Experimental constraints on the low-pressure evolution of transitional and mildly alkalic basalts: the effect of Fe-Ti oxide minerals and the origin of basaltic andesites. Contrib Mineral Pet 116:340–351CrossRefGoogle Scholar
  78. Tse JS, Yang L, Zhang SJ, Jin CQ, Sahle ChJ, Sternemann C, Nyrow A, Giordano V, Jiang JZ, Yamanaka S, Desgreniers S, Tulk CA (2011) Pressure-induced electron topological transitions in Ba-doped Si clathrate. Phys Rev B 84:184105CrossRefGoogle Scholar
  79. Tse JS, Hanfland M, Flacau R, Desgreniers S, Li Z, Mende K, Gilmore K, Nyrow A, Moretti Sala M, Sternemann C (2013) Electronic structure and electron topology in the direct fcc \(\rightarrow\) sh transformation of silicon. J Phys Chem C 118:1161–1166CrossRefGoogle Scholar
  80. van Aken PA, Styrsa VJ, Liebscher B, Woodland AB, Redhammer GJ (1999) Microanalysis of \(\text{Fe}^{3+}/\sum \text{Fe}\) in oxide and silicate minerals by investigation of electron energy-loss near-edge structures (ELNES) at the Fe \(\text{M}_{2,3}\) edge. Phys Chem Miner 26:584–590CrossRefGoogle Scholar
  81. van der Laan G (1991) \(\text{M}_{2,3}\) absorption spectroscopy of 3d transition-metal compounds. J Phys Condens Matter 3:7443CrossRefGoogle Scholar
  82. Verbeni R, Pylkkänen T, Huotari S, Simonelli L, Vanko G, Martel K, Henriquet C, Monaco G (2009) Multiple-element spectrometer for non-resonant inelastic X-ray spectroscopy of electronic excitations. J Synchrotron Radiat 16:469–476CrossRefGoogle Scholar
  83. Virgo D, Mysen BO (1985) The structural state of iron in oxidized vs. reduced glasses at 1 atm: a \(^{57}\text{Fe}\) Mössbauer study. Phys Chem Miner 12:65–76CrossRefGoogle Scholar
  84. Westre TE, Kennepohl P, DeWitt JG, Hedman B, Hodgson KO, Solomon EI (1997) A multiplet analysis of Fe K-Edge 1s \(\rightarrow\) 3d pre-edge features of iron complexes. J Am Chem Soc 119(27):6297–6314CrossRefGoogle Scholar
  85. Wilke M, Behrens H (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. Contrib Mineral Pet 137:102–114CrossRefGoogle Scholar
  86. Wilke M, Farges F, Petit P-E, Brown GE Jr, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K-XANES spectroscopic study. Am Mineral 86:714–730Google Scholar
  87. Wilke M, Partzsch GM, Bernhardt R, Lattard D (2005) Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge. Chem Geol 220:143–161CrossRefGoogle Scholar
  88. Wilke M, Schmidt C, Farges F, Malavergne V, Gautron L, Simionovici S, Hahn M, Petit PE (2006) Structural environment of iron in hydrous aluminosilicate glass and melt-evidence from X-ray absorption spectroscopy. Chem Geol 229:144–161CrossRefGoogle Scholar
  89. Wilke M, Farges F, Partzsch GM, Schmidt C, Behrens H (2007) Speciation of Fe in silicate glasses and melts by in-situ XANES spectroscopy. Am Min 92:44–56CrossRefGoogle Scholar
  90. Wood BJ, Virgo D (1989) Upper mantle oxidation state: ferric iron contents of Iherzolite spinels by \(^{57}\text{Fe}\) Mossbauer spectroscopy and resultant oxygen fugacities. Geochim Cosmochim Acta 53:691–705Google Scholar
  91. Woodland AB, Jugo PJ (2012) A complex magmatic system beneath the Devès volcanic field, Massif Central, France: evidence from clinopyroxene megacrysts. Contrib Miner Pet 153(6):719–731CrossRefGoogle Scholar
  92. Xiong W, Peng J, Hu Y (2012) Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite. J Colloid Interface Sci 368:528–532CrossRefGoogle Scholar
  93. Xu G, Lin X (2000) Geology and geochemistry of the Changlongshan skarn iron deposit, Anhui Province, China. Ore Geol Rev 16:91–106CrossRefGoogle Scholar
  94. Zerr A, Boehler R (1993) Melting of (Mg, Fe)\(\text{SiO}_{3}\)-perovskite to 625 kilobars: indication of a high melting temperature in the lower mantle. Science 262:553–555CrossRefGoogle Scholar
  95. Zerr A, Boehler R (1994) Constraints on the melting temperature of the lower mantle from high-pressure experiments from MgO and magnesiowüstite. Nature 371:506–508CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Nyrow
    • 1
  • C. Sternemann
    • 1
  • M. Wilke
    • 2
  • R. A. Gordon
    • 3
  • K. Mende
    • 1
  • H. Yavaş
    • 4
  • L. Simonelli
    • 5
    • 6
  • N. Hiraoka
    • 7
  • Ch. J. Sahle
    • 8
  • S. Huotari
    • 8
  • G. B. Andreozzi
    • 9
  • A. B. Woodland
    • 10
  • M. Tolan
    • 1
  • J. S. Tse
    • 11
  1. 1.Fakultät Physik/DELTATechnische Universität DortmundDortmundGermany
  2. 2.Section 3.3Deutsches GeoForschungsZentrumPotsdamGermany
  3. 3.PNCSRF, APS Sector 20ArgonneUSA
  4. 4.Photon ScienceDESYHamburgGermany
  5. 5.European Synchrotron Radiation FacilityGrenoble CedexFrance
  6. 6.ALBA Synchrotron Light FacilityCELLSBarcelonaSpain
  7. 7.National Synchrotron Radiation Research CenterHsinchuTaiwan
  8. 8.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  9. 9.Dipartimento di Scienze della TerraSapienza Università di RomaRomeItaly
  10. 10.Institut für GeowissenschaftenUniversität FrankfurtFrankfurtGermany
  11. 11.Department of Physics and Engineering PhysicsUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations