Petrogenesis and geodynamic significance of silicic volcanism in the western Trans-Mexican Volcanic Belt: role of gabbroic cumulates

  • Chiara Maria Petrone
  • Teresa Orozco-Esquivel
  • Luca Ferrari
Original Paper
  • 724 Downloads

Abstract

In the western Trans-Mexican Volcanic Belt voluminous silicic volcanism has been associated with the rifting of the Jalisco block from mainland Mexico. Rhyolitic volcanism started at 7.5 Ma after a major pulse of basaltic volcanism aged 11–8.5 Ma associated with slab detachment. This was followed by a second period, between 4.9 and 2.9 Ma, associated with rhyolitic domes and ignimbrite coexisting with basaltic volcanism. The similarity in rare earth element contents between basalts and rhyolites excludes a simple liquid line of descent. The low Ba and Sr contents and the ferroan character of the rhyolites suggest extensive fractional crystallization. Late Miocene–early Pliocene rhyolite Sr isotope values are only slightly more radiogenic than the basalts, whereas Nd isotope ratios are indistinguishable. We successfully modelled the 7.5–3 Ma silicic magmatism as a result of partial melting of crustal gabbroic complexes that we infer to have formed in the mid-lower crust due to the high-density Fe-enriched composition of the late Miocene basaltic volcanism. Slab rollback since ~7.5 Ma favoured decompression melting and arrival of additional mafic magmas that intruded in the lower crust. These basalts heated and melted the gabbroic complexes forming the silicic magmas, which subsequently underwent assimilation and fractional crystallization processes. The first silicic pulse was emplaced during a period of low tectonic activity. Extensional faulting since the Pliocene favours the eruption of both silicic magma and lesser amount of mafic lavas.

Keywords

Silicic–bimodal volcanism Ferroan magma Low-Sr rhyolites Tholeiitic trend Gabbroic cumulates melting Trans-Mexican Volcanic Belt 

Supplementary material

410_2014_1006_MOESM1_ESM.pdf (120 kb)
Supplementary material 1 (PDF 119 kb)
410_2014_1006_MOESM2_ESM.pdf (126 kb)
Supplementary material 2 (PDF 126 kb)
410_2014_1006_MOESM3_ESM.pdf (124 kb)
Supplementary material 3 (PDF 123 kb)
410_2014_1006_MOESM4_ESM.pdf (178 kb)
Supplementary material 4 (PDF 177 kb)
410_2014_1006_MOESM5_ESM.pdf (1.3 mb)
Supplementary material 5 (PDF 1301 kb)

References

  1. Albrecht A, Goldstein SL (2000) Effects of basement composition and age on silicic magmas across an accreted terrane-Precambrian crust boundary, Sierra Madre Occidental, Mexico. J S Am Earth Sci 13:255–273. doi:10.1016/S0895-9811(00)00014-6
  2. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539. doi:10.1093/petrology/egi084 CrossRefGoogle Scholar
  3. Avanzinelli R, Boari E, Conticelli S, Francalanci L, Guarnieri L, Perini G, Petrone CM, Tommasini S, Ulivi M (2005) High precision Sr, Nd and Pb isotopic analyses using the new generation thermal ionisation mass spectrometer Thermo Finnigan Triton-Ti®. Per Mineral 74:147–166Google Scholar
  4. Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe–Ti oxides. Am Mineral 73:57–71Google Scholar
  5. Bindeman IN, Fu B, Kita NT, Valley JW (2008) Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons. J Petrol 49:163–193CrossRefGoogle Scholar
  6. Bottinga Y, Weill DF (1970) Densities of liquid silicate systems calculated from partial molar volume of oxides components. Am J Sci 269:169–182CrossRefGoogle Scholar
  7. Brown M (2007) Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences. J Geol Soc Lond 164:709–730CrossRefGoogle Scholar
  8. Bryan SE, Ferrari L (2013) Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. GSA Bull. doi:10.1130/B30820.1 Google Scholar
  9. Bryan SE, Ferrari L, Reiners PW, Allen CM, Petrone CM, Ramos-Rosique A, Campbell IH (2008) New insights into crustal contributions to large-volume rhyolite generation in the mid-Tertiary Sierra Madre Occidental Province, Mexico, revealed by U–Pb geochronology. J Petrol 49:47–77. doi:10.1093/petrology/egm070 CrossRefGoogle Scholar
  10. Cameron M, Bagby WC, Cameron KL (1980) Petrogenesis of voluminous mid-Tertiary ignimbrites of the Sierra Madre Occidental, Chihuahua, Mexico. Contrib Mineral Petrol 74:271–284. doi:10.1007/BF00371697 CrossRefGoogle Scholar
  11. Cameron KL, Robinson JV, Niemeyer S, Nimz G, Kuents DC, Harmon RS, Bohlenk SR, Collerson KD (1992) Contrasting styles of pre-Cenozoic and mid-Tertiary crustal evolution in northern Mexico: evidence from deep crustal xenoliths from La Olivin. J Geophys Res: Solid Earth 97(B12):17353–17376. doi:10.1029/92JBO1493 CrossRefGoogle Scholar
  12. Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106:129–141CrossRefGoogle Scholar
  13. Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, Van Calsteren PW, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zeland) revealed by U–Th and U–Pb systematics in zircons. J Petrol 46:3–32. doi:10.1093/petrology/egh060 CrossRefGoogle Scholar
  14. Christiansen EH, McCurry M (2008) Contrasting origins of Cenozoic silicic volcanic rocks from the western Cordillera of the United States. Bull Volcanol 70:251–267. doi:10.1007/s00445-007-0138-1 CrossRefGoogle Scholar
  15. Christiansen EH, Burt DM, Sheridan MF, Wilson RT (1983) The petrogenesis of topaz rhyolites from the western United States. Contrib Mineral Petrol 83:16–30CrossRefGoogle Scholar
  16. Christiansen EH, Burt DM, Sheridan MF (1986) The geology and geochemistry of Cenozoic topaz rhyolites from the western United States. GSA Special Pap 205:82Google Scholar
  17. Christiansen EH, Haapala I, Hart GL (2007) Are Cenozoic topaz rhyolites the erupted equivalents of Proterozoic rapakivi granites? Examples from the western United States and Finland. Lithos 97:219–246. doi:10.1016/j.lithos.2007.01.010 CrossRefGoogle Scholar
  18. DeMets C, Traylen S (2000) Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle. Tectonophysics 318(1–4):119–159CrossRefGoogle Scholar
  19. DePaolo DJ, Perry FV, Baldrige WS (1992) Crustal versus mantle sources of granitic magmas: a two parameters model based on Nd isotopic studies. Trans R Soc Edinb Earth Sci 83:439–444CrossRefGoogle Scholar
  20. Ewart A, Stripp JJ (1968) Petrogenesis of the volcanic rocks of the Central North Island, New Zeland, as indicated by a study of 87Sr/86Sr ratios, and Sr, Rb, K, U and Th abundances. Geochim Cosmochim Acta 32:699–736. doi:10.1016/0016-7037(68)90009-4 CrossRefGoogle Scholar
  21. Ferrari L (2004) Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology 32:77–80. doi:10.1130/G19887.1 CrossRefGoogle Scholar
  22. Ferrari L, Rosas J (2000) Late Miocene to Quaternary extension at the northern boundary of the Jalisco block, western Mexico: the Tepic-Zacoalco rift revised. GSA Special Pap 334(Chp 03):41–64Google Scholar
  23. Ferrari L, Pasquare G, Venegas S, Castillo D, Romero F (1994) Regional tectonic of western Mexico and its implications for the northern boundary of the Jalisco block. Geofis Int 33:139–151Google Scholar
  24. Ferrari L, Conticelli S, Vaggelli G, Petrone CM, Manetti P (2000) Late Miocene volcanism and intra-arc tectonics during the early development of the Trans-Mexican Volcanic Belt. Tectonophysics 318:161–185CrossRefGoogle Scholar
  25. Ferrari L, Petrone CM, Francalanci L (2001) Generation of oceanic-island basalt-type volcanism in the western Trans-Mexican Volcanic Belt by slab rollback, asthenosphere infiltration and variable flux-melting. Geology 6:507–510CrossRefGoogle Scholar
  26. Ferrari L, Petrone CM, Francalanci L, Tagami T, Eguchi M, Conticelli S, Manetti P, Venegas-Salgado S (2003) Geology of the San Pedro-Ceboruco graben, western Trans-Mexican Volcanic Belt. Rev Mex Cien Geol 20:165–181Google Scholar
  27. Ferrari L, Orozco-Esquivel T, Manea V, Manea M (2012) The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522–523:122–149. doi:10.1016/j.tecto.2011.09.018 CrossRefGoogle Scholar
  28. Frey H, Lange RA, Hall CM, Delgado-Granados H (2004) Magma eruption rates constrained by 40Ar/39Ar chronology and GIS for the Ceboruco-San Pedro volcanic field, western Mexico. GSA Bull 116:259–276. doi:10.1130/B25321.1 CrossRefGoogle Scholar
  29. Frey H, Lange R, Hall C, Delgado-Grandados H, Carmichael ISE (2007) A Pliocene ignimbrite flare-up along the Tepic-Zacoalco rift: evidence for the initial stages of rifting between the Jalisco Block (Mexico) and North America. GSA Bull 119:49–64CrossRefGoogle Scholar
  30. Frost CD, Frost BR (1997) Reduced rapakivi-type granites: the tholeiite connection. Geology 25(7):647–650CrossRefGoogle Scholar
  31. Frost BR, Frost CD (2008) A geochemical classification for feldspathic igneous rocks. J Petrol 49:1955–1969. doi:10.1093/petrology/egn054 CrossRefGoogle Scholar
  32. Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52:39–53. doi:10.1093/petrology/egq070 CrossRefGoogle Scholar
  33. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42(11):2033–2048CrossRefGoogle Scholar
  34. Ghiorso MS, Evans BW (2008) Thermodynamic of rhombohedral oxide solid solutions and a revision of the Fe–Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039CrossRefGoogle Scholar
  35. Gilbert C, Mahood G, Carmichael ISE (1985) Volcanic stratigraphy of the Guadalajara area, Mexico. Geofis Int 24:69–191Google Scholar
  36. Gill JB (1981) Orogenic andesites and plate tectonics. Springer, BerlinCrossRefGoogle Scholar
  37. Glazner AF (1994) Foundering of mafic plutons and density stratification of continental crust. Geology 22:435–438CrossRefGoogle Scholar
  38. Gomez-Tuena A, La Gatta AB, Langmuir CH, Goldstein SL, Ortega-Gutierrez F, Carrasco-Nunez G (2003) Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: mantle sources, slab contributions, and crustal contamination. Geochem Geophys Geosyst 4:8912. doi:10.1029/2003GC000524 CrossRefGoogle Scholar
  39. Gomez-Tuena A, Orozco-Esquivel T, Ferrari L (2007) Igneous petrogenesis of the Trans-Mexican Volcanic Belt. In: Alaniz-Alvaers SA, Nieto-Samaniego AF (eds) Geology of Mexico: celebrating the Centenary of the Geological Society of Mexico. GSA Special Pap 422: 1–53 doi:10.1130/2007.2422(05)
  40. Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Muntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145:515–533CrossRefGoogle Scholar
  41. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489CrossRefGoogle Scholar
  42. Huppert HE, Sparks RS (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624. doi:10.1093/petrology/29.3.599 CrossRefGoogle Scholar
  43. Irvine TN, Baragar WR (1971) A guide to chemical classification of common volcanic rocks. Can J Earth Sci 8:315–341CrossRefGoogle Scholar
  44. Jull M, Keleman PB (2001) On the condition for lower crustal convection instability. J Geophys Res 106:6423–6446CrossRefGoogle Scholar
  45. Karacik Z, Genç ŞC, Gülmez F (2013) Petrochemical features of Miocene volcanism around the Çubukludağ graben and Karaburun peninsula, western Turkey: implications for crustal melting related silicic volcanism. J Asian Earth Sci 73:199–217. doi:10.1016/jseaes.04.001 CrossRefGoogle Scholar
  46. Kay RW, Kay AM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189. doi:10.1016/0040-1951(93)9025-U CrossRefGoogle Scholar
  47. Kimata M (1988) The crystal structure of non-stoichiometric Eu-anorthite: an explanation of the Eu-positive anomaly. Mineral Mag 52:257–262CrossRefGoogle Scholar
  48. Lange RA (1997) A revised model for the density and thermal expansivity of K2O–Na2O–CaO–MgO–Al2O3–SiO2 liquids from 700–1900 K: extension to crustal magmatic temperatures. Contrib Mineral Petrol 110:311–320CrossRefGoogle Scholar
  49. Lange RA, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility. In: Nicholls J, Kelly JK (eds) Modern methods of igneous petrology. Min Soc Am Rev Mineral 24: 25E64Google Scholar
  50. Lanphere MA, Cameron KL, Cameron M (1980) Sr isotopic geochemistry of voluminous rhyolitic ignimbrites and related rocks, Batopilas area, western Mexico. Nature 286:594–596. doi:10.1038/286594a0 CrossRefGoogle Scholar
  51. Lewis-Kenedi CB, Lange RA, Hall CM, Delgado-Granados H (2005) The eruptive history of the Tequila volcanic field, western Mexico: ages, volumes, and relative proportions of lava types. Bull Volcanol 67:391–414. doi:10.1007/s00445-004-0377-3 CrossRefGoogle Scholar
  52. Luhr JF (1997) Extensional tectonics and the diverse primitive volcanic rocks in the western Mexican Volcanic Belt. Can Min 35:473–500Google Scholar
  53. Macdonald R (1974) Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bull Volcanol 38:498–516CrossRefGoogle Scholar
  54. Mahood GA (1981) Chemical evolution of a Pleistocene rhyolitic center: Sierra La Primavera, Jalisco, Mexico. Contrib Mineral Petrol 77:129–149CrossRefGoogle Scholar
  55. Mahood GA, Halliday AN (1988) Generation of high-silica rhyolite: a Nd, Sr, and O isotopic study of Sierra La Primavera, Mexican Neovolcanic Belt. Contrib Mineral Petrol 100:183–191CrossRefGoogle Scholar
  56. Mahood GA, Gilbert CM, Carmichael ISE (1985) Peralkaline and metaluminous mixed-liquid ignimbrites of the Guadalajara region, Mexico. J Volcanol Geotherm Res 25:259–271CrossRefGoogle Scholar
  57. Maldonado-Sanchez G, Schaaf P (2005) Geochemical and isotope data from the Acatlán Volcanic Field, western Trans-Mexican Volcanic Belt: origin and evolution. Lithos 82:455–470. doi:10.1016/j.lithos.2004.09.030 CrossRefGoogle Scholar
  58. Manea V, Manea M (2011) Flat-slab thermal structure and evolution beneath central Mexico. Pure appl Geophys 168:1475–1478. doi:10.1007/s00024-010-0207-9 CrossRefGoogle Scholar
  59. McCulloch MT, Kyser TK, Woodhead JD, Kinsley L (1994) Pb–Sr–Nd–O isotopic constraints on the origin of rhyolites from the Taupo volcanic zone of New Zealand: evidence for assimilation followed by fractionation from basalt. Contrib Mineral Petrol 115:303–312CrossRefGoogle Scholar
  60. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355CrossRefGoogle Scholar
  61. Moore G, Marone C, Carmichael ISE, Renne P (1994) Basaltic volcanism ad extension near the intersection of the Sierra Madre volcanic province and the Mexican Volcanic Belt. GSA Bull 106:383–394CrossRefGoogle Scholar
  62. Mori L, Gómez-Tuena A, Cai Y, Goldstein SL (2007) Effects of prolonged flat subduction on the Miocene magmatic record of the central Trans-Mexican Volcanic Belt. Chem Geol 244:452–473CrossRefGoogle Scholar
  63. Mori L, Gomez-Tuena A, Schaaf P, Goldstein SL, Perez-Arvizu O, Solis-Pichardo G (2009) Lithospheric removal as trigger for flood basalt magmatism in the Trans-Mexican Volcanic Belt. J Petrol 50:2157–2218CrossRefGoogle Scholar
  64. Muntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 142:643–658. doi:10.1007/s004100100266 CrossRefGoogle Scholar
  65. Nelson SA, Hegre J (1990) Volcan Las Navajas, a Pliocene–Pleistocene trachyte/peralkaline rhyolite volcano in the northwestern Mexican Volcanic Belt. Bull Volcanol 52:186–204CrossRefGoogle Scholar
  66. Ochs FA, Lange RA (1997) The partial molar volume, thermal expansivity, and compressibility of H2O in NaAlSi3O8 liquid: new measurements and an internally consistent model. Contrib Mineral Petrol 129:155–165CrossRefGoogle Scholar
  67. Orozco-Esquivel MT, Nieto-Samaniego AF, Alaniz-Alvares SA (2002) Origin of rhyolitic lavas in the Mesa Central, Mexico, by crustal melting related to extension. J Volcanol Geotherm Res 118:37–56CrossRefGoogle Scholar
  68. Ortega-Gutiérrez F, Elias-Herrera M, Reyes-Salas M, Macias-Rom C, Lopez R (2008) Late Ordovician–early Silurian continental collisional orogeny in southern Mexico and its bearing on Gondwana–Laurentia connections. Rev Mex Ciencias Geol 25:346–364Google Scholar
  69. Petrone CM (2010) Relationship between monogenetic magmatism and stratovolcanoes in western Mexico: the role of low-pressure magmatic processes. Lithos 119:585–606. doi:10.1016/j.lithos.2010.08.012 CrossRefGoogle Scholar
  70. Petrone CM, Ferrari L (2008) Quaternary adakite—Nb-enriched basalt association in the western trans-Mexican Volcanic Belt: Is there any slab melt evidence? Contrib Mineral Petrol 156:73–86. doi:10.1007/s00410-007-0274-9 CrossRefGoogle Scholar
  71. Petrone CM, Francalanci L, Carlson R, Ferrari L, Conticelli S (2003) Unusual coexistence of subduction-related and intraplate-type magmatism: Sr, Nd and Pb isotope and trace element data from the magmatism of the San Pedro-Ceboruco graben (Nayarit, Mexico). Chem Geol 193:1–24. doi:10.1016/S0009-2541(02)00229-2 CrossRefGoogle Scholar
  72. Petrone CM, Francalanci L, Ferrari L, Schaaf P, Conticelli S (2006) The San Pedro-Cerro Grande volcanic complex (Nayarit, Mexico): inference on volcanology and magma evolution. GSA Special Pap 402:65–98. doi:10.1130/2006.2402(3) Google Scholar
  73. Price RC, Gamble JA, Smith IEM, Stewart RB, Eggins S, Wright IC (2005) An integrated model for the temporal evolution of andesites and rhyolites and crustal development in New Zealand’s North Island. J Volcanol Geotherm Res 140:1–24. doi:10.1016/j.jvolgeores.2004.07.013 CrossRefGoogle Scholar
  74. Righter K, Carmichael ISE (1992) Hawaiites and related lavas in the Atenguillo graben, western Mexican Volcanic Belt. GSA Bull 104:1592–1607. doi:10.1130/0016-7606(1992)104 CrossRefGoogle Scholar
  75. Righter K, Rosas-Elguera J (2001) Alkaline lavas in the volcanic front of the western Mexican volcanic belt: geology and petrology of the Ayutla and Tapalpa volcanic fields. J Petrol 42:2333–2361. doi:10.1093/petrology/42.12.2333 CrossRefGoogle Scholar
  76. Righter K, Carmichael ISE, Becker T, Renne P (1995) Pliocene to Quaternary volcanism and tectonics at the intersection of the Mexican Volcanic Belt and the Gulf of California. GSA Bull 107:612–626. doi:10.1130/0016-7606(1995)107 CrossRefGoogle Scholar
  77. Riley TR, Leat PT, Pankhurst RJ, Harris C (2001) Origin of large volume rhyolitic volcanism in the Antarctic Peninsula and Patagonia by crustal melting. J Petrol 42:1043–1065CrossRefGoogle Scholar
  78. Rossotti A, Ferrari L, López-Martínez M, Rosas-Elguera J (2002) Geology of the boundary between the Sierra Madre Occidental and the Trans-Mexican Volcanic Belt in the Guadalajara region, western Mexico. Rev Mex Ciencias Geol 19:1–15Google Scholar
  79. Ruiz J, Patchett PJ, Arculus RJ (1988) Nd-Sr isotope composition of lower crustal xenoliths—evidence for the origin of mid-Tertiary felsic volcanism in Mexico. Contrib Mineral Petrol 99:36–43CrossRefGoogle Scholar
  80. Ruiz J, Patchett PJ, Arculus RJ (1990) Reply to “Comments on Nd–Sr isotope composition of lower crustal xenoliths—evidence for the origin of mid-tertiary felsic volcanism in Mexico” by K.L. Cameron and J.V. Robinson. Contrib Mineral Petrol 104:615–618CrossRefGoogle Scholar
  81. Schaaf P (1990) Isotopengeochemische Untersuchungen an granitoiden Geste- inen eines aktiven Kontinentalrandes: Alter und Herkunft der Tiefenges- teinskomplexe der Pazifikküste Mexikos, zwischen Puerto Vallarta und Acapulco [Ph.D. thesis]. Münich University of Münich 202 pGoogle Scholar
  82. Schaaf P, Heinrich W, Besch T (1994) Composition and Sm–Nd isotopic data of the lower crust beneath San Luis Potosi, central Mexico: evidence from a granulite-facies xenolith suite. Chem Geol 118:63–84CrossRefGoogle Scholar
  83. Schaaf P, Hall BV, Bissig T (2003) The Puerto Vallarta batholith and Cuale mining district, Jalisco, Mexico—high diversity parenthood of continental arc magmas and Kuroko-type volcanogenic massive sulfide deposits. In: Morán Zenteno D (ed) Geologic transects across Cordilleran Mexico. Instituto de Geología, Universidad Nacional Autónoma de México (UNAM) Spec Pub 1: 183–200Google Scholar
  84. Smith RD, Cameron KL, McDowell FW, Niemeyer S, Sampson DE (1996) Generation of voluminous silicic magmas and formation of mid-Cenozoic crust beneath north-central Mexico: evidence from ignimbrites, associated lavas, deep crustal granulites, and mantle pyroxenites. Contrib Mineral Petrol 123:375–389CrossRefGoogle Scholar
  85. Sparks RSJ, Huppert HE (1984) Density changes during the fractional crystallization of basaltic magmas: fluid dynamic implications. Contrib Mineral Petrol 85:300–309CrossRefGoogle Scholar
  86. Sun S, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Saunders A, Norry M (eds) Magmatism in ocean basins. Geol Soc Lond Spec Pub 42:313–345Google Scholar
  87. Tatsumi Y, Suzuki T (2009) Tholeiitic vs calc-alkalic differentiation and evolution of arc crust: constraints from melting experiments on a basalt from Izu–Bonin–Mariana arc. J Petrol 50(8):1275–1603. doi:10.1093/petrology/egp044 CrossRefGoogle Scholar
  88. Troll VR, Sachs PM, Schmincke HU, Sumita M (2003) The REE-Ti mineral chevkinite in comenditic magmas from Gran Canaria, Spain: a SYXRF-probe study. Contrib Mineral Petrol 145:730–741. doi:10.1007/s00410-003-0475-9 CrossRefGoogle Scholar
  89. Urrutia-Fucugauchi J, Uribe-Cifuentes RM (1999) Xenoliths from the Valle de Santiago maar field, Michoacan–Guanajuato volcanic field, Central Mexico. Int Geol Rev 41:1067–1081CrossRefGoogle Scholar
  90. Valdez-Moreno G, Schaaf P, Macías JL, Kusakabe M (2006) New Sr–Nd–Pb–O isotope data for Colima Volcano and evidence for the nature of the local basement. GSA Special Pap 402:45–63. doi:10.1130/2006.2402(02 Google Scholar
  91. Verma SP (1984) Sr and Nd isotopic evidence for petrogenesis of mid-Tertiary felsic volcanism in the mineral district of Zacatecas, Zac (Sierra Madre Occidental), Mexico. Isot Geosci 2:37–53Google Scholar
  92. Wallace P, Carmichael ISE (1994) Petrology of Volcan Tequila, Jalisco, Mexico: disequilibrium phenocryst assemblages and evolution of the subvolcanic magma system. Contrib Mineral Petrol 117:345–361CrossRefGoogle Scholar
  93. Wark DA (1991) Oligocene ash flow volcanism, northern Sierra Madre Occidental: role of mafic and intermediate-composition magmas in rhyolite genesis. J Geophys Res 96:13389–13411. doi:10.1029/90JB02666 CrossRefGoogle Scholar
  94. White JC (2003) Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part II: empirical equations for calculating trace-element partition coefficients of large-ion lithophile, high field-strength, and rare-earth elements. Am Mineral 88:330–337Google Scholar
  95. White JC, Holt GS, Parker DF, Ren M (2003) Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part I: systematics of trace elements partitioning. Am Mineral 88:316–329Google Scholar
  96. Wilke M, Behrens H (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. Contrib Mineral Petrol 137:102–114CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chiara Maria Petrone
    • 1
  • Teresa Orozco-Esquivel
    • 2
  • Luca Ferrari
    • 2
  1. 1.Department of Earth SciencesThe Natural History MuseumLondonUK
  2. 2.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoQuerétaroMexico

Personalised recommendations