Variations in melting dynamics and mantle compositions along the Eastern Volcanic Zone of the Gakkel Ridge: insights from olivine-hosted melt inclusions

  • V. D. Wanless
  • M. D. Behn
  • A. M. Shaw
  • T. Plank
Original Paper


We present major element, trace element, and volatile concentrations from 66 naturally glassy, olivine-hosted melt inclusions erupted along the Eastern Volcanic Zone (EVZ) of the ultraslow-spreading Gakkel Ridge. Melt inclusion compositions suggest that there are systematic variations in the mantle source composition and melting dynamics from the eastern to the western end of the EVZ. This includes increasing water contents and highly incompatible trace element concentrations (e.g., Ba and Nb) and decreasing light and middle rare earth element concentrations. Ratios of light to heavy rare earth elements in the easternmost melt inclusions are relatively homogeneous, but become more variable to the west. To determine the source of the geochemical variability observed along the EVZ, we model trace elements associated with mantle melting in one- and two-component systems. We consider four possible mantle sources and a range of melting regime shapes, from a full melting triangle to a vertical melting column centered beneath the ridge axes. The observed geochemical variations can be explained by melting of a heterogeneous mantle source composed of depleted MORB mantle plus a metasomatized mantle, where the proportion of the metasomatized component and the extent of melting increases toward the west. Lower rare earth element concentrations and trace element ratios in the westernmost sites also suggest inefficient melt focusing from the outer edges of the melting region. Our results indicate that despite variations in the size of the melting zone and the composition of the mantle source along the ridge axis, the region over which the melts are pooled back to the ridge axis is relatively constant (~10–20 km), suggesting that there is a limit to the distance melts can be transported from off-axis in ultraslow-spreading environments.


Melt inclusions Mantle melting Ultraslow-spreading ridge Gakkel Ridge Water Carbon 



We thank B. Monteleone at the WHOI ion microprobe facility, R. Hervick and L. Williams at ASU ion microprobe facility, and N. Chatterjee at the MIT electron microprobe facility for their analytical assistance. G. Toltin is thanked for his help with sample preparation and H. Dick for supplying the EVZ samples. We thank the editor and an anonymous reviewer for their comments. This work was supported by NSF Grant OCE-0926422 (AMS), OCE-PRF-1226130 (VDW), EAR-09-48666 (MDB), and internal Grants from DOEI at WHOI (VDW & MDB).

Supplementary material

410_2014_1005_MOESM1_ESM.doc (64 kb)
Supplementary material 1 (DOC 63 kb)
410_2014_1005_MOESM2_ESM.eps (480 kb)
Supplementary material 2 (EPS 479 kb)
410_2014_1005_MOESM3_ESM.eps (488 kb)
Supplementary material 3 (EPS 487 kb)
410_2014_1005_MOESM4_ESM.eps (566 kb)
Supplementary material 4 (EPS 565 kb)
410_2014_1005_MOESM5_ESM.eps (436 kb)
Supplementary material 5 (EPS 436 kb)
410_2014_1005_MOESM6_ESM.eps (367 kb)
Supplementary material 6 (EPS 367 kb)
410_2014_1005_MOESM7_ESM.eps (369 kb)
Supplementary material 7 (EPS 369 kb)
410_2014_1005_MOESM8_ESM.eps (771 kb)
Supplementary material 8 (EPS 770 kb)
410_2014_1005_MOESM9_ESM.eps (467 kb)
Supplementary material 9 (EPS 466 kb)
410_2014_1005_MOESM10_ESM.eps (465 kb)
Supplementary material 10 (EPS 465 kb)
410_2014_1005_MOESM11_ESM.eps (427 kb)
Supplementary material 11 (EPS 427 kb)
410_2014_1005_MOESM12_ESM.eps (492 kb)
Supplementary material 12 (EPS 491 kb)
410_2014_1005_MOESM13_ESM.eps (362 kb)
Supplementary material 13 (EPS 362 kb)
410_2014_1005_MOESM14_ESM.eps (362 kb)
Supplementary material 14 (EPS 362 kb)
410_2014_1005_MOESM15_ESM.eps (362 kb)
Supplementary material 15 (EPS 362 kb)
410_2014_1005_MOESM16_ESM.eps (362 kb)
Supplementary material 16 (EPS 362 kb)
410_2014_1005_MOESM17_ESM.eps (362 kb)
Supplementary material 17 (EPS 362 kb)
410_2014_1005_MOESM18_ESM.eps (362 kb)
Supplementary material 18 (EPS 362 kb)
410_2014_1005_MOESM19_ESM.eps (362 kb)
Supplementary material 19 (EPS 362 kb)
410_2014_1005_MOESM20_ESM.eps (362 kb)
Supplementary material 20 (EPS 362 kb)
410_2014_1005_MOESM21_ESM.eps (362 kb)
Supplementary material 21 (EPS 362 kb)
410_2014_1005_MOESM22_ESM.eps (362 kb)
Supplementary material 22 (EPS 362 kb)
410_2014_1005_MOESM23_ESM.eps (362 kb)
Supplementary material 23 (EPS 362 kb)
410_2014_1005_MOESM24_ESM.eps (362 kb)
Supplementary material 24 (EPS 362 kb)
410_2014_1005_MOESM25_ESM.eps (362 kb)
Supplementary material 25 (EPS 362 kb)
410_2014_1005_MOESM26_ESM.eps (362 kb)
Supplementary material 26 (EPS 362 kb)
410_2014_1005_MOESM27_ESM.eps (410 kb)
Supplementary material 27 (EPS 409 kb)
410_2014_1005_MOESM28_ESM.eps (362 kb)
Supplementary material 28 (EPS 362 kb)
410_2014_1005_MOESM29_ESM.eps (362 kb)
Supplementary material 29 (EPS 362 kb)
410_2014_1005_MOESM30_ESM.eps (362 kb)
Supplementary material 30 (EPS 362 kb)
410_2014_1005_MOESM31_ESM.eps (362 kb)
Supplementary material 31 (EPS 362 kb)
410_2014_1005_MOESM32_ESM.eps (362 kb)
Supplementary material 32 (EPS 362 kb)
410_2014_1005_MOESM33_ESM.pdf (713 kb)
Supplementary material 33 (PDF 713 kb)


  1. Asimow P, Dixon J (2004) A hydrous melting and fractionation model for mid-ocean ridge basalts: application to the Mid-Atlantic Ridge near the Azores. Geochem Geophys Geosystems 5:1–24. doi: 10.1029/2003GC000568 Google Scholar
  2. Asimow P, Langmuir C (2003) The importance of water to oceanic mantle melting regimes. Nature 421:815–820CrossRefGoogle Scholar
  3. Behn MD, Boettcher MS, Hirth G (2007) Thermal structure of oceanic transform faults. Geology 35:307. doi: 10.1130/G23112A.1 CrossRefGoogle Scholar
  4. Bown JW, White R (1994) Variation with spreading rate of oceanic crustal thicknesses and geochemistry. Earth Planet Sci Lett 121:435–449CrossRefGoogle Scholar
  5. Bucholz CE, Gaetani GA, Behn MD (2013) Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet Sci Lett 374:145–155CrossRefGoogle Scholar
  6. Canales JP, Collins JA, Escartin J, Detrick RS (2000) Seismic structure across the rift valley of the Mid-Atlantic Ridge at 23°20′ (MARK area): implications for crustal accretion processes at slow spreading ridges. J Geophys Res 105:28411–28425. doi: 10.1029/2000JB900301 CrossRefGoogle Scholar
  7. Cannat M, Rommevauz-Jestin C, Fujimoto H (2003) Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69°E). Geochem Geophys Geosystems 4:1–21. doi: 10.1029/2002GC000480 Google Scholar
  8. Cartigny P, Pineau F, Aubaud C, Javoy M (2008) Towards a consistent mantle carbon flux estimate: insights from volatile systematics (H2O/Ce,[delta] D, CO2/Nb) in the North Atlantic mantle (14° N and 34° N). Earth Planet Sci Lett 265:672–685CrossRefGoogle Scholar
  9. Coakley BJ, Cochran JR (1998) Gravity evidence of very thin crust at the Gakkel Ridge (Arctic Ocean). Earth Planet Sci Lett 162:81–95. doi: 10.1016/S0012-821X(98)00158-7 CrossRefGoogle Scholar
  10. Cochran J (2008) Seamount volcanism along the Gakkel Ridge, Arctic Ocean. Geophys J Int 174:1153–1173CrossRefGoogle Scholar
  11. Cochran JR, Kurras GJ, Edwards MH, Coakley BJ (2003) The Gakkel Ridge: bathymetry, gravity anomalies, and crustal accretion at extremely slow spreading rates. J Geophys Res 108:2116. doi: 10.1029/2002JB001830 CrossRefGoogle Scholar
  12. Cushman B, Sinton J, Ito G, Dixon J (2004) Glass compositions, plume-ridge interaction, and hydrous melting along the Galápagos Spreading Center, 90.5°W to 98°W. Geochem Geophys Geosystems 5:1–30. doi: 10.1029/2004GC000709 Google Scholar
  13. Danyushevsky LV (2002) Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J Petrol 43:1651–1671. doi: 10.1093/petrology/43.9.1651 CrossRefGoogle Scholar
  14. Debaille V, Trønnes RG, Brandon AD, Waight TE (2009) Primitive off-rift basalts from Iceland and Jan Mayen: Os-isotopic evidence for a mantle source containing enriched subcontinental lithosphere. Geochim Cosmochim Acta 73:3423–3449CrossRefGoogle Scholar
  15. Dick HJB, Lin J, Schouten H (2003) An ultraslow-spreading class of ocean ridge. Nature 426:405–412. doi: 10.1038/nature02128 CrossRefGoogle Scholar
  16. Dixon JE, Stolper EM (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: applications to degassing. J Petrol 36:1633–1646Google Scholar
  17. Donnelly K, Goldstein S, Langmuir C, Spiegelman M (2004) Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet Sci Lett 226:347–366CrossRefGoogle Scholar
  18. Drachev SS, Savostin LA, Groshev VG, Bruni IE (1998) Structure and geology of the continental shelf of the Laptev Sea, Eastern Russian Arctic. Tectonophysics 298:357–393CrossRefGoogle Scholar
  19. Dungan M, Rhodes JM (1978) Residual glasses and melt inclusions in basalts from DSDP legs 45 and 46: evidence for magma mixing. Contrib Mineral Petrol 67:417–431. doi: 10.1007/BF00383301 CrossRefGoogle Scholar
  20. England PC, Katz RF (2010) Melting above the anhydrous solidus controls the location of volcanic arcs. Nature 467:700–704. doi: 10.1038/nature09417 CrossRefGoogle Scholar
  21. Falloon TJ, Green DH (1986) Glass inclusions in magnesian olivine phenocrysts from tonga: evidence for highly refractory parental magmas in the tongan arc. Earth Planet Sci Lett 81:95–103. doi: 10.1016/0012-821X(86)90103-2 CrossRefGoogle Scholar
  22. Forsyth DW (1993) Crustal thickness and the average depth and degree of melting in fractional melting models of passive flow beneath mid-ocean ridges. J Geophys Res 98:16073. doi: 10.1029/93JB01722 CrossRefGoogle Scholar
  23. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite—Springer. Contrib Mineral Petrol 131:323–346CrossRefGoogle Scholar
  24. Gaetani GA, O’Leary JA, Shimizu N et al (2012) Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40:915–918. doi: 10.1130/G32992.1 CrossRefGoogle Scholar
  25. Gale A, Escrig S, Gier EJ et al (2011) Enriched basalts at segment centers: the Lucky Strike (37 17′ N) and Menez Gwen (37 50′ N) segments of the Mid-Atlantic Ridge. Geochem Geophys Geosystems 12:1–26. doi: 10.1029/2010GC003446 Google Scholar
  26. Galer S, O’nions RK (1986) Magmagenesis and the mapping of chemical and isotopic variations in the mantle. Chem Geol 56:45–61CrossRefGoogle Scholar
  27. Ghods A, Arkani-Hamed J (2000) Melt migration beneath mid-ocean ridges. Geophys J Int 140:687–697CrossRefGoogle Scholar
  28. Goldstein SL, Soffer G, Langmuir CH et al (2008) Origin of a “Southern Hemisphere” geochemical signature in the arctic upper mantle. Nature 453:89–93. doi: 10.1038/nature06919 CrossRefGoogle Scholar
  29. Gregg PM, Behn MD, Lin J (2009) Melt generation, crystallization, and extraction beneath segmented oceanic transform faults. J Geophys Res 114:1–16Google Scholar
  30. Grove TL, Chatterjee N, Parman SW (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89CrossRefGoogle Scholar
  31. Hauri E, Wang J, Dixon J et al (2002) SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183:99–114CrossRefGoogle Scholar
  32. Hebert LB, Montési LGJ (2010) Generation of permeability barriers during melt extraction at mid-ocean ridges. Geochem Geophys Geosystems. doi: 10.1029/2010GC003270 Google Scholar
  33. Hellebrand E, Snow JE, Mühe R (2002) Mantle melting beneath Gakkel Ridge (Arctic Ocean): abyssal peridotite spinel compositions. Chem Geol 182:227–235CrossRefGoogle Scholar
  34. Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Mineral Petrol 124:185–208CrossRefGoogle Scholar
  35. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90(3):297–314CrossRefGoogle Scholar
  36. Hooft EEE, Detrick RS, Toomey DR et al (2000) Crustal thickness and structure along three contrasting spreading segments of the Mid-Atlantic Ridge, 33.5°–35°N. J Geophys Res 105:8205–8226. doi: 10.1029/1999JB900442 CrossRefGoogle Scholar
  37. Ionov DA, Bodinier JL, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Petrol 43:2219–2259. doi: 10.1093/petrology/43.12.2219 CrossRefGoogle Scholar
  38. Jakobsson M, Mayer L, Coakley B (2012) The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0—jakobsson—2012—geophysical research letters—wiley online library. Geophys Res Lett 39:1–6Google Scholar
  39. Jochum KP, Nohl U (2008) Reference materials in geochemistry and environmental research and the GeoReM database. Chem Geol 253:50–53CrossRefGoogle Scholar
  40. Jochum KP et al (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosystems 7. doi: 10.1029/2005GC001060
  41. Jokat W, Schmidt-Aursch MC (2007) Geophysical characteristics of the ultraslow spreading Gakkel Ridge, Arctic Ocean. Geophys J Int 168:983–998CrossRefGoogle Scholar
  42. Jokat W, Ritzmann O, Schmidt-Aursch MC et al (2003) Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature 423:962–965. doi: 10.1038/nature01706 CrossRefGoogle Scholar
  43. Katz RF (2008) Magma dynamics with the enthalpy method: benchmark solutions and magmatic focusing at mid-ocean ridges. J Petrol 49:2099–2121. doi: 10.1093/petrology/egn058 CrossRefGoogle Scholar
  44. Kelemen P, Aharonov E (1998) Periodic formation of magma fractures and generation of layered gabbros in the lower crust beneath oceanic spreading ridges. Faulting Magmat Mid-ocean Ridges 106:267–289CrossRefGoogle Scholar
  45. Kelley K, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607CrossRefGoogle Scholar
  46. Klein E (2005) Geochemistry of the Igneous Oceanic Crust. Crust: Treatise Geochem 3:433–464Google Scholar
  47. Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res 92:8089–8115CrossRefGoogle Scholar
  48. Korenaga J, Kelemen P (1997) Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: implications for magma transport in the oceanic lower crust. J Geophys Res 102:27729–27749CrossRefGoogle Scholar
  49. Langmuir C, Klein E, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. AGU Geophys Monogr 71:183–280Google Scholar
  50. Laubier M, Gale A, Langmuir CH (2012) Melting and crustal processes at the famous segment (Mid-Atlantic Ridge): new insights from olivine-hosted melt inclusions from multiple samples. J Petrol 53:665–698. doi: 10.1093/petrology/egr075 CrossRefGoogle Scholar
  51. Le Roux V, Bodinier JL, Tommasi A, Alard O (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612CrossRefGoogle Scholar
  52. Lizarralde D, Gaherty JB, Collins JA et al (2004) Spreading-rate dependence of melt extraction at mid-ocean ridges from mantle seismic refraction data. Nature 432:744–747. doi: 10.1038/nature03140 CrossRefGoogle Scholar
  53. Magde LS, Sparks DW (1997) Three-dimensional mantle upwelling, melt generation, and melt migration beneath segment slow spreading ridges. J Geophys Res 102:20571. doi: 10.1029/97JB01278 CrossRefGoogle Scholar
  54. McDonough W, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  55. Michael P (1988) The concentration, behavior and storage of H2O in the suboceanic upper mantle: implications for mantle metasomatism. Geochim Cosmochim Acta 52:555–566CrossRefGoogle Scholar
  56. Michael P (1995) Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O. Earth Planet Sci Lett 131:301–320CrossRefGoogle Scholar
  57. Michael PJ, Langmuir CH, Dick HJB et al (2003) Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423:956–961. doi: 10.1038/nature01704 CrossRefGoogle Scholar
  58. Montési LG, Behn MD (2007) Mantle flow and melting underneath oblique and ultraslow mid-ocean ridges. Geophys Res Lett 34:1–5. doi: 10.1029/2007GL031067 Google Scholar
  59. Montési LGJ, Behn MD, Hebert LB et al (2011) Controls on melt migration and extraction at the ultraslow Southwest Indian Ridge 10°–16°E. J Geophys Res 116:1–19. doi: 10.1029/2011JB008259 Google Scholar
  60. Morgan JP, Morgan WJ (1999) Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding. Earth Planet Sci Lett 170:215–239CrossRefGoogle Scholar
  61. Nicolas A, Prinzhofer A (1983) Cumulative or residual origin for the transition zone in ophiolites: structural evidence. J Petrol 24:188–206. doi: 10.1093/petrology/24.2.188 CrossRefGoogle Scholar
  62. Niu Y, Collerson KD, Batiza R et al (1999) Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: the East Pacific Rise at 11°20′N. J Geophys Res 104:7067–7087. doi: 10.1029/1998JB900037 CrossRefGoogle Scholar
  63. Perfit MR, Wanless VD, Ridley WI, Klein EM, Smith MC, Goss AR, Hinds JS, Kutza SW, Fornari DJ (2012) Lava geochemistry as a probe into crustal formation at the East Pacific Rise. Oceanography 25(1):89–93. doi: 10.5670/oceanog.2012.06 CrossRefGoogle Scholar
  64. Plank T, Langmuir C (1992) Effects of the melting regime on the composition of the oceanic crust. J Geophys Res 97:19749–19770CrossRefGoogle Scholar
  65. Reid I, Jackson HR (1981) Oceanic spreading rage and crustal thickness. Mar Geophys Res 5:165–172Google Scholar
  66. Robinson CJ, Bickle MJ, Minshull TA, White R (2001) Low degree melting under the Southwest Indian Ridge: the roles of mantle temperature, conductive cooling and wet melting. Earth Planet Sci Lett 188:383–398CrossRefGoogle Scholar
  67. Roedder E (1984) Fluid inclusions. Rev Mineral 12:1–644CrossRefGoogle Scholar
  68. Saal A, Hauri E, Langmuir C, Perfit M (2002) Vapour under saturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455CrossRefGoogle Scholar
  69. Shaw D (2006) Trace elements in magmas: a theoretical treatment. 1–243Google Scholar
  70. Shaw AM, Hauri EH, Fischer TP et al (2008) Hydrogen isotopes in Mariana arc melt inclusions: implications for subduction dehydration and the deep-Earth water cycle. Earth Planet Sci Lett 275:138–145. doi: 10.1016/j.epsl.2008.08.015 CrossRefGoogle Scholar
  71. Shaw AM, Behn MD, Humphris SE et al (2010) Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: evidence from olivine-hosted melt inclusions and glasses. Earth Planet Sci Lett 289:311–322. doi: 10.1016/j.epsl.2009.11.018 CrossRefGoogle Scholar
  72. Sparks DW, Parmentier EM (1991) Melt extraction from the mantle beneath spreading centers. Earth Planet Sci Lett 105:368–377. doi: 10.1016/0012-821X(91)90178-K CrossRefGoogle Scholar
  73. Spiegelman M (1993) Geochemical consequences of melt transport in 2-D: the sensitivity of trace elements to mantle dynamics. Earth Planet Sci Lett 139:115–132CrossRefGoogle Scholar
  74. Standish JJ, Dick HJB, Michael PJ et al (2008) MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9–25°E): major element chemistry and the importance of process versus source. Geochem Geophys Geosystems. doi: 10.1029/2008GC001959 Google Scholar
  75. Steele-Macinnis M, Esposito R, Bodnar RJ (2011) Thermodynamic model for the effect of post-entrapment crystallization on the H2O_CO2 systematics of vapor-saturated silicate melt inclusions. J Petrol 52:2461–2482CrossRefGoogle Scholar
  76. Tolstoy M, Harding AJ, Orcutt JA (1993) Crustal thickness on the Mid-Atlantic Ridge: bull’s-eye gravity anomalies and focused accretion. Science 262:726CrossRefGoogle Scholar
  77. Wallace PJ (1998) Water and partial melting in mantle plumes: inferences from the dissolved H 2O concentrations of Hawaiian basaltic magmas. Geophys Res Lett 25:3639–3642. doi: 10.1029/98GL02805 CrossRefGoogle Scholar
  78. Warren JM, Shimizu N, Sakaguchi C, Dick H (2009) An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. J Geophys Res 114:1–36Google Scholar
  79. Waters CL (2010) Temporal and petrogenetic constraints on volcanic accretionary processes at 9-10 degrees North East Pacific Rise. 1–258Google Scholar
  80. Waters CL, Sims KWW, Perfit MR et al (2011) Perspective on the genesis of E-MORB from chemical and isotopic heterogeneity at 9–10 N East Pacific rise. J Petrol 52:565–602. doi: 10.1093/petrology/egq091 CrossRefGoogle Scholar
  81. White R, Minshull TA, Bickle MJ, Robinson CJ (2001) Melt generation at very slow-spreading oceanic ridges: constraints from geochemical and geophysical data. J Petrol 42:1171–1196. doi: 10.1093/petrology/42.6.1171 CrossRefGoogle Scholar
  82. Workman R, Hart S (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • V. D. Wanless
    • 1
  • M. D. Behn
    • 1
  • A. M. Shaw
    • 1
    • 3
  • T. Plank
    • 2
  1. 1.Department of Geology and GeophysicsWoods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Lamont Doherty Earth Observatory, Department of Earth and Environmental ScienceColumbia UniversityPalisadesUSA
  3. 3.Lorax Environmental Services Ltd.VancouverCanada

Personalised recommendations