In situ observation of crystal growth in a basalt melt and the development of crystal size distribution in igneous rocks

  • Huaiwei Ni
  • Hans Keppler
  • Nicolas Walte
  • Federica Schiavi
  • Yang Chen
  • Matteo Masotta
  • Zhenjiang Li
Original Paper

Abstract

To understand the solidification processes of natural magma and the texture evolution of igneous rocks, we have carried out in situ observation of the crystallization of a high-K basaltic melt cooling from ~1,240 °C in a moissanite cell. In a series of experiments with different thermal history, olivine or clinopyroxene (cpx) appeared as the liquidus phase before the formation of plagioclase. During cooling at 100 °C/h, the morphology of olivine and cpx transited from tabular to hopper habit. To first order approximation, crystal grow rate (2 × 10−9 to 7 × 10−9 m/s for olivine and 6 × 10−9 to 17 × 10−9 m/s for cpx), probably limited by chemical diffusion, is proportional to crystal size. In one experiment dominated by olivine crystallization, the good image quality allows the analysis of texture evolution over an extended period. Nucleation of olivine occurred only in a narrow temperature and time interval below the liquidus. Two-dimensional length- and area-based crystal size distributions (CSDs) show counterclockwise rotation around axes of 8 μm and 100 μm2, which is consistent with the proportionate crystal growth. Both CSDs and direct observation show the dissolution of small crystals and Ostwald ripening. These data suggest that conventional analyses of crystal size distributions of igneous rocks may be in error—the slope of the CSD cannot be interpreted in terms of a uniform growth rate, and the intercept with the vertical axis does not correspond to a nucleation density.

Keywords

Crystal growth Crystal size distribution Basalt melt Igneous rocks 

Supplementary material

410_2014_1003_MOESM1_ESM.doc (152 kb)
Supplementary material 1 (DOC 153 kb)

Supplementary material 2 (MPG 7328 kb)

Supplementary material 3 (MPG 1686 kb)

Supplementary material 4 (MPG 1832 kb)

Supplementary material 5 (MPG 1670 kb)

References

  1. Applegarth LJ, Tuffen H, James MR, Pinkerton H, Cashman KV (2013) Direct observations of degassing-induced crystallization in basalts. Geology 41:243–246CrossRefGoogle Scholar
  2. Armienti P (2008) Decryption of igneous rock textures: crystal size distribution tools. Rev Mineral Geochem 69:623–649CrossRefGoogle Scholar
  3. Armienti P, Pareschi MT, Innocenti F, Pompilio M (1994) Effects of magma storage an ascent on the kinetics of crystal growth. Contrib Mineral Petrol 115:402–414CrossRefGoogle Scholar
  4. Chen Y, Zhang Y (2008) Olivine dissolution in basaltic melt. Geochim Cosmochim Acta 72:4756–4777CrossRefGoogle Scholar
  5. Colin A, Faure F, Burnard P (2012) Timescales of convection in magma chambers below the Mid-Atlantic ridge from melt inclusions investigations. Contrib Mineral Petrol 164:677–691CrossRefGoogle Scholar
  6. Conte AM, Perinelli C, Trigila R (2006) Cooling kinetics experiments on different Stromboli lavas: effects on crystal morphologies and phase composition. J Volcanol Geotherm Res 155:179–200CrossRefGoogle Scholar
  7. Donaldson CH (1979) An experimental investigation of the delay in nucleation of olivine in mafic magmas. Contrib Mineral Petrol 69:21–32CrossRefGoogle Scholar
  8. Eberl DD, Kile DE, Drits CA (2002) On geological interpretations of crystal size distributions: constant vs. proportionate growth. Am Mineral 87:1235–1241Google Scholar
  9. Faure F, Schiano P (2004) Crystal morphologies in pillow basalts: implications for mid-ocean ridge processes. Earth Planet Sci Lett 220:331–344CrossRefGoogle Scholar
  10. Faure F, Schiano P (2005) Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth Planet Sci Lett 236:882–898CrossRefGoogle Scholar
  11. Faure F, Trolliard G, Nicollet C, Montel J-M (2003) A development model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib Mineral Petrol 145:251–263CrossRefGoogle Scholar
  12. Faure F, Schiano P, Trolliard G, Nicollet C, Soulestin B (2007) Textural evolution of polyhedral olivine experiencing rapid cooling rates. Contrib Mineral Petrol 153:405–416CrossRefGoogle Scholar
  13. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212CrossRefGoogle Scholar
  14. Hammer JE (2008) Experimental studies of the kinetics and energetics of magma crystallization. Rev Mineral Geochem 69:9–59CrossRefGoogle Scholar
  15. Hammer JE (2009) Capturing crystal growth. Geology 37:1055–1056CrossRefGoogle Scholar
  16. Hersum TG, Marsh BD (2007) Igneous textures: on the kinetics behind the words. Elements 3:247–252CrossRefGoogle Scholar
  17. Hui H, Zhang Y (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta 71:403–416CrossRefGoogle Scholar
  18. Jambon A, Lussiez P, Clocchiatti R, Weisz J, Hernandez J (1992) Olivine growth rates in a tholeiitic basalt: an experimental study of melt inclusions in plagioclase. Chem Geol 96:277–287CrossRefGoogle Scholar
  19. Kile DE, Eberl DD (2003) On the origin of size-dependent and size-independent crystal growth: influence of advection and diffusion. Am Mineral 88:1514–1521Google Scholar
  20. Kirkpatrick RJ (1975) Crystal growth from the melt: a review. Am Mineral 60:798–814Google Scholar
  21. Lange RA, Carmichael ISE (1987) Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2 liquids: new measurements and derived partial molar properties. Geochim Cosmochim Acta 51:2931–2946CrossRefGoogle Scholar
  22. Lasaga AC (1998) Kinetic theory in the earth sciences. Princeton University Press, Princeton, pp 581–712pGoogle Scholar
  23. Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. I. Theory. Contrib Mineral Petrol 99:277–291CrossRefGoogle Scholar
  24. Marsh BD (1998) On the interpretation of crystal size distributions in magmatic systems. J Petrol 39:553–599CrossRefGoogle Scholar
  25. Marsh BD (2006) Dynamics of magmatic systems. Elements 2:287–292CrossRefGoogle Scholar
  26. Métrich N, Bertagnini A, Di Muro A (2010) Conditions of magma storage, degassing and ascent at Stromboli: new insights into the volcano plumbing system with inferences on the eruptive dynamics. J Petrol 51:603–626CrossRefGoogle Scholar
  27. Nabelek PI, Hofmeister AM, Whittington AG (2012) The influence of temperature-dependent thermal diffusivity on the conductive cooling rates of plutons and temperature-time paths in contact aureoles. Earth Planet Sci Lett 317–318:157–164CrossRefGoogle Scholar
  28. Pichavant M, Di Carlo I, Le Gac Y, Rotolo SG, Scaillet B (2009) Experimental constraints on the deep magma feeding system at Stromboli volcano, Italy. J Petrol 50:601–624CrossRefGoogle Scholar
  29. Pichavant M, Prompilio M, D’Oriano C, Di Carlo I (2011) Petrography, mineralogy and geochemistry of a primitive pumice from Stromboli: implications for the deep feeding system. Eur J Mineral 23:499–517CrossRefGoogle Scholar
  30. Schiavi F, Walte N, Keppler H (2009) First in situ observation of crystallization processes in a basaltic-andesitic melt with the moissanite cell. Geology 37:963–966CrossRefGoogle Scholar
  31. Schiavi F, Walte N, Konschak A, Keppler H (2010) A moissanite cell apparatus for optical in situ observation of crystallizing melts at high temperature. Am Mineral 95:1069–1079CrossRefGoogle Scholar
  32. Sunagawa I (2005) Crystals: growth, morphology and perfection. Cambridge University Press, Cambridge, UK, pp 45–53pCrossRefGoogle Scholar
  33. Toramaru A (1991) Model of nucleation and growth of crystals in cooling magmas. Contrib Mineral Petrol 108:106–117CrossRefGoogle Scholar
  34. Welsch B, Faure F, Famin V, Bachelery P, Famin V (2009) Microcrysts record transient convection at Piton de la Fournaise Volcano (La Reunion Hotspot). J Petrol 50:2287–2305CrossRefGoogle Scholar
  35. Zhang Y (2008) Geochemical kinetics. Princeton University Press, Princeton, pp 47–54Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Huaiwei Ni
    • 1
    • 2
  • Hans Keppler
    • 1
  • Nicolas Walte
    • 1
  • Federica Schiavi
    • 1
    • 3
  • Yang Chen
    • 4
  • Matteo Masotta
    • 1
  • Zhenjiang Li
    • 2
  1. 1.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  2. 2.CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Laboratoire Magmas et VolcansUniversité Blaise PascalClermont-FerrandFrance
  4. 4.Department of Earth and Environmental SciencesThe University of MichiganAnn ArborUSA

Personalised recommendations