Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths

  • John F. Pernet-Fisher
  • Geoffrey H. Howarth
  • Yang Liu
  • Peter H. Barry
  • Laura Carmody
  • John W. Valley
  • Robert J. Bodnar
  • Zdislav V. Spetsius
  • Lawrence A. Taylor
Original Paper

Abstract

The Komsomolskaya kimberlite is one of numerous (>1,000) kimberlite pipes that host eclogite xenoliths on the Siberian craton. Eclogite xenoliths from the adjacent Udachnaya kimberlite pipe have previously been geochemically well characterized; however, data from surrounding diamond-bearing kimberlite pipes from the center of the craton are relatively sparse. Here, we report major- and trace-element data, as well as oxygen isotope systematics, for mineral separates of diamondiferous eclogite xenoliths from the Komsomolskaya kimberlite, suggesting two distinct subgroups of a metamorphosed, subducted oceanic crustal protolith. Using almandine contents, this suite can be divided into two subgroups: group B1, with a high almandine component (>20 mol%) and group B2, with a low almandine component (<20 mol%). Reconstructed REE profiles for B1 eclogites overlap with typical oceanic basalts and lack distinct Eu anomalies. In addition, elevated oxygen isotope values, which are interpreted to reflect isotopic exchange with seawater at low temperatures (<350 °C), are consistent with an upper-oceanic crustal protolith. Reconstructed REE profiles for B2 eclogites are consistent with oceanic gabbros and display distinct Eu anomalies, suggesting a plagioclase-rich cumulate protolith. In contrast to B1, B2 eclogites do not display elevated oxygen isotope values, suggesting an origin deep within the crustal pile, where little-to-no interaction with hydrothermal fluids has occurred. Major-element systematics were reconstructed based on mineral modes; group B1 eclogites have higher MgO wt% and lower SiO2 wt%, with respect to typical oceanic basalts, reflecting a partial melting event during slab subduction. Calculated residues from batch partial melt modeling of a range of Precambrian basalts overlap with group B1 trace-element chemistry. When taken together with the respective partial melt trajectories, these melting events are clearly linked to the formation of Tonalite–Trondhjemite–Granodiorite (TTG) complexes. As a result, we propose that many, if not all, diamondiferous eclogite xenoliths from Komsomolskaya represent mantle ‘restites’ that preserve chemical signatures of Precambrian oceanic crust.

Keywords

SCLM Eclogites Siberian craton Mantle xenolith TTG complex 

Notes

Acknowledgments

The authors thank Mike Spicuzza, Allan Patchen, and Luca Fedele for their assistance with data collection. This work was funded by NSF Grants EAR-1144337 (LAT), EAR-1144559 (PHB), and EAR-0838058 (JWV). YL is currently supported at Jet Propulsion Laboratory, which is managed by California Institute of Technology, under a contract with NASA. We would like to thank Katie Smart and Ryan Ickert for constructive reviews of an earlier version of this manuscript, in addition to two anonymous reviewers for their comments and suggestions that added significantly to the revision of this manuscript.

References

  1. Alt JC, Bach W (2006) Oxygen-isotope composition of a section of lower oceanic crust, ODP Hole 735B. Geochem Geophys Geosys 7:18CrossRefGoogle Scholar
  2. Arndt N (1983) Role of a thin, komatiite-rich oceanic crust in the Archean plate-tectonic process. Geology 11:372–375CrossRefGoogle Scholar
  3. Aulbach S, Griffin WL, Pearson NJ, O’Reilly SY, Doyle B (2007) Lithosphere formation in the central Slave Craton (Canada): plume subcretion or lithosphere accretion? Contrib Mineral Petrol 154:409–447CrossRefGoogle Scholar
  4. Bach W, Alt JC, Niu Y, Humphris S, Erzinger J, Dick HJB (2001) The geochemical consequences of late stage low-grade alteration of the lower oceanic crust at the SW Indian ridge: results from ODP Hole 735B (Leg 176). Geochim Cosmochim Acta 65:3267–3288CrossRefGoogle Scholar
  5. Barth MG, Foley SF, Horn I (2002a) Partial melting in Archean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambr Res 113:323–340CrossRefGoogle Scholar
  6. Barth MG, Rudnick RL, Horn I, McDonough WF, Spicuzza MJ, Valley JW, Haggerty SE (2002b) Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites. Geochim Cosmochim Acta 66:4325–4345CrossRefGoogle Scholar
  7. Beard BJ, Fraracci KN, Taylor LA, Snyder GA, Clayton RA, Mayeda TK, Sobolev NV (1996) Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contrib Mineral Petrol 125:293–310CrossRefGoogle Scholar
  8. Borghini G, Fumagalli P, Rampone E (2010) The stability of plagioclase in the upper mantle: subsolidus experiments on fertile and depleted lherzolite. J Petrol 51:229–254CrossRefGoogle Scholar
  9. Boyd FR (1984) Siberian geotherm based on lherzolite xenoliths from the Udachnaya kimberlite, USSR. Geology 12:528–530CrossRefGoogle Scholar
  10. Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26CrossRefGoogle Scholar
  11. Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NA, Finger LW (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol 128:228–246CrossRefGoogle Scholar
  12. Caporuscio FA, Smyth JR (1990) Trace element crystal chemistry of mantle eclogites. Contrib Mineral Petrol 105:550–561CrossRefGoogle Scholar
  13. Carmody L, Barry PH, Shervais JW, Kluesner W, Taylor LA (2013) Oxygen-isotope in subducted oceanic crust: a new perspective from Siberian diamondiferous eclogites. Geochem Geophys Geosys. doi: 10.1002/ggge.20220 Google Scholar
  14. Chazot G, Lowry D, Menzies M, Mattey DM (1997) Oxygen isotopic composition of hydrous and anhydrous mantle peridotites. Geochim Cosmochim Acta 61:161–169CrossRefGoogle Scholar
  15. Coleman RG, Lee ED, Beatty LB (1965) Brannock, Eclogites and eclogites: their differences and similarities. Geol Soc Am Bul 76:483–508CrossRefGoogle Scholar
  16. Davis GL, Sobolev NV, Kharkiv AD (1980) New data on the age of Yakutian kimberlites based upon U-Pb zircon method. Dokl Akad Nauk SSSR 254:175–180Google Scholar
  17. Dawson JB (1984) Contrasting types of upper mantle metasomatism? In: Kimberlites II: The mantle and crust-mantle relationship proceeding of the 3rd international kimberlite conference. Elsevier, pp. 289–295Google Scholar
  18. Dawson JB, Smith JV (1977) MARID (mice-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochim Cosmochim Acta 41:309–323CrossRefGoogle Scholar
  19. Donskaya TV, Gladkochub DP, Pisarevsky SA, Poller U, Mazukabzov AM, Bayanova TB (2009) Discovery of Archaean crust within the Akitkan orogenic belt of the Siberian craton: new insight into its architecture and history. Precam Res 170:61–72CrossRefGoogle Scholar
  20. Doucet LS, Ionov DA, Golovin AV (2013) The origin of coarse garnet peridotite in cratonic lithosphere: new data on xenoliths from the Udachnaya kimberlite, central Siberia. Contrib Mineral Petrol 165:1225–1242CrossRefGoogle Scholar
  21. Eggins SM (1992) Petrogenesis of Hawaiian tholeiite: 1. Phase equilibria constraints. Contrib Mineral Petrol 110:387–397CrossRefGoogle Scholar
  22. Eiler JM (2001) Oxygen-isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364CrossRefGoogle Scholar
  23. Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib Mineral Petrol 71:13–22CrossRefGoogle Scholar
  24. Farquhar J, Wing BA, McKeegan KD, Harris JW, Cartigny P, Thiemens MH (2002) Mass-independent sulfur of inclusions in diamond and sulfur recycling on early earth. Science 298:2369–2372CrossRefGoogle Scholar
  25. Greau Y, Huang JX, Griffin WJ, Renac C, Alard O, O’Reilly SY (2011) Type I eclogites from Roberts Victor kimberlites; products of extensive mantle metasomatism. Geochim Cosmochim Acta 75:6927–6954CrossRefGoogle Scholar
  26. Gregory RT, Taylor HP Jr (1981) An oxygen-isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: evidence for 18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755CrossRefGoogle Scholar
  27. Griffin WL, O’Reilly SY (2007) Cratonic lithospheric mantle: is anything subducted? Episodes 30:43–53Google Scholar
  28. Griffin WL, Shee SR, Ryan CG, Win TT, Wyatt BA (1999) Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contrib Mineral Petrol 134:232–250CrossRefGoogle Scholar
  29. Grutter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77:841–857CrossRefGoogle Scholar
  30. Hart SR, Blusztain J, Dick HKB, Meyer PS, Muehlenbachs K (1999) The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim Cosmochim Acta 63:4059–4080CrossRefGoogle Scholar
  31. Hauri EH, Shimizu N, Dieu JJ, Hart SR (1993) Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365:221–227CrossRefGoogle Scholar
  32. Hill DV, Haggerty SE (1989) Petrochemistry of eclogites from the Koidu Kimberlite Complex, Sierra Leone. Contrib Mineral Petrol 103:397–422CrossRefGoogle Scholar
  33. Howarth GH, Barry PH, Pernet-Fisher JF, Pokhilenko NP, Pokhilenko LN, Bodnar RJ, Taylor LA (2014) Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos. doi: 10.1016/j.lithos.2013.09.006 Google Scholar
  34. Huang JX, Greau Y, Griffin WL, O’Reilly SY, Pearson NJ (2012) Multi-stage origin of Roberts Victor eclogites: progressive metasomatism and its isotopic effects. Lithos 142–143:161–181CrossRefGoogle Scholar
  35. Ionov DA, Doucet LS, Ashchepkov IV (2010) Composition of the lithosphericmantle in the Siberian Craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J Petrol 5:2177–2210CrossRefGoogle Scholar
  36. Ireland TR, Rudnick RL, Spetsius Z (1994) Trace elements in diamond inclusions from eclogites reveal link to Archean granites. Earth Planet Sci Lett 128:199–213CrossRefGoogle Scholar
  37. Irving AJ (1974) Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulite xenoliths from the Delegate basaltic pipe. Aust J Pet 15:1–40CrossRefGoogle Scholar
  38. Jacob DE (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77:295–316CrossRefGoogle Scholar
  39. Jacob DE, Foley SF (1999) Evidence for Archean ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths. Lithos 48:317–336CrossRefGoogle Scholar
  40. Jacob DE, Jagoutz E, Lowry D, Mattey DM, Kudrjavtseva G (1994) Diamondiferous eclogites from Siberia: remnants of Archean oceanic crust. Geochim Cosmochim Acta 58:5191–5207CrossRefGoogle Scholar
  41. Jacob DE, Viljoen KS, Grassineau N (2009) Eclogite xenoliths from Kimberley, South Africa: a case study of mantle metasomatism in eclogites. Lithos 112:1002–1013CrossRefGoogle Scholar
  42. Jagoutz DE, Dawson JB, Hoernes S, Spettle B, Wanke H (1984) Anorthositic oceanic crust in the archean earth. 15th lunar planetary sciences conference 395Google Scholar
  43. Jahn BM, Gruau G, Capdevila R, Cornichet J, Nemchin A, Pidgeon R, Rudnik VA (1998) Archean crustal evolution of the Aldan Shield, Siberia: geochemical and isotopic constraints. Precamb Res 91:333–363CrossRefGoogle Scholar
  44. Jerde EA, Taylor LA, Crozaz G, Sobolev NV, Sobolev VN (1993) Diamondiferous eclogites from Yakutia, Siberia: evidence for a diversity of protoliths. Contrib Mineral Petrol 114:189–202CrossRefGoogle Scholar
  45. Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678CrossRefGoogle Scholar
  46. Kamenetsky VS, Kamenetsky MB, Golovin AV, Sharygin VV, Maas R (2012) Ultrafresh salty kimberlite of the Udachnaya-East pipe (Yakutia, Russia): a petrological oddity or fortuitous discovery? Lithos 152:173–186CrossRefGoogle Scholar
  47. Kennedy CS, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 81:2467–2470CrossRefGoogle Scholar
  48. Kharkiv AD, Zinchuk NN, Kryuchkov AI (1998) Diamond primary deposits of the world. Nedra Publ House Moscow (in Russian)Google Scholar
  49. Krogh EJ (1998) The garnet–clinopyroxene Fe\Mg geothermometer: a reinterpretation of existing experimental data. Contrib Mineral Petrol 99:44–48CrossRefGoogle Scholar
  50. MaCandless TE, Gurney JJ (1989) Sodium in garnet and potassium in clinopyroxene: criteria for classifying mantle eclogites. In: Ross J (ed) Kimberlite and related rocks vol. 2: their mantle/crust setting, diamonds and diamond exploration. GSA Special Publication, pp. 827–832Google Scholar
  51. MacGregor ID, Manton WI (1986) Roberts Victor eclogites: ancient oceanic crust. J Geophys Res 91:14063–14079CrossRefGoogle Scholar
  52. Mather KA, Pearson DG, McKenzie D, Kjarsgaard BA, Priestley K (2011) Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos 125:729–742CrossRefGoogle Scholar
  53. Mattey D, Lowry D, Macpherson C (1994) Oxygen-isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241CrossRefGoogle Scholar
  54. McDonough WF, Sun S (1995) The composition of the earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  55. Menzies MA, Rogers N, Tindle A, Hawkesworth CJ (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press Inc., pp 313–336Google Scholar
  56. Misra KC, Anand M, Taylor LA, Sobolev NV (2004) Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contrib Mineral Petrol 146:696–714CrossRefGoogle Scholar
  57. Muehlenbachs K, Clayton RN (1972) Oxygen-isotope geochemistry of submarine greenstones. Can J Earth Sci 9:471–478CrossRefGoogle Scholar
  58. Nisbet EG, Fowler CM (1983) Model for Archean plate tectonics. Geology 11:376–379CrossRefGoogle Scholar
  59. Pearson DG, Nixon PH (1995) Diamonds in young orogenic belts: graphitised diamonds from Beni Bousera, N. Morocco, a comparison with kimberlite-derived diamond occurrences and implications for diamond genesis and exploration. Africa Geosci Rev 3:295–316Google Scholar
  60. Pearson DG, Boyd FR, Haggerty SE, Pasteris JD, Field SW, Nixon PH, Pokhilenko NP (1994) Characterization and origin of graphite in cratonic lithospheric mantle: a petrological carbon isotope and Raman spectroscopic study. Contrib Mineral Petrol 115:449–466CrossRefGoogle Scholar
  61. Pearson DG, Snyder GA, Shirey SB, Taylor LA, Carlson RW, Sobolev NV (1995) Archaean Re-Os age for Siberian eclogites and constraints on Archaean tectonics. Nature 374:711–713CrossRefGoogle Scholar
  62. Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. Treatise Geochem 2:171–275CrossRefGoogle Scholar
  63. Pertermann M, Hirschmann MM (2003) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res 108:B2Google Scholar
  64. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar: implication for continental growth and crust-mantle recycling. J Petrol 36:891–931CrossRefGoogle Scholar
  65. Rehfeld T, Foley SF, Carlson RW, Lowry D, Jacob DE (2008) Contrasting types of metasomatism in dunite, wehrlite and websterite xenoliths from Kimberley, South Africa. Geochim Cosmochim Acta 72:5722–5756CrossRefGoogle Scholar
  66. Riches AJV, Liu Y, Day JMD, Spetsius ZV, Taylor LA (2010) Subducted oceanic crust as diamond hosts revealed by garnets of mantle xenoliths from Nyurbinskaya, Siberia. Lithos 120:368–378CrossRefGoogle Scholar
  67. Rosen OM, Manakov AV, Suvorov VD (2005) The collisional system in the northeastern Siberian Craton and a problem of diamond-bearing lithospheric keel. Geotectonics 39:456–479Google Scholar
  68. Rudnick R (1995) Making continental crust. Nature 378:571–577CrossRefGoogle Scholar
  69. Schmickler B, Jacob DE, Foley SF (2004) Eclogite xenoliths from the Kuruman kimberlites, South Africa: geochemical fingerprinting of deep subduction and cumulate processes. Lithos 75:173–207CrossRefGoogle Scholar
  70. Schulze DJ (2003) A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos 71:195–213CrossRefGoogle Scholar
  71. Schulze DJ, Valley JW, Spicuzza MJ (2000) Coesite eclogites from the Roberts Victor kimberlite, South Africa. Lithos 54:23–32CrossRefGoogle Scholar
  72. Smart KA, Chacko T, Stachel T, Tappe S, Stern RA, Ickert RB (2012) Eclogite formation beneath the northern Slave craton constrained by diamond inclusion: oceanic lithosphere origin without a crustal signature. Earth Planet Sci Lett 319:165–177CrossRefGoogle Scholar
  73. Snyder GA, Taylor LA, Crozaz G, Halliday AN, Beard BL, Sobolev VN, Sobolev NV (1997) The origins of Yakutian eclogite xenoliths. J Petrol 38:85–113CrossRefGoogle Scholar
  74. Sobolev NV, Lavrent’ev YG, Pokhilenko NP, Usova LV (1973) Chrome-rich garnets from kimberlites of Yakutia and their paragenesis. Contrib Mineral Petrol 40:39–52CrossRefGoogle Scholar
  75. Sobolev VN, Taylor LA, Snyder GA, Sobolev NV (1994) Diamondiferous eclogites from the Udachnaya kimberlites pipe, Yakutia. Inter Geol Rev 36:42–64CrossRefGoogle Scholar
  76. Spetsius ZV, Taylor LA (2008) Diamonds of Siberia: photographic evidence for their origin. Tranquility Base PressGoogle Scholar
  77. Tappe S, Smart KA, Pearson DG, Steenfelt A, Simonetti A (2011) Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology 39:1103–1106CrossRefGoogle Scholar
  78. Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I: mineralogy, petrography, and whole-rock chemistry. J Geol 97:551–567CrossRefGoogle Scholar
  79. Taylor LA, Keller RA, Snyder GA, Wang W, Carlson WD, Hauri EH, Hauri EH, Mccandless T, Kim KR, Sobolev NV, Bezborodov SM (2000) Diamonds and their mineral inclusions, and what they tell us: a detailed “pull-apart” of a diamondiferous eclogite. Inter Geol Rev 42:959–983CrossRefGoogle Scholar
  80. Turkina OM, Berezhnaya NG, Larionov AN, Lepekhina EN, Presnyakov SL, Saltykova TE (2009) Paleoarchean tonalite-trondhjemite complex in the northwestern part of the Sharyzhalgai uplift (southwestern Siberian craton): results of U-Pb and Sm-Nd study. Russ Geol Geophys 50:15–28CrossRefGoogle Scholar
  81. Valley JW (2003) Oxygen-isotopes in zircon. Rev Min Geochem 53:343–385CrossRefGoogle Scholar
  82. Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen-isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231CrossRefGoogle Scholar
  83. Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen-isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11CrossRefGoogle Scholar
  84. Xu XS, O’Reilly SY, Griffin WL, Zhou XM (2000) Genesis of young lithospheric mantle in southeastern China: an LA-ICP-MS trace element study. J Petrol 41:111–148CrossRefGoogle Scholar
  85. Ziaja K, Foley SF, White RW, Buhre S (2013) Metamorphism and melting of picritic crust in the early Earth. Lithos. doi: 10.1016/j.lithos.2013.07.001 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • John F. Pernet-Fisher
    • 1
  • Geoffrey H. Howarth
    • 1
  • Yang Liu
    • 1
    • 2
  • Peter H. Barry
    • 1
  • Laura Carmody
    • 1
  • John W. Valley
    • 3
  • Robert J. Bodnar
    • 4
  • Zdislav V. Spetsius
    • 5
  • Lawrence A. Taylor
    • 1
  1. 1.Department of Earth and Planetary Sciences, Planetary Geosciences InstituteUniversity of TennesseeKnoxvilleUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Department of GeoscienceUniversity of WisconsinMadisonUSA
  4. 4.Department of GeosciencesVirginia Polytechnic and State UniversityBlacksburgUSA
  5. 5.Institute of Diamond IndustryALROSA Company, Ltd.MirnyRussia

Personalised recommendations