A thermodynamic model for di-trioctahedral chlorite from experimental and natural data in the system MgO–FeO–Al2O3–SiO2–H2O: applications to PT sections and geothermometry

  • Pierre LanariEmail author
  • Thomas Wagner
  • Olivier Vidal
Original Paper


We present a new thermodynamic activity-composition model for di-trioctahedral chlorite in the system FeO–MgO–Al2O3–SiO2–H2O that is based on the Holland–Powell internally consistent thermodynamic data set. The model is formulated in terms of four linearly independent end-members, which are amesite, clinochlore, daphnite and sudoite. These account for the most important crystal-chemical substitutions in chlorite, the Fe–Mg, Tschermak and di-trioctahedral substitution. The ideal part of end-member activities is modeled with a mixing-on-site formalism, and non-ideality is described by a macroscopic symmetric (regular) formalism. The symmetric interaction parameters were calibrated using a set of 271 published chlorite analyses for which robust independent temperature estimates are available. In addition, adjustment of the standard state thermodynamic properties of sudoite was required to accurately reproduce experimental brackets involving sudoite. This new model was tested by calculating representative PT sections for metasediments at low temperatures (<400 °C), in particular sudoite and chlorite bearing metapelites from Crete. Comparison between the calculated mineral assemblages and field data shows that the new model is able to predict the coexistence of chlorite and sudoite at low metamorphic temperatures. The predicted lower limit of the chloritoid stability field is also in better agreement with petrological observations. For practical applications to metamorphic and hydrothermal environments, two new semi-empirical chlorite geothermometers named Chl(1) and Chl(2) were calibrated based on the chlorite + quartz + water equilibrium (2 clinochlore + 3 sudoite = 4 amesite + 4 H2O + 7 quartz). The Chl(1) thermometer requires knowledge of the (Fe3+/ΣFe) ratio in chlorite and predicts correct temperatures for a range of redox conditions. The Chl(2) geothermometer which assumes that all iron in chlorite is ferrous has been applied to partially recrystallized detrital chlorite from the Zone houillère in the French Western Alps.


Thermodynamics Chlorite Sudoite Geothermometry Solid solution PT section 



The authors sincerely thank James Connolly, Martin Engi, Eric Lewin, Emilie Janots and Nicolas Riel for fruitful discussions. Constructive reviews from J. Walshe and an anonymous reviewer are gratefully acknowledged. This work was financially supported by the Agence National pour la Recherche (ANR) ERD-Alps project and the Ecole doctorale Terre-Univers-Environnement travel grant.

Supplementary material

410_2014_968_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)


  1. Abad I, Nieto F, Peacor D, Velilla N (2003) Prograde and retrograde diagenetic and metamorphic evolution in metapelitic rocks of Sierra Espuna (Spain). Clay Miner 38:1–23CrossRefGoogle Scholar
  2. Agard P, Vidal O, Goffé B (2001) Interlayer and Si content of phengite in HP–LT carpholite-bearing metapelites. J Metam Geol 19:479–495CrossRefGoogle Scholar
  3. Agard P, Monié P, Gerber W, Omrani J, Molinaro M, Meyer B, Labrousse L, Vrielynck B, Jolivet L, Yamato P (2006) Transient, synobduction exhumation of Zagros blueschists inferred from P-T, deformation, time, and kinematic constraints: implications for Neotethyan wedge dynamics. J Geophys Res 111:B11401CrossRefGoogle Scholar
  4. Albee AL (1962) Relationships between the mineral association, chemical composition and physical properties of the chlorite series. Am Miner 47:851–870Google Scholar
  5. Anceau A (1992) Sudoite in some Visean (lower Carboniferous) K-bentonites from Belgium. Clay Miner 27:283–292CrossRefGoogle Scholar
  6. Árkai P, Faryad SW, Vidal O, Balogh K (2003) Very low-grade metamorphism of sedimentary rocks of the Meliata unit, Western Carpathians, Slovakia: implications of phyllosilicate characteristics. Int J Earth Sci 92:68–85Google Scholar
  7. Augier R, Booth-Rea G, Agard P, Martínez-Martínez JM, Jolivet L, Azanón JM (2005a) Exhumation constraints for the lower Nevado-Filabride complex (Betic cordillera, SE Spain): a thermometry and TWEEQU multiequilibrium thermobarometry approach. Bull Soc Geol France 176:403–416Google Scholar
  8. Augier C, Agard P, Monié P, Jolivet L, Robin C, Booth-Rea G (2005b) Exhumation, doming and slab retreat in the Betic Cordillera (SE Spain): in situ 40Ar/39Ar ages and P-T-d-t paths for the Nevado-Filabride complex. J Metam Geol 23:357–381CrossRefGoogle Scholar
  9. Baboury D (1999) Origine volcanogène des veines aurifères riches en sulfures de la mine Géant Dormant, Abitibi. PhD thesis, Université du Québec à ChicoutimiGoogle Scholar
  10. Baker J, Holland T (1996) Experimental reversals of chlorite compositions in divariant MgO + Al2O3 + SiO2 + H2O assemblages. Am Miner 81:676–684Google Scholar
  11. Belmar M, Morata D (2005) Nature and P-T-t constraints of very low-grade metamorphism in the Triassic–Jurassic basins, coastal range, central Chile. Rev Geol Chile 32:189–205CrossRefGoogle Scholar
  12. Berman R (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. J Petrol 29:445–522CrossRefGoogle Scholar
  13. Berman R, Brown T (1985) Heat capacity of minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2: representation, estimation, and high temperature extrapolation. Contrib Mineral Petrol 89:168–183CrossRefGoogle Scholar
  14. Billault V, Beaufort D, Patrier-Mas P, Petit S (2002) Crystal chemistry of Fe-sudoites from uranium deposits in the Athabasca basin (Saskatchewan, Canada). Clays Clay Miner 50:70–81CrossRefGoogle Scholar
  15. Booth-Rea G, Azanón J, Goffé B, Vidal O, Martínez-Martínez J (2002) High-pressure, low-temperature metamorphism in Alpujarride units of southeastern Betics (Spain). Compt Rend Geosci 334:857–865CrossRefGoogle Scholar
  16. Bourdelle F, Parra T, Chopin C, Beyssac O (2013a) A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contrib Mineral Petrol 165:723–735CrossRefGoogle Scholar
  17. Bourdelle F, Parra T, Beyssac O, Chopin C, Vidal O (2013b) Clay minerals thermometry: a comparative study based on high-resolution chemical analyses of illite and chlorite in sandstones from the Gulf Coast (Texas, USA). Am Miner 98:914–926CrossRefGoogle Scholar
  18. Bourdelle F, Benzerara K, Beyssac O, Cosmidis J, Neuville DR, Brown GE, Paineau E (2013c) Quantification of the ferric/ferrous iron ratio in silicates by scanning transmission X-ray microscopy at the Fe L2,3 edges. Contrib Mineral Petrol 166:423–434CrossRefGoogle Scholar
  19. Calderon M, Galaz G, Tascon G, Ramirez C, Luca R, Zenk M, Brandelik A, Hervé F (2005) Metamorphic P-T constraints for non-coaxial ductile flow of Jurassic pyroclastic deposits: key evidence for the closure of the Rocas Verdes Basin in Southern Chile. 6th international symposium on andean geodynamics (ISAG 2005, Barcelona)Google Scholar
  20. Cantarero I, Lanari P, Vidal O, Alias G, Travé A, Baqués V (2013) Long-term fluid circulation in extensional faults in the central catalan coastal ranges: P-T constraints from neoformed chlorite and K-white mica. Int J Earth Sci. doi: 10.1007/s00531-013-0963-8
  21. Cathelineau M (1988) Cation site occupancy in chlorites and illites as function of temperature. Clay Miner 23:471–485CrossRefGoogle Scholar
  22. Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244CrossRefGoogle Scholar
  23. Chopin C (1979) De la Vanoise au Grand Paradis, une approche pétrographique et radiochronologique de la signification géodynamique du métamorphisme de haute pression. PhD thesis, University of Pierre et Marie Curie Paris VIGoogle Scholar
  24. Coggon R, Holland T (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metam Geol 20:683–696CrossRefGoogle Scholar
  25. Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541CrossRefGoogle Scholar
  26. Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst 10:1–19CrossRefGoogle Scholar
  27. Connolly JAD, Petrini K (2002) An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J Metam Geol 20:697–708CrossRefGoogle Scholar
  28. de Andrade V, Vidal O, Lewin E, O’Brien P, Agard P (2006) Quantification of electron microprobe compositional maps of rock thin sections: an optimized method and examples. J Metam Geol 24:655–668CrossRefGoogle Scholar
  29. de Andrade V, Susini J, Salomé M, Beraldin O, Rigault C, Heymes T, Lewin E, Vidal O (2011) Submicrometer hyperspectral X-ray imaging of heterogeneous rocks and geomaterials: applications at the Fe k-edge. Anal Chemist 83:4220–4227CrossRefGoogle Scholar
  30. de Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Miner 95:1006–1016CrossRefGoogle Scholar
  31. de Caritat P, Hutcheon I, Walshe J (1993) Chlorite geothermometry: a review. Clays Clay Miner 41:219–239CrossRefGoogle Scholar
  32. Dolejs D, Wagner T (2008) Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si–Al–Fe–Mg–Ca–Na–K–H–O–Cl at elevated temperatures and pressures: implications for hydrothermal mass transfer in granitic rocks. Geochim Cosmochim Acta 72:526–553CrossRefGoogle Scholar
  33. Dubacq B, Vidal O, de Andrade V (2009) Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates. Contrib Mineral Petrol 159:159–174CrossRefGoogle Scholar
  34. Franceschelli M, Mellini M, Memmi I (1989) Sudoite, a rock-forming mineral in Verrucano from the Northern Apennines (Italy) and the sudoite–chloritoid–pyrophyllite assemblage in prograde metamorphism. Contrib Mineral Petrol 101:274–279CrossRefGoogle Scholar
  35. Fransolet A, Schreyer W (1984) Sudoite, di/trioctahedral chlorite: a stable low-temperature phase in the system MgO–Al2O3–SiO2–H2O. Contrib Mineral Petrol 86:409–417CrossRefGoogle Scholar
  36. Gabalda S, Beyssac O, Jolivet L, Agard P, Chopin C (2009) Thermal structure of a fossil subduction wedge in the Western Alps. Terra Nova 21:28–34CrossRefGoogle Scholar
  37. Ganne J, Bussy F, Vidal O (2003) Multi-stage garnet in the internal Briançonnais basement (Ambin Massif, Savoy): new petrological constraints on the blueschist-facies metamorphism in the Western Alps and tectonic implications. J Petrol 44:1281Google Scholar
  38. Ganne J, de Andrade V, Weinberg RF, Vidal O, Dubacq B, Kagambega N, Naba S, Baratoux L, Jessell M, Allibon J (2012) Modern-style plate subduction preserved in the Palaeoproterozoic West African craton. Nat Geosci 5:60–65CrossRefGoogle Scholar
  39. Goffé B (1982) Définition du faciès Fe-Mg carpholite–chloritoid, un marqueur du métamorphisme de HP-BT dans les métasédiments alumineux. PhD thesis, Université de Paris VIGoogle Scholar
  40. Goffé B, Bousquet R (1997) Ferrocarpholite, chloritoïde et lawsonite dans les métapélites des unités du Versoyen et du Petit St Bernard (zone valaisanne, Alpes occidentales). Schweizer Mineral Petrogr Mitt 77:137–147Google Scholar
  41. Goffé B, Michard A, Kienast JR, Le Mer O (1988) A case of obduction-related high pressure, low temperature metamorphism in upper crustal nappes, Arabian continental margin. Oman: P-T paths and kinematic interpretation. Tectonophys 151:363–386CrossRefGoogle Scholar
  42. Grosch EG, Vidal O, Abu-Alam T, McLoughlin N (2012) PT-constraints on the metamorphic evolution of the Paleoarchean Kromberg type-section, Barberton Greenstone Belt, South Africa. J Petrol 53:513–545CrossRefGoogle Scholar
  43. Halter WH, Williams-Jones AE, Kontak DJ (1998) Modeling fluid-rock interaction during greizenization at the East Kemptville tin deposit: implications for mineralization. Chem Geol 150:1–17CrossRefGoogle Scholar
  44. Hannula K, Lackey J, Mattox E, Mcgrath G, Onasch E, Werteim J (1999) Syn-tectonic pluton intrusion during contractional deformation: microstructural and metamorphic evidence from the aureole of the Acadian Victory Pluton, north-eastern Vermont, USA. J Metam Geol 17:271–286CrossRefGoogle Scholar
  45. Hillier S, Velde B (1991) Octahedral occupancy and chemical composition of diagenetic (low-temperature) chlorites. Clay Miner 26:149–168CrossRefGoogle Scholar
  46. Hoisch T (2000) Conditions of metamorphism in lower-plate rocks at Bare Mountain, Nevada—implications for extensional faulting. Geol Geophys Charact Stud Yucca Mt Nev 58:1–23Google Scholar
  47. Holland T, Powell R (1996a) Thermodynamics of order–disorder in minerals. I: symmetric formalism applied to minerals of fixed composition. Am Miner 81:1413–1424Google Scholar
  48. Holland T, Powell R (1996b) Thermodynamics of order–disorder in minerals. II: symmetric formalism applied to solid solutions. Am Miner 81:1425–1437Google Scholar
  49. Holland T, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metam Geol 16:309–343CrossRefGoogle Scholar
  50. Holland T, Baker J, Powell R (1998) Mixing properties and activity-composition and relationships of chlorites in the system MgO–FeO–Al2O3–SiO2–H2O. Eur J Mineral 10:395–406CrossRefGoogle Scholar
  51. Inoue A, Meunier A, Patrier-Mas P, Rigault C, Beaufort D, Vieillard P (2009) Application of chemical geothermometry to low-temperature trioctahedral chlorites. Clays Clay Miner 57:371–382CrossRefGoogle Scholar
  52. Inoue A, Kurokawa K, Hatta T (2010) Application of chlorite geothermometry to hydrothermal alteration in Toyoha geothermal system, southwestern Hokkaido, Japan. Res Geol 60:52–70CrossRefGoogle Scholar
  53. Jowett E (1991) Fitting iron and magnesium into the hydrothermal chlorite geothermometer. Program Abstr 16:A62Google Scholar
  54. Karpov IK, Chudnenko KV, Kulik DA (1997) Modeling chemical mass transfer in geochemical processes: thermodynamic relations, conditions of equilibria, and numerical algorithms. Am J Sci 297:767–806CrossRefGoogle Scholar
  55. Kranidiotis P, MacLean W (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ Geol 82:1898–1911CrossRefGoogle Scholar
  56. Kulik DA, Wagner T, Dmytrieva SV, Kosakowski G, Hingerl FF, Chudnenko KV, Berner U (2013) GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput Geosci 17:1–24Google Scholar
  57. Lacroix B, Charpentier D, Buatier M, Vennemann T, Labaume P, Adatte T, Trave A, Dubois M (2012) Formation of chlorite during thrust fault reactivation. Record of fluid origin and P-T conditions in the Monte Perdido thrust fault (southern Pyrenees). Contrib Mineral Petrol 163:1083–1102CrossRefGoogle Scholar
  58. Lanari P (2012) P-T mapping in metamorphic rocks. Applications to the Alps and the Himalaya. Ph.D. Thesis, University of Grenoble, p 544Google Scholar
  59. Lanari P, Guillot S, Schwartz S, Vidal O, Tricart P, Riel N, Beyssac O (2012) Diachronous evolution of the alpine continental subduction wedge: evidence from P-T estimates in the Briançonnais Zone houillère (France—Western Alps). J Geodyn 56–57:39–54CrossRefGoogle Scholar
  60. Lanari P, Riel N, Guillot S, Vidal O, Schwartz S, Pêcher A, Hattori K (2013a) Deciphering high-pressure metamorphism in collisional context using microprobe-mapping methods: application to the Stak eclogitic massif (NW Himalaya). Geology 41:111–114CrossRefGoogle Scholar
  61. Lanari P, Rolland Y, Schwartz S, Vidal O, Guillot S, Tricart P, Dumont T (2013b) P-T-t estimation of syn-kinematic strain in low-grade quartz-feldspar bearing rocks using thermodynamic modeling and 40Ar/39Ar dating techniques: example of the Plan-de-Phasy shear zone unit (Briançonnais Zone, Western Alps). Terra Nova. doi: 10.1111/ter.12079
  62. Lanari P, Vidal O, de Andrade V, Dubacq B, Lewin E, Grosch E, Schwartz S (2014) XMapTools: a MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry. Comp Geosci 62:227–240CrossRefGoogle Scholar
  63. Le Hébel F, Vidal O, Kienast JR, Gapais D (2002) Les «Porphyroïdes» de Bretagne méridionale: une unité de HP-BT dans la chaîne Hercynienne. CR Académie des Sciences, Géoscience 334:205–211Google Scholar
  64. Malasoma A, Marroni M (2007) HP/LT metamorphism in the Volparone Breccia (Northern Corsica, France): evidence for involvement of the Europe/Corsica continental margin in the Alpine subdution zone. J Metam Geol 25:529–545CrossRefGoogle Scholar
  65. Martin C, Debaille V, Lanari P, Goderist S, Vanhaecke F, Vidal O, Claeys P (2013) REE and Hf distribution among mineral phases in the CV-CK clan: a way to explain present-day Hf isotopic variations in chondrites. Geochim Cosmochim Acta 120:495–513Google Scholar
  66. Moazzen M (2004) Chlorite–chloritoid–garnet equilibria and geothermometry in the Sanandaj–Sirjan metamorphic belt, southern Iran. Iran J Sci Technol 28:1–14Google Scholar
  67. Mountain BW, Williams-Jones AE (1995) Mass transfer and the path of metasomatic reactions in mesothermal gold deposits: an example from Flambeau Lake, Ontario. Econ Geol 91:302–321CrossRefGoogle Scholar
  68. Muñoz M, De Andrade V, Vidal O, Lewin E, Pascarelli S, Susini J (2006) Redox and speciation micromapping using dispersive X-ray absorption spectroscopy: application to iron in chlorite mineral of a metamorphic rock thin section. Geochem Geophys Geosyst 7:Q11020CrossRefGoogle Scholar
  69. Muñoz M, Vidal O, Marcaillou C, Pascarelli O, Mathon O, Farges F (2013) Iron oxidation state in phyllosilicate single crystals using Fe-K pre-edge and XANES spectroscopy: effects of the linear polarization of the synchrotron X-ray beam. Am Mineral 98(7):1187–1197CrossRefGoogle Scholar
  70. Parra T, Vidal O, Agard P (2002a) A thermodynamic model for Fe–Mg dioctahedral K white micas using data from phase-equilibrium experiments and natural pelitic assemblages. Contrib Mineral Petrol 143:706–732CrossRefGoogle Scholar
  71. Parra T, Vidal O, Jolivet L (2002b) Relation between the intensity of deformation and retrogression in blueschist metapelites of Tinos Island (Greece) evidenced by chlorite-mica local equilibria. Lithos 63:41–66CrossRefGoogle Scholar
  72. Percival S, Kodama H (1989) Sudoite from Cigar Lake, Saskatchewan. Can Mineral 27:633–641Google Scholar
  73. Plissart G, Femenias O, Maruntiu M, Diot H, Demaiffe D (2009) Mineralogy and geo- thermometry of grabbro-derived listevenites in the Tisovita-Iutu ophiolite, Southwestern Romania. Can Mineral 47:81–105CrossRefGoogle Scholar
  74. Pourteau A, Sudo M, Candan O, Lanari P, Vidal O, Oberhänsli R (2013) Neotethys closure history of Anatolia: insights from 40Ar-39Ar geochronology and P-T estimation in high pressure metasedimentary rocks. J Metam Geol 31:585–606CrossRefGoogle Scholar
  75. Powell R, Holland T (1993) On the formulation of simple mixing models for complex phases. Am Miner 78:1174–1180Google Scholar
  76. Powell R, Holland T (1999) Relating formulations of the thermodynamics of mineral solid solutions; activity modeling of pyroxenes, amphiboles, and micas. Am Miner 84:1–14Google Scholar
  77. Powell R, Holland TJB (2008) On thermobarometry. J Metam Geol 26:155–179CrossRefGoogle Scholar
  78. Powell R, Holland TJB, Worley B (1998) Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J Metam Geol 16:577–588CrossRefGoogle Scholar
  79. Rimmelé G, Parra T, Goffé B, Oberhänsli R, Jolivet L, Candan O (2006) Exhumation paths of high-pressure–low-temperature metamorphic rocks from the Lycian nappes and the menderes massif (sw turkey): a multi-equilibrium approach. J Petrol 46:641–669CrossRefGoogle Scholar
  80. Rolland Y, Carrio-Schaffhauser E, Sheppard S, Pêcher A, Esclauze L (2006) Metamorphic zoning and geodynamic evolution of an inverted crustal section (Karakorum margin, N Pakistan), evidence for two metamorphic events. Intern J Earth Sci 95:288–305CrossRefGoogle Scholar
  81. Russo S, Cutrupia D, Di Bella M, Minutoli C (2006) High-pressure metamorphism in southern Calabria, Italy: the Cardeto chlorite-garnet metapelites. Period Mineral 75:23–42Google Scholar
  82. Saravanan CS, Mishra B, Jairam MS (2009) P-T conditions of mineralization in the Jonnagiri granitoid-hosted gold deposit, eastern Dharwar Craton, southern India: constraints from fluid inclusions and chlorite thermometry. Ore Geol Rev 36:333–349CrossRefGoogle Scholar
  83. Schmidt D, Schmidt S, Mullis J, Ferreiro Mählmann R, Frey M (1997) Very low grade metamorphism of the Taveyanne formation of western Switzerland. Contrib Mineral Petrol 129:385–403CrossRefGoogle Scholar
  84. Schwartz S, Tricart P, Lardeaux JM, Guillot S, Vidal O (2009) Late tectonic and metamorphic evolution of the Piedmont accretionary wedge (Queyras Schistes lustés, western Alps): evidences for tilting during Alpine collision. GSA Bull 121:502–518CrossRefGoogle Scholar
  85. Serafimovski T, Dolenec T, Tasev G (2006) Actinolite-phengite-chlorite metasomatites from the Toranica Pb-Zn ore deposit in Macedonia. Mater Geoenviron 53:445–453Google Scholar
  86. Shinjoe H, Goto A, Kagitani M, Sakai C (2009) Ca-Al hydrous silicates in the chlorite-grade pelitic schists in Sanbagawa metamorphic belt and a petrogenetic analysis in the model mixed-volatile system. J Mineral Petrol Sci 104:263–275CrossRefGoogle Scholar
  87. Tarantola A, Mullis J, Guillaume D, Dubessy J, de Capitani C, Adbelmoula M (2009) Oxidation of CH4 to CO2 and H2O by chloritization of detrital biotite at 270 C in the external part of the Central Alps, Switzerland. Lithos 112:497–510CrossRefGoogle Scholar
  88. Theye T, Seidel E (1991) Petrology of low-grade high-pressure metapelites from the External Helenides (Crete, Peloponnese). A case study with attention to sodic minerals. Eur J Mineral 3:343–366CrossRefGoogle Scholar
  89. Theye T, Seidel E, Vidal O (1992) Carpholite, sudoite and chloritoid in low-grade high-pressure metapelites from Crete and the Pelopollese, Greece. Eur J Mineral 4:487–507CrossRefGoogle Scholar
  90. Trotet F, Vidal O, Jolivet L (2001) Exhumation of Syros and Sifnos metamorphic rocks (Cyclades, Greece). New constraints on the P-T paths. Eur J Mineral 13:901–920CrossRefGoogle Scholar
  91. Verlaguet A, Goffé B, Brunet F, Poinssot C, Vidal O, Findling N, Menut D (2011) Metamorphic veining and mass transfer in a chemically closed system: a case study in Alpine metabauxites (western Vanoise). J Metam Geol 29:275–300CrossRefGoogle Scholar
  92. Vidal O, Parra T (2000) Exhumation paths of high-pressure metapelites obtained from local equilibria for chlorite–phengite assemblages. Geol J 35:139–161CrossRefGoogle Scholar
  93. Vidal O, Goffé B, Theye T (1992) Experimental study of the stability of sudoite and magnesiocarpholite and calculation of a new petrogenetic grid for the system FeO–MgO–Al2O3–SiO2–H2O. J Metam Geol 10:603–614CrossRefGoogle Scholar
  94. Vidal O, Goffé B, Bousquet R, Parra T (1999) Calibration and testing of an empirical chloritoid-chlorite Mg–Fe exchange thermometer and thermodynamic data for daphnite. J Metam Geol 17:25–39CrossRefGoogle Scholar
  95. Vidal O, Parra T, Trotet F (2001) A thermodynamic model for Fe–Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100 to 600 C, 1 to 25 kbar range. Am J Sci 301:557–592CrossRefGoogle Scholar
  96. Vidal O, Parra T, Vieillard P (2005) Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: application to natural examples and possible role of oxidation. Am Miner 90:347–358CrossRefGoogle Scholar
  97. Vidal O, de Andrade V, Lewin E, Muñoz M, Parra T, Pascarelli S (2006) P-T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). J Metam Geol 24:669–683CrossRefGoogle Scholar
  98. Wagner T, Kulik DA, Hingerl F, Dmytrieva SV (2012) GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models. Can Mineral 50:1173–1195CrossRefGoogle Scholar
  99. Walshe JL (1986) A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Econ Geol 81:681–703CrossRefGoogle Scholar
  100. Yamato P, Agard P, Burov E, Le Pourhiet L, Jolivet L, Tiberi C (2007) Burial and exhumation in a subduction wedge: mutual constraints from thermomechanical modeling and natural P-T-t data (Schistes Lustrés, western Alps). J Geophys Res 112:B07410Google Scholar
  101. Zang W, Fyfe W (1995) Chloritization of the hydrothermally altered bedrock at the Igarape Bahia gold deposit, Carajas, Brazil. Mineral Deposita 30:30–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Geological SciencesUniversity of BernBernSwitzerland
  2. 2.Division of Geology, Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
  3. 3.ISTerre, CNRSUniversity of Grenoble 1GrenobleFrance

Personalised recommendations