Correlated δ18O and [Ti] in lunar zircons: a terrestrial perspective for magma temperatures and water content on the Moon

  • John W. ValleyEmail author
  • Michael J. Spicuzza
  • Takayuki Ushikubo
Original Paper


Zircon grains were separated from lunar regolith and rocks returned from four Apollo landing sites, and analyzed in situ by secondary ion mass spectrometry. Many regolith zircons preserve magmatic δ18O and trace element compositions and, although out of petrologic context, represent a relatively unexplored resource for study of the Moon and possibly other bodies in the solar system. The combination of oxygen isotope ratios and [Ti] provides a unique geochemical signature that identifies zircons from the Moon. The oxygen isotope ratios of lunar zircons are remarkably constant and unexpectedly higher in δ18O (5.61 ± 0.07 ‰ VSMOW) than zircons from Earth’s oceanic crust (5.20 ± 0.03 ‰) even though mare basalt whole-rock samples are nearly the same in δ18O as oceanic basalts on Earth (~5.6 ‰). Thus, the average fractionation of oxygen isotopes between primitive basalt and zircon is smaller on the Moon [Δ18O(WR-Zrc) = 0.08 ± 0.09 ‰] than on Earth (0.37 ± 0.04 ‰). The smaller fractionations on the Moon suggest higher temperatures of zircon crystallization in lunar magmas and are consistent with higher [Ti] in lunar zircons. Phase equilibria estimates also indicate high temperatures for lunar magmas, but not specifically for evolved zircon-forming melts. If the solidus temperature of a given magma is a function of its water content, then so is the crystallization temperature of any zircon forming in that melt. The systematic nature of O and Ti data for lunar zircons suggests a model based on the following observations. Many of the analyzed lunar zircons are likely from K, rare earth elements, P (KREEP)-Zr-rich magmas. Zircon does not saturate in normal mafic magmas; igneous zircons in mafic rocks are typically late and formed in the last most evolved portion of melts. Even if initial bulk water content is moderately low, the late zircon-forming melt can concentrate water locally. In general, water lowers crystallization temperatures, in which case late igneous zircon can form at significantly lower temperatures than the solidus inferred for a bulk-rock composition. Although lunar basalts could readily lose H2 to space during eruption, lowering water fugacity; the morphology, large size, and presence in plutonic rocks suggest that many zircons crystallized at depths that retarded degassing. In this case, the crystallization temperatures of zircons are a sensitive monitor of the water content of the parental magma as well as the evolved zircon-forming melt. If the smaller Δ18O(zircon–mare basalt) values reported here are characteristic of the Moon, then that would suggest that even highly evolved zircon-forming magmas on the Moon crystallized at higher temperature than similar magmas on Earth and that magmas, though not necessarily water-free, were generally drier on the Moon.


Moon Zircon Oxygen isotopes Ti KREEP Water 



Noriko Kita, Kouki Kitajima, John Fournelle, Brian Hess, and Jim Kern assisted with SIMS and SEM analysis, and sample preparation. Mary Diman drafted figures. We thank Brian Beard, Aaron Cavosie, Craig Grimes, Noriko Kita, Larry Taylor, Marc Norman, Trevor Ireland, and Allan Treiman for helpful conversations. This study was funded by NASA (NNH07ZDA001N-LASER). WiscSIMS is partially supported by the US National Science Foundation (NSF-EAR1053466).

Supplementary material

410_2013_956_MOESM1_ESM.doc (530 kb)
Supplementary material 1 (DOC 530 kb)


  1. Armstrong JC, Wells LE, Gonzalez G (2002) Rummaging through Earth’s attic for remains of ancient life. Icarus 160:183–196CrossRefGoogle Scholar
  2. Barnes JJ, Franchi IA, Anand A, Tartese R, Starkey NA, Koike M, Sano Y, Russell SS (2013) Accurate and precise measurements of D/H ratio and hydroxyl content in lunar apatites using nanoSIMS. Chem Geol 337–338:48–55CrossRefGoogle Scholar
  3. Bindeman IN, Serebryakov NS (2011) Geology, petrology and O and H isotope geochemistry of remarkably 18O depleted Paleoproterozoic rocks of the Belomorian Belt, Karelia, Russia, attributed to global glaciation 2.4 Ga. Earth Planet Sci Lett 306:163–174CrossRefGoogle Scholar
  4. Boyce JW, Liu Y, Rossman GR, Guan Y, Eiler JM, Stolper EM, Taylor LA (2010) Lunar apatite with terrestrial volatile abundances. Nature 466:466–470CrossRefGoogle Scholar
  5. Burnham AD, Berry AJ (2012) An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochim Cosmochim Acta 95:196–212CrossRefGoogle Scholar
  6. Canup RM (2004) Dynamics of lunar formation. Annu Rev Astron Astrophys 42:441–475CrossRefGoogle Scholar
  7. Cavosie AJ, Valley JW, Wilde SA (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet Sci Lett 235:663–681CrossRefGoogle Scholar
  8. Cavosie AJ, Kita NT, Valley JW (2009) Primitive oxygen isotope ratio recorded in magmatic zircons from the Mid-Atlantic Ridge. Am Mineral 94:926–934CrossRefGoogle Scholar
  9. Cavosie AJ, Valley JW, Kita NT, Spicuzza MJ, Ushikubo T, Wilde SA (2011) The origin of high δ18O zircons: marbles, megacrysts, and metamorphism. Contrib Mineral Petrol 162:961–974CrossRefGoogle Scholar
  10. Clayton RN (2007) Isotopes: from Earth to the solar system. Annu Rev Earth Planet Sci 35:1–19CrossRefGoogle Scholar
  11. Cooper KM, Eiler JM, Sims KWW, Langmuir CH (2009) Distribution of recycled crust within the upper mantle: Insights from the oxygen isotope composition of MORB from the Australian-Antarctic Discordance. Geochem Geophys Geosyst 10, Q12004, 26 pGoogle Scholar
  12. Dickinson JE, Hess PC (1982) Zircon saturation in lunar basalts and granites. Earth Planet Sci 57:336–344CrossRefGoogle Scholar
  13. Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364CrossRefGoogle Scholar
  14. Elkins-Tanton LT, Grove TL (2011) Water (hydrogen) in the lunar mantle: results from petrology and magma ocean modeling. Earth Planet Sci Lett 307:173–179CrossRefGoogle Scholar
  15. Elkins-Tanton LT, Chatterjee N, Grove TL (2003) Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses. Meteorit Planet Sci 38:515–527CrossRefGoogle Scholar
  16. Ferriss EDA, Essene EJ, Becker U (2008) Computational study of the effect of pressure on the Ti-in-zircon thermometer. Eur J Mineral 20:745–755CrossRefGoogle Scholar
  17. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr in rutile thermometers. Contrib Mineral Petrol 154:429–437CrossRefGoogle Scholar
  18. Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156:197–215CrossRefGoogle Scholar
  19. Grange ML, Nemchin AA, Pidgeon RT, Timms N, Muhling JR, Kennedy AK (2009) Thermal history recorded by the Apollo 17 impact melt breccia 73217. Geochim Cosmochim Acta 73:3093–3107CrossRefGoogle Scholar
  20. Grange ML, Nemchin AA, Timms N, Pidgeon RT, Meyer C (2011) Complex magmatic and impact history prior to 4.1 Ga recorded in zircon from Apollo 17 South Massif aphanitic breccia 73235. Geochim Cosmochim Acta 75:2213–2232CrossRefGoogle Scholar
  21. Grange ML, Pidgeon RT, Nemchin AA, Timms NE, Meyer C (2013) Interpreting the U-Pb data from primary and secondary features in lunar zircon. Geochim Cosmochim Acta 101:112–132CrossRefGoogle Scholar
  22. Green DH, Ringwood AE, Hibberson WO, Ware NG (1975) Experimental petrology of Apollo 17 mare basalts. Lunar Planet Sci VI:871–893Google Scholar
  23. Greenwood JP, Itoh S, Sakamoto N, Warren P, Taylor L, Yurimoto H (2011) Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nat Geosci 4:79–82CrossRefGoogle Scholar
  24. Grimes CB, Ushikubo T, John BE, Valley JW (2011) Uniformly mantle-like δ18O in zircons from oceanic plagiogranites and gabbros. Contrib Mineral Petrol 161:13–33CrossRefGoogle Scholar
  25. Hallis LJ, Anand M, Greenwood RC, Miller MF, Franchi IA, Russell SS (2010) The oxygen isotope composition, petrology and geochemistry of mare basalts: evidence for large-scale compositional variation in the lunar mantle. Geochim Cosmochim Acta 74:6885–6899CrossRefGoogle Scholar
  26. Hauri EH, Weinreich T, Saal AE, Rutherford MC, Van Orman JA (2011) High pre-eruptive water contents preserved in lunar melt inclusions. Science 333:213–215CrossRefGoogle Scholar
  27. Hofmann AE, Valley JW, Watson EB, Cavosie AJ, Eiler JM (2009) Sub-micron scale distributions of trace elements in zircon. Contrib Mineral Petrol 158:317–335CrossRefGoogle Scholar
  28. Hanchar JM, Hoskin, PWO (eds) (2003) Zircon, Rev Mineral Geochem 53:500Google Scholar
  29. Hui H, Peslier AH, Zhang Y, Neal CR (2013) Water in lunar anorthosites and evidence for a wet early Moon. Nat Geosci 6:177–180CrossRefGoogle Scholar
  30. Ireland TR, Wlotzka F (1992) The oldest zircons in the solar system. Earth Planet Sci Lett 109:1–10CrossRefGoogle Scholar
  31. Kelly JL, Fu B, Kita NT, Valley JW (2007) Optically continuous silcrete cements of the St. Peter Sandstone: oxygen isotope analysis by ion microprobe and laser fluorination. Geochim Cosmochim Acta 71:3812–3832CrossRefGoogle Scholar
  32. Kita NT, Ushikubo T, Fu B, Valley JW (2009) High precision SIMS oxygen isotope analyses and the effect of sample topography. Chem Geol 264:43–57CrossRefGoogle Scholar
  33. Koepke J, Berndt J, Feig ST, Holtz F (2007) The formation of SiO2-rich melts within deep oceanic crust by hydrous partial melting of gabbros. Contrib Mineral Petrol 153:67–84CrossRefGoogle Scholar
  34. Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic magma systems, crustal recycling, and alteration in the Central Sierra Nevada Batholith: the oxygen isotope record. J Petrol 49:1397–1426CrossRefGoogle Scholar
  35. Liu Y, Spicuzza MJ, Craddock PR, Day JMD, Valley JW, Dauphas N, Taylor LA (2010) Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions. Geochim Cosmochim Acta 74:6249–6262CrossRefGoogle Scholar
  36. Liu D, Jolliff BL, Zeigler RA, Korotev RL, Wan Y, Xie H, Zhang Y, Dong C, Wang W (2012a) Comparative zircon U–Pb geochronology of impact melt breccias from Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact. Earth Planet Sci Lett 319–320:277–286CrossRefGoogle Scholar
  37. Liu Y, Guan Y, Zhang Y, Rossman GR, Eiler JM, Taylor LA (2012b) Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nat Geosci 5:779–782CrossRefGoogle Scholar
  38. Lovering JF, Wark DA (1974) Rare earth element fractionation in phases crystallizing from Lunar late-stage magmatic liquids. Lunar Planet Sci 5:463–465Google Scholar
  39. Lucey P, Korotev RL, Gillis JJ, Taylor LA, Lawrence D, Campbell BA, Elphic R, Feldman B, Hood LL, Hunten D (2006) Understanding the lunar surface and space-Moon interactions. Rev Mineral Geochem 60:83–219CrossRefGoogle Scholar
  40. Mattey D, Lowry D, Macpherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241CrossRefGoogle Scholar
  41. McCubbin FM, Steele A, Nekvasil H, Schneiders A, Rose T, Fries M, Carpenter PK, Jolliff BL (2010) Detection of structurally bound hydroxyl from Apollo Mare basalt 15058, 128 using TOF-SIMS. Am Mineral 95:1141–1150CrossRefGoogle Scholar
  42. McCubbin FM, Jolliff BL, Nekvasil H, Carpenter PK, Zeigler RA, Steele A, Elardo SM, Lindsley DH (2011) Fluorine and chlorine abundances in lunar apatite: implications for heterogeneous distributions of magmatic volatiles in the lunar interior. Geochim Cosmochim Acta 75:5073–5093CrossRefGoogle Scholar
  43. McCubbin FM, Hauri EH, Elardo SM, Vander Kaaden KE, Wang J, Shearer CK (2012) Hydrous melting of the Martian mantle produced both depleted and enriched shergottites. Geology 40:683–686CrossRefGoogle Scholar
  44. Meyer C, Williams IS, Compston W (1996) Uranium–lead ages for lunar zircons: evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga. Meteorit Planet Sci 31:370–387CrossRefGoogle Scholar
  45. Nemchin AA, Whitehouse MJ, Pidgeon RT, Meyer C (2006a) Oxygen isotopic signature of 4.4–3.9 Ga zircons as a monitor of differentiation processes on the Moon. Geochim Cosmochim Acta 70:1864–1872CrossRefGoogle Scholar
  46. Nemchin AA, Whitehouse MJ, Pidgeon RT, Meyer C (2006b) Heavy isotopic composition of oxygen in zircon from soil sample 14163: Lunar perspective of an early ocean on the Earth. Lunar Planet Sci XXXVII:1593Google Scholar
  47. Nemchin AA, Grange ML, Pidgeon RT (2010) Distribution of rare earth elements in lunar zircon. Am Mineral 95:273–283CrossRefGoogle Scholar
  48. Nemchin AA, Grange ML, Pidgeon RT, Meyer C (2012) Lunar zirconology. Aust J Earth Sci 59:277–290CrossRefGoogle Scholar
  49. Onuma N, Clayton RN and Mayeda TK (1970) Oxygen isotope fractionation between minerals and an estimate of the temperature of formation. In: Proceedings of the Apollo 11 Lunar science conference, Geochim Cosmochim Acta 2 (Suppl 1), pp 1429–1434Google Scholar
  50. Page FZ, Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen V, Basei MAS, Valley JW (2007) Zircons from kimberlites: new insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim Cosmochim Acta 71:3887–3903CrossRefGoogle Scholar
  51. Papike JJ, Ryder G Shearer CK (1998) Lunar Samples. Rev Mineral Geochem 36:5-001–5-234Google Scholar
  52. Pearce JG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (2007) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144CrossRefGoogle Scholar
  53. Pidgeon RT, Nemchin AA, Kamo SL (2011) Comparison of structures in zircons from lunar and terrestrial impactites. Can J Earth Sci 48:107–116CrossRefGoogle Scholar
  54. Ringwood AE, Kesson SE (1976) A dynamic model for mare basalt petrogenesis. In: Proceedings of the 7th Lunar Science Conference, pp 1697–1722Google Scholar
  55. Saal AE, Hauri EH, Cascio ML, Van Orman JA, Rutherford MC, Cooper RF (2008) Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454:192–195CrossRefGoogle Scholar
  56. Saal AE, Hauri EH, Van Orman JA, Rutherford MJ (2013) Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340:1317–1320CrossRefGoogle Scholar
  57. Schmitt AK, Perfit MR, Rubin KH, Stockli DF, Smith MC, Cotsonika LA, Zellmer GF, Ridley WI, Lovera OM (2011) Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology. Earth Planet Sci Lett 302:349–358CrossRefGoogle Scholar
  58. Sharp ZD, Shearer CK, McKeegan KD, Barnes JD, Wang YQ (2010) The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329:1050–1053CrossRefGoogle Scholar
  59. Sharp ZD, McCubbin FM, Shearer CK (2013) A hydrogen-based oxidation mechanism relevant to planetary formation. Earth Planet Sci Lett 380:88–97CrossRefGoogle Scholar
  60. Shearer CK, Hess PC, Wieczorek MA, Pritchard ME, Parmentier M, Borg LE, Longhi J, Elkins-Tanton LT, Neal CR, Antonenko I, Canup RM, Halliday AN, Grove TL, Hager BH, Lee DC, Wiechert U (2006) Thermal and magmatic evolution of the Moon. Rev Mineral Geochem 60:365–518CrossRefGoogle Scholar
  61. Snyder GA, Taylor LA, Halliday AN (1995) Chronology and petrogenesis of the lunar highlands alkali suite: cumulates from KREEP basalt crystallization. Geochim Cosmochim Acta 59:1185–1203CrossRefGoogle Scholar
  62. Spera FJ (1992) Lunar magma transport phenomena. Geochim Cosmochim Acta 56:2253–2265CrossRefGoogle Scholar
  63. Spicuzza MJ, Day JMD, Taylor LA, Valley JW (2007) Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet Sci Lett 253:254–265CrossRefGoogle Scholar
  64. Spicuzza MJ, Valley JW, Kitajima K, Ushikubo T (2011) Oxygen isotope ratios and trace element concentrations in zircons from lunar rocks and regolith. Lunar Planet Sci XLII:2445Google Scholar
  65. Tartèse R, Anand M, Barnes JJ, Starkey NA, Franchi IA, Sano Y (2013) The abundance, distribution, and isotopic composition of Hydrogen in the Moon as revealed by basaltic lunar samples: Implications for the volatile inventory of the Moon. Geochim Cosmochim Acta 122:58–74CrossRefGoogle Scholar
  66. Taylor DJ, McKeegan KD, Harrison TM (2009) Lu-Hf zircon evidence for rapid lunar differentiation. Earth Planet Sci Lett 279:157–264CrossRefGoogle Scholar
  67. Timms NE, Reddy SM, Healy D, Nemchin AA, Grange ML, Pidgeon RT, Hart R (2012) Resolution of impact-related microstructures in lunar zircon: a shock-deformation mechanism map. Meteorit Planet Sci 47:120–141CrossRefGoogle Scholar
  68. Ustunisik G, Nekvasil H, Lindsley D (2011) Differential degassing of H2O, Cl, F, and S: potential effects on lunar apatite. Am Mineral 96:1650–1653CrossRefGoogle Scholar
  69. Valley JW (2003) Oxygen isotopes in zircon. Rev Mineral Geochem 53:343–385CrossRefGoogle Scholar
  70. Valley JW, Kita NT (2009) In situ oxygen isotope geochemistry by ion microprobe. Mineral Assoc Can Short Course 41:19–63Google Scholar
  71. Valley JW, Chiarenzelli J, McLelland JM (1994) Oxygen isotope geochemistry of zircon. Earth Planet Sci Lett 126:187–206CrossRefGoogle Scholar
  72. Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon Megacrysts from Kimberlite: oxygen isotope heterogeneity among mantle melts. Contrib Mineral Petrol 133:1–11CrossRefGoogle Scholar
  73. Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotopes in magmatic zircon. Contrib Mineral Petrol 150:561–580CrossRefGoogle Scholar
  74. Vander Kaaden KE, McCubbin FM, Whitson ES, Hauri EH, Wang J (2012) Partitioning of F, Cl, and H2O between apatite and a synthetic shergottite liquid (QUE 94201) at 1.0 GPa and 990°–1000° C. Lunar Planet Sci Conf 43:1247Google Scholar
  75. Von Knorring O, Hornung G (1961) Hafnian zircons. Nature 190:1098–1099CrossRefGoogle Scholar
  76. Wanless VD, Perfit MR, Ridley WI, Klein E (2010) Dacite petrogenesis on Mid-Ocean Ridges: evidence for oceanic crustal melting and assimilation. J Petrol 51:2377–2410CrossRefGoogle Scholar
  77. Warren PH (1985) The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci 13:201–240CrossRefGoogle Scholar
  78. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304CrossRefGoogle Scholar
  79. Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844CrossRefGoogle Scholar
  80. Whitehouse MJ, Nemchin AA (2009) High precision, high accuracy measurement of oxygen isotopes in a large lunar zircon by SIMS. Chem Geol 261:32–42CrossRefGoogle Scholar
  81. Wiechert U, Halliday AN, Lee D-C, Snyder GA, Taylor LA, Rumble D (2001) Oxygen isotopes and the Moon-forming giant impact. Science 294:345–348CrossRefGoogle Scholar
  82. Wieczorek MA, Jolliff BL, Khan A, Pritchard ME, Weiss BP, Williams JG, Hood LL, Righter K, Neal CR, Shearer CK, McCallum IS, Tompkins S, Hawke BR, Peterson C, Gilliss JJ, Bussey B (2006) Thermal and magmatic evolution of the Moon. Rev Mineral Geochem 60:221–364CrossRefGoogle Scholar
  83. Wielicki MM, Harrison TM, Schmitt AK (2012a) Geochemical signatures and magmatic stability of terrestrial impact produced zircon. Earth Planet Sci Lett 321–322:20–31CrossRefGoogle Scholar
  84. Wielicki MM, Harrison TM, Boehnke P, Schmitt AK (2012b) Modeling zircon saturation within simulated impact events: implications on impact histories of planetary bodies. Lunar Planet Sci 43:2912Google Scholar
  85. Wood JA, Dickey JS, Marvin UB, Powell BN (1970) Lunar anorthosites and a geophysical model of the Moon. In: Proceedings of the Apollo 11 Lunar Science Conference, pp 965–968Google Scholar
  86. Wopenka B, Jolliff BL, Zinner E, Kremser DT (1996) Trace element zoning and incipient metamictization in a lunar zircon: application of three microprobe techniques. Am Mineral 81:902–912Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • John W. Valley
    • 1
    Email author
  • Michael J. Spicuzza
    • 1
  • Takayuki Ushikubo
    • 1
  1. 1.WiscSIMS, Department of GeoscienceUniversity of WisconsinMadisonUSA

Personalised recommendations