Advertisement

Oxidised phase relations of a primitive basalt from Grenada, Lesser Antilles

  • C. C. Stamper
  • E. Melekhova
  • J. D. Blundy
  • R. J. Arculus
  • M. C. S. Humphreys
  • R. A. Brooker
Original Paper

Abstract

A series of liquidus determinations is reported for a primitive arc basalt (15.4 wt % MgO, 45.5 wt % SiO2) from Grenada, Lesser Antilles, at anhydrous, H2O-undersaturated and H2O-saturated conditions in the pressure range 1 atm to 1.7 GPa. \(\hbox{Fe}^{3+}/\Upsigma\hbox{Fe}\) of high-pressure experimental glasses as measured by μXANES ranges from 0.44 to 0.86, corresponding to oxygen fugacities (fO2) between 3.2 and 7.8 log units above the nickel–nickel oxide redox buffer (NNO). 1-atm experiments conducted from NNO − 2.5 to + 3.8 show that increasing fO2 mainly increases the forsterite content (Fo) of olivine and has little effect on phase relations. The crystallisation sequence at lower crustal pressures for all water contents is forsteritic olivine + Cr-rich spinel followed by clinopyroxene. The anhydrous liquidus is depressed by 100 and 120 °C in the presence of 2.9 and 3.8 wt % H2O, respectively. H2O-undersaturated experiments at NNO + 3.2 to + 4.5 produce olivine of equivalent composition to the most primitive olivine phenocrysts in Grenadan picrites (Fo91.4). We conclude that direct mantle melts originating beneath Grenada could be as oxidised as ~NNO + 3, consistent with the uppermost estimates from olivine–spinel oxybarometry of high Mg basalts. μXANES analyses of olivine-bearing experimental glasses are used to develop a semi-empirical oxybarometer based on the value of \({{K}_{D}}_{\rm ol-melt}^{\rm Fe-Mg}\) when all Fe is assumed to be in the Fe2+ state (\({K}_{D}^{{\rm Fe}_T}\)). The oxybarometer is tested on an independent data set and is able to reproduce experimental fO2 to ≤1.2 log units. Experiments also show that the geochemically and petrographically distinct M- and C-series lavas on the island can be produced from hydrous melting of a common picritic source. Low pressures expand the olivine stability field at the expense of clinopyroxene, enriching an evolving melt in CaO and forcing differentiation to take place along a C-series liquid line of descent. Higher pressure conditions allow early and abundant clinopyroxene crystallisation, rapidly depleting the melt in both CaO and MgO, and thus creating the M-series.

Keywords

Grenada Olivine Experimental Arc Redox Oxybarometry 

Notes

Acknowledgments

C.C.S. was supported by a European Research Council (ERC) PhD studentship. E.M., R.A.B and J.D.B. acknowledge support from an ERC Advanced Grant (CRITMAG) and the Leverhulme Trust, and M.C.S.H. from a Royal Society University Research Fellowship. We would like to thank J. Craven for supplying natural samples, C-J. de Hoog for assistance with the Edinburgh ion probe and S. Kearns for help with the Bristol microprobe. We gratefully acknowledge the loan of reference materials (NMNH117393) from the Department of Mineral Sciences, Smithsonian Institution and thank the Diamond Light Source, UK, for beam time. The constructive reviews of C.-T.A. Lee, E. Médard and editor T.L. Grove considerably improved the manuscript and are gratefully acknowledged.

Supplementary material

410_2013_954_MOESM1_ESM.pdf (482 kb)
PDF (482 KB)
410_2013_954_MOESM2_ESM.xlsx (55 kb)
PDF (56 KB)
410_2013_954_MOESM3_ESM.xlsx (65 kb)
PDF (65 KB)
410_2013_954_MOESM4_ESM.xlsx (67 kb)
PDF (67 KB)

References

  1. Arculus R (1975) Melting behavior of two basanites in the range 10-35 kbar and the effect of TiO2 on the olivine-diopside reactions at high pressures. Carnegie Inst Wash Yearb 74:512–515Google Scholar
  2. Arculus R (1976) Geology and geochemistry of the alkali basalt–andesite association of Grenada, Lesser Antilles island arc. Geol Soc Am Bull 87(4):612–624CrossRefGoogle Scholar
  3. Arculus RJ (1973) The alkali basalt, andesite association of Grenada, Lesser Antilles. Unpublished PhD Thesis, University of EdinburghGoogle Scholar
  4. Asimow P, Ghiorso M (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1132Google Scholar
  5. Baker DR, Eggler DH (1987) Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite, and olivine or low-Ca pyroxene from 1 atm to 8 kbar; application to the Aleutian volcanic center of Atka. Am Mineral 72(1–2):12–28Google Scholar
  6. Ballhaus C, Berry R, Green D (1991) High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107(1):27–40CrossRefGoogle Scholar
  7. Barr J, Grove T (2010) AuPdFe ternary solution model and applications to understanding the fO2 of hydrous, high-pressure experiments. Contrib Mineral Petrol 160(5):631–643CrossRefGoogle Scholar
  8. Botcharnikov R, Koepke J, Holtz F, McCammon C, Wilke M (2005) The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochim Cosmochim Acta 69(21):5071–5085CrossRefGoogle Scholar
  9. Bouvier A, Métrich N, Deloule E (2010) Light elements, volatiles, and stable isotopes in basaltic melt inclusions from Grenada, Lesser Antilles: Inferences for magma genesis. Geochem Geophys Geosyst 11(9):Q09,004CrossRefGoogle Scholar
  10. Brandon A, Draper D (1996) Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington, USA. Geochim Cosmochim Acta 60(10):1739–1749CrossRefGoogle Scholar
  11. Brooker R, Holloway J, Hervig R (1998) Reduction in piston-cylinder experiments: the detection of carbon infiltration into platinum capsules. Am Mineral 83:985–994Google Scholar
  12. Bryndzia L, Wood B, Dick H (1989) The oxidation state of the Earth’s sub-oceanic mantle from oxygen thermobarometry of abyssal spinel peridotites. Nature 341(6242):526–527CrossRefGoogle Scholar
  13. Burgisser A, Scaillet B (2007) Redox evolution of a degassing magma rising to the surface. Nature 445(7124):194–197CrossRefGoogle Scholar
  14. Carmichael I (1991) The redox states of basic and silicic magmas: a reflection of their source regions. Contrib Mineral Petrol 106(2):129–141CrossRefGoogle Scholar
  15. Christie D, Carmichael I, Langmuir C (1986) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79(3-4):397–411CrossRefGoogle Scholar
  16. Cottrell E, Kelley K (2011) The oxidation state of Fe in morb glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett 305:270–282CrossRefGoogle Scholar
  17. Cottrell E, Kelley K, Lanzirotti A, Fischer R (2009) High-precision determination of iron oxidation state in silicate glasses using XANES. Chem Geol 268(3-4):167–179CrossRefGoogle Scholar
  18. Crabtree S, Lange R (2011) An evaluation of the effect of degassing on the oxidation state of hydrous andesite and dacite magmas: a comparison of pre- and post-eruptive Fe2+ concentrations. Contrib Mineral Petrol 163:209–224CrossRefGoogle Scholar
  19. Dalton JA, Wood BJ (1993) The partitioning of Fe and Mg between olivine and carbonate and the stability of carbonate under mantle conditions. Contrib Mineral Petrol 114(4):501–509CrossRefGoogle Scholar
  20. Devine J (1995) Petrogenesis of the basalt–andesite–dacite association of Grenada, Lesser Antilles island arc, revisited. J Volcanol Geoth Res 69(1-2):1–33CrossRefGoogle Scholar
  21. Droop G (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51(361):431–435CrossRefGoogle Scholar
  22. Eggins S (1993) Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatu. Contrib Mineral Petrol 114(1):79–100CrossRefGoogle Scholar
  23. Evans K, Elburg M, Kamenetsky V (2012) Oxidation state of subarc mantle. Geology 40(9):783–786CrossRefGoogle Scholar
  24. Falloon T, Green D, Hatton C, Harris K (1988) Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. J Petrol 29(6):1257–1282CrossRefGoogle Scholar
  25. Feig S, Koepke J, Snow J (2010) Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contrib Mineral Petrol 160(4):551–568CrossRefGoogle Scholar
  26. Foley S (2011) A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time. J Petrol 52(7–8):1363–1391CrossRefGoogle Scholar
  27. Frost D, McCammon C (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420CrossRefGoogle Scholar
  28. Gaetani G, Grove T (2003) Experimental constraints on melt generation in the mantle wedge. Am Geophys Monogr 138:107–134CrossRefGoogle Scholar
  29. Gaillard F, Scaillet B, Pichavant M, Bény JM (2001) The effect of water and fO2 on the ferric–ferrous ratio of silicic melts. Chem Geol 174(1):255–273CrossRefGoogle Scholar
  30. Gaillard F, Pichavant M, Scaillet B (2003) Experimental determination of activities of FeO and Fe2O3 components in hydrous silicic melts under oxidizing conditions. Geochim Cosmochim Acta 67(22):4389–4409CrossRefGoogle Scholar
  31. Gee L, Sack R (1988) Experimental petrology of melilite nephelinites. J Petrol 29(6):1233–1255CrossRefGoogle Scholar
  32. Ghiorso M, Sack R (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2):197–212CrossRefGoogle Scholar
  33. Graham A (1980) Genesis of the igneous rock suite of Grenada, Lesser Antilles. Unpublished PhD Thesis, University of EdinburghGoogle Scholar
  34. Green D (1973) Conditions of melting of basanite magma from garnet peridotite. Earth Planet Sci Lett 17(2):456–465CrossRefGoogle Scholar
  35. Gust D, Perfit M (1987) Phase relations of a high-Mg basalt from the Aleutian island arc: implications for primary island arc basalts and high-Al basalts. Contrib Mineral Petrol 97(1):7–18CrossRefGoogle Scholar
  36. Hall L, Brodie J, Wood B, Carroll M (2004) Iron and water losses from hydrous basalts contained in Au80Pd20 capsules at high pressure and temperature. Mineral Mag 68(1):75–81CrossRefGoogle Scholar
  37. Hart S, Davis K (1978) Nickel partitioning between olivine and silicate melt. Earth Planet Sci Lett 40(2):203–219CrossRefGoogle Scholar
  38. Hawkesworth C, O’Nions R, Arculus R (1979) Nd and Sr isotope geochemistry of island arc volcanics, Grenada, Lesser Antilles. Earth Planet Sci Lett 45(2):237–248CrossRefGoogle Scholar
  39. Heath E, Macdonald R, Belkin H, Hawkesworth C, Sigurdsson H (1998) Magmagenesis at Soufriere Volcano, St Vincent, Lesser Antilles Arc. J Petrol 39(10):1721–1764CrossRefGoogle Scholar
  40. Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114(4):477–489CrossRefGoogle Scholar
  41. Holloway J (2004) Redox reactions in seafloor basalts: possible insights into silicic hydrothermal systems. Chem Geol 210(1):225–230CrossRefGoogle Scholar
  42. Hoog J, Hattori K, Hoblitt R (2004) Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines. Contrib Mineral Petrol 146(6):750–761CrossRefGoogle Scholar
  43. Jakobsson S (2012) Oxygen fugacity control in piston-cylinder experiments. Contrib Mineral Petrol 164:397–406CrossRefGoogle Scholar
  44. Jayasuriya KD, O’Neill HSC, Berry AJ, Campbell SJ (2004) A Mössbauer study of the oxidation state of Fe in silicate melts. Am Mineral 89(11–12):1597–1609Google Scholar
  45. Kägi R, Müntener O, Ulmer P, Ottolini L (2005) Piston-cylinder experiments on H2O-undersaturated Fe-bearing systems: an experimental setup approaching fO2 conditions of natural calc-alkaline magmas. Am Mineral 90(4):708–717CrossRefGoogle Scholar
  46. Kelley K, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–608CrossRefGoogle Scholar
  47. Kelley K, Cottrell E (2012) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth Planet Sci Lett 329:109–121CrossRefGoogle Scholar
  48. Kilinc A, Carmichael I, Rivers M, Sack R (1983) The ferric–ferrous ratio of natural silicate liquids equilibrated in air. Contrib Mineral Petrol 83(1–2):136–140CrossRefGoogle Scholar
  49. Klimm K, Blundy J, Green T (2008) Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J Petrol 49(3):523–553CrossRefGoogle Scholar
  50. Kopp H, Weinzierl W, Becel A, Charvis P, Evain M, Flueh E, Gailler A, Galve A, Hirn A, Kandilarov A et al (2011) Deep structure of the central Lesser Antilles Island Arc: relevance for the formation of continental crust. Earth Planet Sci Lett 304:121–134CrossRefGoogle Scholar
  51. Kress V, Carmichael I (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108(1):82–92CrossRefGoogle Scholar
  52. Kushiro I (1969) The system forsterite–diopside–silica with and without water at high pressures. Am J Sci 267:269–294Google Scholar
  53. Kushiro I, Mysen B (2002) A possible effect of melt structure on the Mg–Fe2 + partitioning between olivine and melt. Geochim Cosmochim Acta 66(12):2267–2272CrossRefGoogle Scholar
  54. Lee C, Leeman W, Canil D, Li Z (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46(11):2313–2336CrossRefGoogle Scholar
  55. Lee C, Luffi P, Le Roux V, Dasgupta R, Albaréde F, Leeman W (2010) The redox state of arc mantle using Zn/Fe systematics. Nature 468(7324):681–685CrossRefGoogle Scholar
  56. Lindsley D (1983) Pyroxene thermometry. Am Mineral 68(5-6):477–493Google Scholar
  57. Macdonald R, Hawkesworth C, Heath E (2000) The Lesser Antilles volcanic chain: a study in arc magmatism. Earth Planet Sci Lett 49(1–4):1–76Google Scholar
  58. Mallmann G, O’Neill H (2009) The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol 50(9):1765–1794CrossRefGoogle Scholar
  59. Martel C (2012) Eruption dynamics inferred from microlite crystallization experiments: application to Plinian and dome-forming eruptions of Mt. Pelée (Martinique, Lesser Antilles). J Petrol 53(4):699–725CrossRefGoogle Scholar
  60. Matzen A, Baker M, Beckett J, Stolper E (2011) Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. J Petrol 52(7-8):1243–1263CrossRefGoogle Scholar
  61. McDade P, Wood B, Van Westrenen W, Brooker R, Gudmundsson G, Soulard H, Najorka J, Blundy J (2002) Pressure corrections for a selection of piston-cylinder cell assemblies. Mineral Mag 66(6):1021–1028CrossRefGoogle Scholar
  62. Médard E, Grove TL (2008) The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contrib Mineral Petrol 155(4):417–432CrossRefGoogle Scholar
  63. Médard E, McCammon C, Barr J, Grove T (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93(11–12):1838–1844CrossRefGoogle Scholar
  64. Moore G, Righter K, Carmichael I (1995) The effect of dissolved water on the oxidation state of iron in natural silicate liquids. Contrib Mineral Petrol 120(2):170–179CrossRefGoogle Scholar
  65. O’Neill H, Wall V (1987) The olivine orthopyroxene spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s upper mantle. J Petrol 28(6):1169–1191CrossRefGoogle Scholar
  66. Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229(1):78–95CrossRefGoogle Scholar
  67. Parkinson I, Arculus R (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160(4):409–423CrossRefGoogle Scholar
  68. Parkinson I, Arculus R, Eggins S (2003) Peridotite xenoliths from Grenada, Lesser Antilles Island Arc. Contrib Mineral Petrol 146(2):241–262CrossRefGoogle Scholar
  69. Partzsch G, Lattard D, McCammon C (2004) Mössbauer spectroscopic determination of Fe3+ /Fe2+ in synthetic basaltic glass: a test of empirical fO2 equations under superliquidus and subliquidus conditions. Contrib Mineral Petrol 147(5):565–580CrossRefGoogle Scholar
  70. Pichavant M, MacDonald R (2007) Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol 154(5):535–558CrossRefGoogle Scholar
  71. Pichavant M, Mysen B, MacDonald R (2002) Source and H2O content of high-MgO magmas in island arc settings: an experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc. Geochim Cosmochim Acta 66(12):2193–2209CrossRefGoogle Scholar
  72. Pilet S, Baker M, Stolper E (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320(5878):916–919CrossRefGoogle Scholar
  73. Pilet S, Ulmer P, Villiger S (2010) Liquid line of descent of a basanitic liquid at 1.5 GPa: constraints on the formation of metasomatic veins. Contrib Mineral Petrol 159(5):621–643CrossRefGoogle Scholar
  74. Putirka K, Perfit M, Ryerson F, Jackson M (2007) Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem Geol 241(3-4):177–206CrossRefGoogle Scholar
  75. Roeder P, Emslie R (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29(4):275–289CrossRefGoogle Scholar
  76. Sack R, Carmichael I, Rivers M, Ghiorso M (1981) Ferric–ferrous equilibria in natural silicate liquids at 1 bar. Contrib Mineral Petrol 75(4):369–376CrossRefGoogle Scholar
  77. Shimizu N, Arculus R (1975) Rare earth element concentrations in a suite of basanitoids and alkali olivine basalts from Grenada, Lesser Antilles. Contrib Mineral Petrol 50(4):231–240. doi: 10.1007/BF00394850 CrossRefGoogle Scholar
  78. Sisson T, Grove T (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113(2):143–166CrossRefGoogle Scholar
  79. Sisson T, Ratajeski K, Hankins W, Glazner A (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148(6):635–661CrossRefGoogle Scholar
  80. Thirlwall M, Graham A (1984) Evolution of high-Ca, high-Sr C-series basalts from Grenada, Lesser Antilles: the effects of intra-crustal contamination. J Petrol 141(3):427–445Google Scholar
  81. Thirlwall M, Graham A, Arculus R, Harmon R, Macpherson C (1996) Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb–Sr–Nd–O isotope geochemistry of Grenada, Lesser Antilles. Geochim Cosmochim Acta 60(23):4785–4810CrossRefGoogle Scholar
  82. Toplis M (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149(1):22–39CrossRefGoogle Scholar
  83. Van Soest M, Hilton D, Macpherson C, Mattey D (2002) Resolving sediment subduction and crustal contamination in the Lesser Antilles Island Arc: a combined He–O–Sr isotope approach. J Petrol 43(1):143–170CrossRefGoogle Scholar
  84. Vannucci R, Tiepolo M, Defant M, Kepezhinskas P (2007) The metasomatic record in the shallow peridotite mantle beneath Grenada (Lesser Antilles arc). Lithos 99(1–2):25–44CrossRefGoogle Scholar
  85. Wadge G, Shepherd J (1984) Segmentation of the Lesser Antilles subduction zone. Earth Planet Sci Lett 71(2):297–304CrossRefGoogle Scholar
  86. Weaver S, Wallace P, Johnston A (2011) A comparative study of continental vs. intraoceanic arc mantle melting: experimentally determined phase relations of hydrous primitive melts. Earth Planet Sci Lett 308:97–106CrossRefGoogle Scholar
  87. Wood B, Bryndzia L, Johnson K (1990) Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248(4953):337–345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C. C. Stamper
    • 1
  • E. Melekhova
    • 1
  • J. D. Blundy
    • 1
  • R. J. Arculus
    • 2
  • M. C. S. Humphreys
    • 3
  • R. A. Brooker
    • 1
  1. 1.Department of Earth SciencesUniversity of BristolBristolUK
  2. 2.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia
  3. 3.Department of Earth SciencesDurham UniversityDurhamUK

Personalised recommendations