Crystallization and eruption ages of Breccia Museo (Campi Flegrei caldera, Italy) plutonic clasts and their relation to the Campanian ignimbrite

  • Samantha K. Gebauer
  • Axel K. SchmittEmail author
  • Lucia Pappalardo
  • Daniel F. Stockli
  • Oscar M. Lovera
Original Paper


The Campi Flegrei volcanic district (Naples region, Italy) is a 12-km-wide, restless caldera system that has erupted at least six voluminous ignimbrites during the late Pleistocene, including the >300 km3 Campanian ignimbrite (CI) which originated from the largest known volcanic event of the Mediterranean region. The Breccia Museo (BM), a petrologically heterogeneous and stratigraphically complex volcanic deposit extending over 200 km2 in close proximity to Campi Flegrei, has long remained contentious regarding its age and stratigraphic relation to the CI. Here, we present crystallization and eruption ages for BM plutonic ejecta clasts that were determined via uranium decay series and (U–Th)/He dating of zircon, respectively. Despite mineralogical and textural heterogeneity of these syenitic clasts, their U–Th zircon rim crystallization ages are indistinguishable with an average age of 49.7 ± 2.5 ka (2σ errors; mean square of weighted deviates MSWD = 1.2; n = 34). A subset of these crystals was used to obtain disequilibrium-corrected (U–Th)/He zircon ages which average 41.7 ± 1.8 ka (probability of fit P = 0.54; n = 15). This age closely overlaps with published CI 40Ar/39Ar eruption ages (40.6 ± 0.1 ka) after recalibration to recently revised flux monitor ages. Concordant eruption ages for BM and CI agree with previous chemostratigraphic and paleomagnetic correlations, suggesting their origin from the same eruption. However, they are at variance with recalibrated 40Ar/39Ar ages which have BM postdate CI by 3 ± 1 ka. BM syenites show similar geochemical and Sr–Nd isotopical features of pre-caldera rocks erupted between 58 and 46 ka, but are distinctive from subsequent caldera-forming magmas. Energy-constrained assimilation and fractional crystallization modeling of Nd–Sr isotopic data suggests that pre-caldera magmas formed a carapace of BM-type intrusions in a mid-crust magma chamber (≥8 km depth) shielding the younger CI magma from contamination by Hercynian basement wall rocks. An ~41–50 ka hiatus in crystallization ages implies rapid solidification of these pre-CI intrusions. This argues against protracted pre-eruptive storage of a large volume of CI magma at shallow crustal levels.


Pleistocene Tephra Zircon Geochronology (U–Th)/He 



The ion microprobe facility at UCLA is partly supported by a grant from the Instrumentation and Facilities Program, Division of Earth Sciences, National Science Foundation. Lucia Civetta is thanked for her precious suggestions during isotope analyses as well as A. Carandente, I. Arienzo, and V. Di Renzo are thanked for technical assistance during samples preparation and Sr–Nd measurements. We thank J. Lowenstern for sharing detailed data of zircon analyses published in Fedele (2006).

Supplementary material

410_2013_953_MOESM1_ESM.xls (30 kb)
Supplementary material 1 (XLS 30 kb)


  1. AGIP (1987) Geologia e geofisica del sistema geotermico dei Campi Flegrei. Tech Rep, SERG-MMESG, San Donato 19Google Scholar
  2. Arienzo I, Civetta L, Heumann A, Wörner G, Orsi G (2009) Isotopic evidence for open system processes within the Campanian ignimbrite (Campi Flegrei-Italy) magma chamber. Bull Volcanol 71(3):285–300CrossRefGoogle Scholar
  3. Arienzo I, Neumann A, Wörner G, Civetta L, Orsi G (2011) Processes and timescales of magma evolution prior to the Campanian ignimbrite eruption (Campi Flegrei, Italy). Earth Planet Sci Lett 306(3–4):217–228CrossRefGoogle Scholar
  4. Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83(9–10):1127–1132Google Scholar
  5. Bacon CR, Lowenstern JB (2005) Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. Earth Planet Sci Lett 233(3–4):277–293CrossRefGoogle Scholar
  6. Bacon CR, Persing HM, Wooden JL, Ireland TR (2000) Late Pleistocene granodiorite beneath Crater Lake caldera, Oregon, dated by ion microprobe. Geology 28(5):467–470CrossRefGoogle Scholar
  7. Bacon CR, Sisson TW, Mazdab FK (2007) Young cumulate complex beneath Veniamin of caldera, Aleutian arc, dated by zircon in erupted plutonic blocks. Geology 35(6):491–494CrossRefGoogle Scholar
  8. Bacon CR, Vazquez JA, Wooden JL (2012) Peninsular terrane basement ages recorded by Paleozoic and Paleoproterozoic zircon in gabbro xenoliths and andesite from Redoubt volcano, Alaska. Geol Soc Am Bull 124(1–2):24–34CrossRefGoogle Scholar
  9. Baker BH, McBirney AR (1985) Liquid Fractionation 3. Geochemistry of zoned magmas and the compositional effects of liquid fractionation. J Volcanol Geoth Res 24(1–2):55–81CrossRefGoogle Scholar
  10. Berrino G, Corrado G, Riccardi U (2008) Sea gravity data in the Gulf of Naples. A contribution to delineating the structural pattern of the Phlegraean Volcanic District. J Volcanol Geoth Res 175(3):241–252CrossRefGoogle Scholar
  11. Biswas S, Coutand I, Grujic D, Hager C, Stockli D, Grasemann B (2007) Exhumation and uplift of the Shillong plateau and its influence on the eastern Himalayas: New constraints from apatite and zircon (U–Th-[Sm])/He and apatite fission track analyses. Tectonics 26(6). doi: 10.1029/2007TC002125
  12. Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334CrossRefGoogle Scholar
  13. Cannatelli C, Lima A, Bodnar RJ, De Vivo B, Webster JD, Fedele L (2007) Geochemistry of melt inclusions from the Fondo Riccio and Minopoli 1 eruptions at Campi Flegrei (Italy). Chem Geol 237(3–4):418–432CrossRefGoogle Scholar
  14. Chen CF, Turner JS (1980) Crystallization in a double-diffusive system. J Geophys Res 85(NB5):2573–2593CrossRefGoogle Scholar
  15. Cheng H, Edwards RL, Hoff J, Gallup CD, Richards DA, Asmerom Y (2000) The half-lives of uranium-234 and thorium-230. Chem Geol 169(1–2):17–33CrossRefGoogle Scholar
  16. Cherniak DJ, Watson EB (2003) Diffusion in zircon. Rev Mineral Geochem 53(1):113–143CrossRefGoogle Scholar
  17. Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—The Campanian ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geoth Res 75(3–4):183–219CrossRefGoogle Scholar
  18. Cox SE, Farley KA, Hemming SR (2012) Insights into the age of the Mono Lake excursion and magmatic crystal residence time from (U–Th)/He and 230Th dating of volcanic allanite. Earth Planet Sci Lett 319:178–184CrossRefGoogle Scholar
  19. Danisik M, Shane P, Schmitt AK, Hogg A, Santos GM, Storm S, Evans NJ, Fifield LK, Lindsay JM (2012) Re-anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined 238U/230Th disequilibrium and (U–Th)/He zircon ages. Earth Planet Sci Lett 349:240–250CrossRefGoogle Scholar
  20. de Saint Blanquat M, Horsman E, Habert G, Morgan S, Vanderhaeghe O, Law R, Tikoff B (2011) Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs. Tectonophysics 500(1–4):20–33Google Scholar
  21. De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineral Petrol 73(1–3):47–65CrossRefGoogle Scholar
  22. Della Vedova B, Bellani S, Pellis G, Squarci P (2001) Deep temperatures and surface heat-flow distribution. In: Vai GB, Martini LP (eds) Anatomy of an Orogen, the Apennines and adjacent Mediterranean basins, vol 4. Kluwer Academic Publishers, Dordrecht, p 656Google Scholar
  23. Di Girolamo P, Ghiara MR, Lirer L, Munno R, Rolandi G, Stanzione D (1984) Vulcanologia e Petrologia dei Campi Flegrei. Boll Soc Geol 103:349–413Google Scholar
  24. Di Vito MA, Sulpizio R, Zanchetta G, D’Orazio M (2008) The late Pleistocene pyroclastic deposits of the Campanian Plain: new insights into the explosive activity of Neapolitan volcanoes. J Volcanol Geoth Res 177(1):19–48CrossRefGoogle Scholar
  25. Fabbrizio A, Carroll MR (2008) Experimental constraints on the differentiation process and pre-emptive conditions in the magmatic system of Phlegraean Fields (Naples, Italy). J Volcanol Geoth Res 171(1–2):88–102CrossRefGoogle Scholar
  26. Farley KA, Wolf RA, Silver LT (1996) The effects of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60(21):4223–4229CrossRefGoogle Scholar
  27. Farley KA, Kohn BP, Pillans B (2002) The effects of secular disequilibrium on (U–Th)/He systematics and dating of quaternary volcanic zircon and apatite. Earth Planet Sci Lett 201(1):117–125Google Scholar
  28. Fedele L, Tarzia M, Belkin HE, De Vivo B, Lima A, Lowenstern JB (2006) Magmatic-hydrothermal fluid interaction and mineralization in alkali-syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy. In: De Vivo B (ed), Volcanism in the Campania Plain—Vesuvius, Campi Flegrei and ignimbrites, 125–161Google Scholar
  29. Fedele FG, Giaccio B, Hajdas I (2008a) Timescales and cultural process at 40,000 BP in the light of the Campanian ignimbrite eruption, Western Eurasia. J Hum Evol 55(5):834–857CrossRefGoogle Scholar
  30. Fedele L, Scarpati C, Lanphere M, Melluso L, Morra V, Perrotta A, Ricci G (2008b) The Breccia Museo formation, Campi Flegrei, Southern Italy: geochronology, chemostratigraphy and relationship with the Campanian ignimbrite eruption. Bull Volcanol 70(10):1189–1219CrossRefGoogle Scholar
  31. Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow emplacement of the Campanian ignimbrite, Italy. J Volcanol Geotherm Res 56(3):205–220. doi: 10.1016/0377-0273(93)90017-L CrossRefGoogle Scholar
  32. Fowler SJ, Spera F, Bohrson W, Belkin HE, De Vivo B (2007) Phase equilibria constraints on the chemical and physical evolution of the companion ignimbrite. J Petrol 48(3):459–493CrossRefGoogle Scholar
  33. Fulignati P, Marianelli P, Proto M, Sbrana A (2004) Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: an example from the Breccia Museo unit (Campanian Ignimbrite eruption, Italy). J Volcanol Geoth Res 133(1):141–155CrossRefGoogle Scholar
  34. Ghiorso MS, Sack RO (1995) Chemical mass-transfer in magmatic processes. 4. a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated-temperatures and pressures. Contrib Miner Petrol 119(2–3):197–212CrossRefGoogle Scholar
  35. Guillou H, Singer BS, Laj C, Kissel C, Scaillet S, Jicha BR (2004) On the age of the Laschamp geomagnetic excursion. Earth Planet Sci Lett 227(3–4):331–343CrossRefGoogle Scholar
  36. Hora JM, Singer BS, Jicha BR, Beard BL, Johnson CM, de Silva S, Salisbury M (2010) Volcanic biotite-sanidine 40Ar/39Ar age discordances reflect Ar partitioning and pre-eruption closure in biotite. Geology 38(10):923–926CrossRefGoogle Scholar
  37. Iannace A (1991) Ambienti deposizionali e processi diagenetici in successioni di piattaforma carbonatica del Trias superiore nei monti Lattari e Picentini (Salerno). Ph.D. thesis. University of Naples, Napoli, pp 216Google Scholar
  38. Krogh TE (1973) Low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37(3):485–494CrossRefGoogle Scholar
  39. Lentz DR (1999) Carbonatite genesis: a reexamination of the role of intrusion-related pneumatolytic skarn processes in limestone melting. Geology 27(4):335–338CrossRefGoogle Scholar
  40. Lirer L, Rolandi G, Rubin M (1991) 14C age of the museum breccia (Campi Flegrei) and its relevance for the origin of the Campanian ignimbrite. J Volcanol Geoth Res 48(1–2):223–227CrossRefGoogle Scholar
  41. Lowe J, Barton N, Blockley S, Ramsey CB, Cullen VL, Davies W, Gamble C, Grant K, Hardiman M, Housley R, Lane CS, Lee S, Lewis M, MacLeod A, Menzies M, Muller W, Pollard M, Price C, Roberts AP, Rohling EJ, Satow C, Smith VC, Stringer CB, Tomlinson EL, White D, Albert P, Arienzo I, Barker G, Boric S, Carandente A, Civetta L, Ferrier C, Guadelli JL, Karkanas P, Koumouzelis M, Muller UC, Orsi G, Pross J, Rosi M, Shalamanov-Korobar L, Sirakov N, Tzedakis PC (2012) Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proc Natl Acad Sci USA 109(34):13532–13537CrossRefGoogle Scholar
  42. Lowenstern JB, Persing HM, Wooden JL, Lanphere M, Donnelly-Nolan J, Grove TL (2000) U–Th dating of single zircons from young granitoid xenoliths: new tools for understanding volcanic processes. Earth Planet Sci Lett 183(1–2):291–302CrossRefGoogle Scholar
  43. Mangiacapra A, Moretti R, Rutherford M, Civetta L, Orsi G, Papale P (2008) The deep magmatic system of the Campi Flegrei caldera (Italy). Geophys Res Lett 35(21):L21304. doi: 10.1029/2008GL035550 CrossRefGoogle Scholar
  44. Marianelli P, Sbrana A, Proto M (2006) Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian ignimbrite. Geology 34(11):937–940CrossRefGoogle Scholar
  45. Melluso L, Morra V, Perrotta A, Scarpati C, Adabbo M (1995) The Eruption of the Breccia Museo (Campi-Flegrei, Italy)—fractional crystallization processes in a shallow, zoned magma chamber and implications for the eruptive dynamics. J Volcanol Geoth Res 68(4):325–339CrossRefGoogle Scholar
  46. Middlemost EAK (1994) Naming materials in the magma igneous rock system. Earth Sci Rev 37(3–4):215–224CrossRefGoogle Scholar
  47. Nowaczyk NR, Arz HW, Frank U, Kind J, Plessen B (2012) Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments. Earth Planet Sci Lett 351:54–69CrossRefGoogle Scholar
  48. Orsi G, De Vita S, di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214CrossRefGoogle Scholar
  49. Ort MH, Rosi M, Anderson CD (1999) Correlation of deposits and vent locations of the proximal Campanian ignimbrite deposits, Campi Flegrei, Italy, based on natural remanent magnetization and anisotropy of magnetic susceptibility characteristics. J Volcanol Geoth Res 91(2–4):167–178CrossRefGoogle Scholar
  50. Pabst S, Wörner G, Civetta L, Tesoro R (2008) Magma chamber evolution prior to the Campanian ignimbrite and Neapolitan Yellow Tuff eruptions (Campi Flegrei, Italy). Bull Volcanol 70(8):961–976CrossRefGoogle Scholar
  51. Pappalardo L, Mastrolorenzo G (2012) Rapid differentiation in sill-like magma reservoir: a case study from the campi flegrei caldera. Nature’s Scientific Reports 2, Article number: 712. doi: 10.1038/srep00712
  52. Pappalardo L, Civetta L, D’Antonio M, Deino A, Di Vito M, Orsi G, Carandente A, de Vita S, Isaia R, Piochi M (1999) Chemical and Sr-isotopical evolution of the Phlegraean magmatic system before the Campanian ignimbrite and the Neapolitan Yellow Tuff eruptions. J Volcanol Geoth Res 91(2–4):141–166CrossRefGoogle Scholar
  53. Pappalardo L, Civetta L, de Vita S, Di Vito M, Orsi G, Carandente A, Fisher RV (2002a) Timing of magma extraction during the Campanian ignimbrite eruption (Campi Flegrei Caldera). J Volcanol Geoth Res 114(3–4):479–497CrossRefGoogle Scholar
  54. Pappalardo L, Piochi M, D’Antonio M, Civetta L, Petrini R (2002b) Evidence for multi-stage magmatic evolution during the past 60 ka at Campi Flegrei (Italy) deduced from Sr, Nd and Pb isotope data. J Petrol 43(8):1415–1434CrossRefGoogle Scholar
  55. Pappalardo L, Ottolini L, Mastrolorenzo G (2008) The Campanian ignimbrite (southern Italy) geochemical zoning: insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal. Contrib Miner Petrol 156(1):1–26CrossRefGoogle Scholar
  56. Perrotta A, Scarpati C (1994) The dynamics of the breccia-Museo eruption (Campi-Flegrei, Italy) and the significance of spatter clasts associated with lithic breccias. J Volcanol Geoth Res 59(4):335–355CrossRefGoogle Scholar
  57. Renne PR, Mundil R, Balco G, Min KW, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar*/40K for the fish canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74(18):5349–5367CrossRefGoogle Scholar
  58. Richards DA, Andersen MB (2013) Time constraints and tie-points in the quaternary period. Elements 9(1):45–51CrossRefGoogle Scholar
  59. Rivera TA, Storey M, Zeeden C, Hilgen FJ, Kuiper K (2011) A refined astronomically calibrated 40Ar/39Ar age for fish canyon sanidine. Earth Planet Sci Lett 311(3–4):420–426CrossRefGoogle Scholar
  60. Rolandi G, Bellucci F, Heizler MT, Belkin HE, De Vivo B (2003) Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy. Mineral Petrol 79(1–2):3–31CrossRefGoogle Scholar
  61. Rosi M, Sbrana A (1987) Phlegraean fields, Quaderni de la Ricerca Scientifica 114. CNR, Roma, pp 114–175Google Scholar
  62. Rosi M, Vezzoli L, Aleotti P, De Censi M (1996) Interaction between caldera collapse and eruptive dynamics during Campanian ignimbrite eruption, Phlegrean Fields, Italy. Bull Volcanol 57:541–554CrossRefGoogle Scholar
  63. Rottura A, Caggianelli A, Campana R, Delmoro A (1993) Petrogenesis of hercynian peraluminous granites from the Calabrian Arc, Italy. Eur J Mineral 5(4):737–754Google Scholar
  64. Scarpati C, Perrotta A, Lepore S, Calvert A (2012) Eruptive history of Neapolitan volcanoes: constraints from 40Ar–39Ar dating. Geol Mag 150(3):412–425CrossRefGoogle Scholar
  65. Schmincke HU, Park C, Harms E (1999) Evolution and environmental impacts of the eruption of Laacher See Volcano (Germany) 12,900 a BP. Quatern Int 61:61–72CrossRefGoogle Scholar
  66. Schmitt AK (2006) Laacher see revisited: high-spatial-resolution zircon dating indicates rapid formation of a zoned magma chamber. Geology 34(7):597–600CrossRefGoogle Scholar
  67. Schmitt AK (2007) Ion microprobe analysis of (231Pa)/(235U) and an appraisal of protactinium partitioning in igneous zircon. Am Mineral 92(4):691–694CrossRefGoogle Scholar
  68. Schmitt AK, Stockli DF, Hausback BP (2006) Eruption and magma crystallization ages of Las Tres Virgenes (Baja California) constrained by combined 230Th/238U and (U–Th)/He dating of zircon. J Volcanol Geoth Res 158(3–4):281–295CrossRefGoogle Scholar
  69. Schmitt AK, Stockli DF, Niedermann S, Lovera OM, Hausback BP (2010a) Eruption ages of Las Tres Virgenes volcano (Baja California): a tale of two helium isotopes. Quat Geochronol 5(5):503–511CrossRefGoogle Scholar
  70. Schmitt AK, Wetzel F, Cooper KM, Zou H, Wörner G (2010b) Magmatic longevity of Laacher see Volcano (Eifel, Germany) indicated by U–Th dating of intrusive carbonatites. J Petrol 51(5):1053–1085CrossRefGoogle Scholar
  71. Shane P, Storm S, Schmitt AK, Lindsay JM (2012) Timing and conditions of formation of granitoid clasts erupted in recent pyroclastic deposits from Tarawera Volcano (New Zealand). Lithos 140:1–10CrossRefGoogle Scholar
  72. Spera FJ, Bohrson WA (2001) Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J Petrol 42(5):999–1018CrossRefGoogle Scholar
  73. Taylor HP, Giannetti B, Turi B (1979) Oxygen isotope geochemistry of the potassic igneous rocks from the Roccamonfina Volcano, Roman Comagmatic Region, Italy. Earth Planet Sci Lett 46(1):81–106CrossRefGoogle Scholar
  74. Ton-That T, Singer B, Paterne M (2001) 40Ar/39Ar dating of latest pleistocene (41 ka) marine tephra in the Mediterranean Sea: implications for global climate records. Earth Planet Sci Lett 184(3–4):645–658CrossRefGoogle Scholar
  75. Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB, Young ED (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem Geophys Geosyst 8:Q06014. doi: 10.1029/2006GC001449
  76. Trail D, Bindeman IN, Watson EB, Schmitt AK (2009) Experimental calibration of oxygen isotope fractionation between quartz and zircon. Geochim Cosmochim Acta 73(23):7110–7126CrossRefGoogle Scholar
  77. Wolff JA (1987) Crystallization of nepheline syenite in a Subvolcanic Magma System—Tenerife, Canary-Islands. Lithos 20(3):207–223CrossRefGoogle Scholar
  78. Wyllie PJ (1977) Crustal anatexis—experimental review. Tectonophysics 43(1–2):41–71CrossRefGoogle Scholar
  79. Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35(12):L12306. doi: 10.1029/2008GL034242
  80. Zuleger E, Erzinger J (1988) Determination of the REE and Y in silicate materials with ICP–AES. Fresen Z Anal Chem 332(2):140–143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Samantha K. Gebauer
    • 1
  • Axel K. Schmitt
    • 1
    Email author
  • Lucia Pappalardo
    • 2
  • Daniel F. Stockli
    • 3
  • Oscar M. Lovera
    • 1
  1. 1.Department of Earth and Space SciencesUniversity of CaliforniaLos AngelesUSA
  2. 2.Sezione di Napoli, Osservatorio VesuvianoIstituto Nazionale di Geofisica e VulcanologiaNaplesItaly
  3. 3.Department of Geological SciencesUniversity of TexasAustinUSA

Personalised recommendations