Advertisement

Dissolution–precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite

  • Marc Ulrich
  • Manuel Muñoz
  • Stéphane Guillot
  • Michel Cathelineau
  • Christian Picard
  • Benoit Quesnel
  • Philippe Boulvais
  • Clément Couteau
Original Paper

Abstract

The weathering of mantle peridotite tectonically exposed to the atmosphere leads commonly to natural carbonation processes. Extensive cryptocrystalline magnesite veins and stock-work are widespread in the serpentinite sole of the New Caledonia ophiolite. Silica is systematically associated with magnesite. It is commonly admitted that Mg and Si are released during the laterization of overlying peridotites. Thus, the occurrence of these veins is generally attributed to a per descensum mechanism that involves the infiltration of meteoric waters enriched in dissolved atmospheric CO2. In this study, we investigate serpentinite carbonation processes, and related silicification, based on a detailed petrographic and crystal chemical study of serpentinites. The relationships between serpentine and alteration products are described using an original method for the analysis of micro-X-ray fluorescence images performed at the centimeter scale. Our investigations highlight a carbonation mechanism, together with precipitation of amorphous silica and sepiolite, based on a dissolution–precipitation process. In contrast with the per descensum Mg/Si-enrichment model that is mainly concentrated in rock fractures, dissolution–precipitation process is much more pervasive. Thus, although the texture of rocks remains relatively preserved, this process extends more widely into the rock and may represent a major part of total carbonation of the ophiolite.

Keywords

Serpentine Magnesite Carbonation Silicification New Caledonia ophiolite 

Notes

Acknowledgments

The authors gratefully thank Gilles Montagnac (ENS Lyon) and Marie-Camille Caumon (GeoRessources Nancy) for their help during Raman analyses. We also thank Valerie Magnin (ISTerre Grenoble) for her help during μ-XRF analyses and Clément Marcaillou (Eramet-SLN) and Olivier Vidal (ISTerre Grenoble) for their contributions on the development of the XRF-mapping software. This work has been possible thanks to the technical assistance of Koniambo SA. The financial support from Labex ANR-10-LABX-21-01 Ressources21 (Strategic metal resources of the 21st century) is gratefully acknowledged. We thank the editor Jochen Hoefs and the two anonymous reviewers for their careful revisions that helped to improve this manuscript.

Supplementary material

410_2013_952_MOESM1_ESM.eps (340 kb)
Raman spectra of brown chalcedony (Silica #2, Figure 4) and white chalcedony (Silica #3, Figure 4). Both only differ by the intensity of the moganite band (501) which is significantly higher in the white chalcedony. (EPS 339 kb)
410_2013_952_MOESM2_ESM.eps (5.5 mb)
RGB (for Red-Green-Blue) map calculated by the superposition of the three phase maps shown in Figure 7. One color is attributed to each phase (Red: Magnesite; Green: Serpentine; Blue: Silica), in order to highlight the relationship between mineral phases. Pixels characterized by a mix of green and blue show the progressive silicification of the serpentine mesh. Greenish to brownish pixels (mix of red and green) correspond to partially carbonated serpentine grains. (EPS 5639 kb)
410_2013_952_MOESM3_ESM.eps (1.6 mb)
Progressive silicification of the serpentine mesh illustrated by Raman spectroscopy. (EPS 1590 kb)
410_2013_952_MOESM4_ESM.eps (833 kb)
µ-XRF maps of elemental concentrations based on ROI (region of interest) measurement at element K-edge. These maps correspond to raw data used for the calculation of mineral phase maps (in %) shown in Figure 6 and Figure S5, and quantitative maps shown in Figure 6 and Figure S6. (EPS 833 kb)
410_2013_952_MOESM5_ESM.eps (5.3 mb)
Maps of mineral phases calculated calculated on the basis of µ-XRF measurements (EDAX Eagle III). The « Total » map corresponds to the sum of phase maps and is used to verify the consistency of the calculation (each pixel of the map have to be close to 100 %). (EPS 5433 kb)
410_2013_952_MOESM6_ESM.eps (898 kb)
Quantitative maps (in wt. %) calculated on the basis of µ-XRF measurements (EDAX Eagle III). The « Total » map corresponds to the sum of quantitative maps. Map of H2O+CO2, elements that cannot be measured by µ-XRF, is calculated by subtracting the Total map to 100. (EPS 898 kb)

References

  1. Abu-Jaber NS, Kimberley MM (1992a) Origin of ultramafic-hosted magnesite on Margarita Island, Venezuela. Mineralium Deposita 27(3):234–241CrossRefGoogle Scholar
  2. Abu-Jaber N, Kimberley M (1992b) Origin of ultramafic-hosted vein magnesite deposits. Ore Geol Rev 7(3):155–191CrossRefGoogle Scholar
  3. Alexander G, Mercedes Maroto-Valer M, Gafarova-Aksoy P (2007) Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation. Fuel 86(1–2):273–281CrossRefGoogle Scholar
  4. Andreani M, Luquot L, Gouze P, Godard M, Hoise E, Gibert B (2009) Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites. Environ Sci Technol 43(4):1226–1231CrossRefGoogle Scholar
  5. Audet MA (2008) Caractérisation pétrographique et structurale des matériaux ophiolitiques du massif de Koniambo (Nouvelle Calédonie) et des minéralisations nickélifères supergènes, Unpubished Thesis, Université du Québec à Montréal et Université de la Nouvelle-Calédonie, pp 355Google Scholar
  6. Auzende A, Daniel I, Reynard B, Lemaire C, Guyot F (2004) High-pressure behaviour of serpentine minerals: a Raman spectroscopic study. Phys Chem Miner 31(5):269–277CrossRefGoogle Scholar
  7. Bain GW (1924) Types of magnesite deposits and their origin. Econ Geol 19(5):412–433CrossRefGoogle Scholar
  8. Balucan RD, Dlugogorski BZ (2013) Thermal activation of antigorite for mineralization of CO2. Environ Sci Technol 47:182–190CrossRefGoogle Scholar
  9. Barnes I, O’Neil J, Trescases J (1978) Present day serpentinization in New Caledonia, Oman and Yugoslavia. Geochim Cosmochim Acta 42:144–145CrossRefGoogle Scholar
  10. Béarat H, McKelvy MJ, Chizmeshya AV, Gormley D, Nunez R, Carpenter RW, Squires K, Wolf GH (2006) Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation. Environ Sci Technol 40(15):4802–4808CrossRefGoogle Scholar
  11. Beinlich A, Austrheim H (2012) In situ sequestration of atmospheric CO2 at low temperature and surface cracking of serpentinized peridotite in mine shafts. Chem Geol 332–333:32–44CrossRefGoogle Scholar
  12. Beinlich A, Plümper O, Hövelmann J, Austrheim H, Jamtveit B (2012) Massive serpentinite carbonation at Linnajavri, N-Norway. Terra Nova 24:446–455CrossRefGoogle Scholar
  13. Birsoy R (2002) Formation of sepiolite-palygorskite and related minerals from solution. Clays Clay Miner 50(6):736–745CrossRefGoogle Scholar
  14. Bobicki ER, Liu Q, Xu Z, Zeng H (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energy Combust Sci 38:302–320CrossRefGoogle Scholar
  15. Bodenlos A (1950) Geology of the red mountain magnesite district, Santa Clara and Stanislaus Counties, California, California. J Mines Geol 46:223–278Google Scholar
  16. Boschetti T, Toscani L (2008) Springs and streams of the Taro–Ceno Valleys (Northern Apennine, Italy): reaction path modeling of waters interacting with serpentinized ultramafic rocks. Chem Geol 257(1–2):76–91CrossRefGoogle Scholar
  17. Boschi C, Dini A, Dallai L, Ruggieri G, Gianelli G (2009) Enhanced CO2-mineral sequestration by cyclic hydraulic fracturing and Si-rich fluid infiltration into serpentinites at Malentrata (Tuscany, Italy). Chem Geol 265(1–2):209–226. doi: 10.1016/j.chemgeo.2009.03.016 CrossRefGoogle Scholar
  18. Boydell HC (1921) The magnesite deposits of Euboea, Greece. Econ Geol 16(8):507–523CrossRefGoogle Scholar
  19. Cipolli F, Gambardella B, Marini L, Ottonello G, Vetuschi Zuccolini M (2004) Geochemistry of high-pH waters from serpentinites of the Gruppo di Voltri (Genova, Italy) and reaction path modeling of CO2 sequestration in serpentinite aquifers. Appl Geochem 19(5):787–802CrossRefGoogle Scholar
  20. Cluzel D, Meffre S (2002) L’unité de la Boghen (Nouvelle-Calédonie, Pacifique sud-ouest): un complexe d’accrétion jurassique. Données radiochronologiques préliminaires U-Pb sur les zircons détritiques. Comptes Rendus Geosci 334:867–874CrossRefGoogle Scholar
  21. Cluzel D, Aitchison J, Picard C (2001) Tectonic accretion and underplating of mafic terranes in the Late Eocene intraoceanic fore-arc of New Caledonia (Southwest Pacific): geodynamic implications. Tectonophysics 340(1–2):23–59CrossRefGoogle Scholar
  22. Cluzel D, Maurizot P, Collot J (2012) An outline of the geology of New Caledonia; from Permian-Mesozoic Southeast Gondwanaland active margin to Cenozoic obduction and supergene evolution. Episodes 35(1):72–86Google Scholar
  23. Crawford A, Meffre S, Symonds P (2003) 120 to 0 Ma tectonic evolution of the southwest Pacific and analogous geological evolution of the 600–220 Ma Tasman Fold Belt System. Geol Soc Aust Spec Publ 22:377–397Google Scholar
  24. Dabitzias S (1980) Petrology and genesis of the Vavdos cryptocrystalline magnesite deposits, Chalkidiki Peninsula, northern Greece. Econ Geol 75(8):1138–1151CrossRefGoogle Scholar
  25. Daval D, Sissmann O, Menguy N, Saldi GD, Guyot F, Martinez I, Corvisier J, Garcia B, Machouk I, Knauss KG, Hellmann R (2011) Influence of amorphous silica layer formation on the dissolution rate of olivine at 90°C and elevated pCO2. Chem Geol 284:193–209CrossRefGoogle Scholar
  26. Fallick AE, Ilich M, Russell MJ (1991) A stable isotope study of the magnesite deposits associated with the Alpine-type ultramafic rocks of Yugoslavia. Econ Geol 86(4):847–861CrossRefGoogle Scholar
  27. Foster L, Eggleton RA (2002) The Marlborough nickel laterite deposits. In: Roach IC (ed) Presented at the Regolith and Landscapes in Eastern Australia Conference, CRC LEME, vol 1, pp 33–36Google Scholar
  28. Gerdemann S, Dahlin D, O Connor W, Penner L (2003) Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals. Greenhouse gas technologies, Elsevier Science, Amsterdam 8Google Scholar
  29. Ghoneim M, Saleem I, Hamdy M (2003) Origin of magnesite veins in serpentinites from Mount El-Rubshi and Mount El-Maiyit. Eastern Desert Egypt, Archiwum Mineralogiczne, pp 41–63Google Scholar
  30. Giammar D, Bruant R, Peters C (2005) Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. Chem Geol 217(3–4):257–276CrossRefGoogle Scholar
  31. Glasser E (1904) Rapport à M. le Ministre des colonies sur les richesses de la Nouvelle-Calédonie, DunodGoogle Scholar
  32. Goff F, Lackner KS (1998) Carbon dioxide sequestering using ultramafic rocks. Environ Geosci 5(3):89–102CrossRefGoogle Scholar
  33. Götze J, Nasdala L, Kleeberg R, Wenzel M (1998) Occurrence and distribution of “moganite” in agate/chalcedony: a combined micro-Raman, Rietveld, and cathodoluminescence study. Contribut Mineral Petrol 133(1):96–105Google Scholar
  34. Graetsch H, Flörke OW, Miehe G (1985) The nature of water in chalcedony and opal-C from Brazilian agate geodes. Phys Chem Miner 12:300–306CrossRefGoogle Scholar
  35. Griffis R (1972) Genesis of a magnesite deposit, Deloro Twp., Ontario. Econ Geol 67(1):63–71CrossRefGoogle Scholar
  36. Guthrie GD, Carey JW, Bergfeld D, Byler D, Chipera S, Ziock HJ, Lackner KS (2001) Geochemical aspects of the carbonation of magnesium silicates in an aqueous medium. NETL Conference on Carbon Sequestration, 14 ppGoogle Scholar
  37. Halls C, Zhao R (1995) Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co., Mayo, Republic of Ireland. Miner Deposita 30(3):303–313CrossRefGoogle Scholar
  38. Hansen L, Dipple G, Gordon T, Kellett D (2005) Carbonated serpentinite (listwanite) at Atlin. British Columbia: A geological analogue to carbon dioxide sequestration, The Canadian Mineralogist 43(1):225–239Google Scholar
  39. Harrison AL, Power IM, Dipple GM (2013) Accelerated Carbonation of Brucite in Mine Tailings for Carbon Sequestration. Environ Sci Technol 47:126–134CrossRefGoogle Scholar
  40. Haug TA, Munz IA, Kleiv RA (2011) Importance of dissolution and precipitation kinetics for mineral carbonation. Energy Procedia 4(C):5029–5036Google Scholar
  41. Heaney P (1993) A proposed mechanism for the growth of chalcedony. Contrib Miner Petrol 115(1):66–74CrossRefGoogle Scholar
  42. Heaney P, Post JE (1992) The widespread distribution of a novel silica polymorph in microcrystalline quartz varieties. Science 255(5043):441–443CrossRefGoogle Scholar
  43. Hövelmann J, Austrheim H, Beinlich A, Anne Munz I (2011) Experimental study of the carbonation of partially serpentinized and weathered peridotites. Geochim Cosmochim Acta 75(22):6760–6779CrossRefGoogle Scholar
  44. Hövelmann J, Austrheim H, Jamtveit B (2012) Microstructure and porosity evolution during experimental carbonation of a natural peridotite. Chem Geol 334:254–265CrossRefGoogle Scholar
  45. Jedrysek MO, Halas S (1990) The origin of magnesite deposits from the Polish Foresudetic Block ophiolites: preliminary δ13C and δ18O investigations. Terra Nova 2(2):154–159CrossRefGoogle Scholar
  46. Jones BF, Galàn E (1988) Sepiolite and palygorskite. In: Bailey SW (ed) Hydrous phyllosilicates (Exclusive of Micas) reviews in mineralogy, 19. Mineralogical Society of America, Washington, pp 631–674Google Scholar
  47. Jurković I, Palinkaš LA, Garašić V, Palinkaš SS (2012) Genesis of vein-stockwork cryptocrystalline magnesite from the Dinaride ophiolites. Ofioliti 37(1):1–14Google Scholar
  48. Kelemen PB, Matter J (2008) In situ carbonation of peridotite for CO2 storage. Proc Natl Acad Sci 105:17295–17300CrossRefGoogle Scholar
  49. Kelemen PB, Matter J, Streit EE, Rudge JF, Curry WB, Blusztajn J (2011) Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage. Annu Rev Earth Planet Sci 39:545–576CrossRefGoogle Scholar
  50. King HE, Plümper O, Geisler T, Putnis A (2011) Experimental investigations into the silicification of olivine: implications for the reaction mechanism and acid neutralization. Am Mineral 96:1503–1511CrossRefGoogle Scholar
  51. Klein F, Garrido CJ (2011) Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos 126(3):147–160CrossRefGoogle Scholar
  52. Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res Solid Earth 92(B8):8089–8115CrossRefGoogle Scholar
  53. Krevor S, Lackner KS (2011) Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. Int J Greenhouse Gas Control 5(4):1073–1080CrossRefGoogle Scholar
  54. Krishnamurti D (1956) Raman spectrum of magnesite. Proc Math Sci 43(4):210–212Google Scholar
  55. Lacinska AM, Styles MT (2012) Silicified serpentinite—a residuum of a Tertiary palaeo-weathering surface in the United Arab Emirates. Geol Mag 1(1):1–11Google Scholar
  56. Lackner KS, Wendt CH, Butt DP, Joyce EL Jr, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20(11):1153–1170CrossRefGoogle Scholar
  57. Lemaire C (2000) Application des spectroscopies vibrationnelles à la détection d’amiante dans les matériaux et à l’étude des serpentines, Unpublished PhD, Université de Paris 7, Paris, pp 157Google Scholar
  58. Lin F-C, Clemency C (1981) The dissolution kinetics of brucite, antigorite, talc, and phlogopite at room temperature and pressure. Am Mineral 66(7–8):801–806Google Scholar
  59. Luce RW, Bartlett RW, Parks GA (1972) Dissolution kinetics of magnesium silicates. Geochim Cosmochim Acta 36(1):35–50CrossRefGoogle Scholar
  60. Lugli S, Torres-Ruiz J, Garuti G, Olmedo F (2000) Petrography and geochemistry of the Eugui magnesite deposit (Western Pyrenees, Spain): evidence for the development of a peculiar zebra banding by dolomite replacement. Econ Geol 95(8):1775–1791Google Scholar
  61. Lund EH (1960) Chalcedony and quartz crystals in silicified coral. Am Mineral 45:1304–1307Google Scholar
  62. Lynne BY, Campbell KA, James BJ, Browne PRL, Moore J (2007) Tracking crystallinity in siliceous hot-spring deposits. Am J Sci 307(3):612–641CrossRefGoogle Scholar
  63. Maurizot P, Lafoy Y, Poupée M (2002) Cartographie des formations superficielles et des aléas mouvements de terrain en Nouvelle-Calédonie, Zone du Koniambo, BRGM Public Report, (1:33000)Google Scholar
  64. Muñoz M, Pascarellib S, Aquilantib G, Naryginac O, Kurnosovc A, Dubrovinskyc L (2008) Hyperspectral μ-XANES mapping in the diamond-anvil cell: analytical procedure applied to the decomposition of (Mg, Fe)-ringwoodite at the upper/lower mantle boundary. High Press Res 28:665–673CrossRefGoogle Scholar
  65. O’Hanley DS (1996) Serpentinites: records of tectonic and petrological history. Oxford University Press, Oxford, p 270Google Scholar
  66. Ohmoto H, Watanabe Y, Kumazawa K (2004) Evidence from massive siderite beds for a CO2-rich atmosphere before ~1.8 billion years ago. Nature 429:395–399CrossRefGoogle Scholar
  67. Oskierski HC, Bailey JG, Kennedy EM, Jacobsen G, Ashley PM, Dlugogorski BZ (2012) Formation of weathering-derived magnesite deposits in the New England Orogen, New South Wales, Australia: implications from mineralogy, geochemistry and genesis of the Attunga magnesite deposit. Mineralium Deposita. doi: 10.1007/s00126-012-0440-5
  68. Pefrov VP, Vakanjac B, Joksimović D, Zekić M, Lapcević I (1980) Magnesite deposits of Serbia and their origin. Int Geol Rev 22(5):497–510CrossRefGoogle Scholar
  69. Plümper O, Royne A, Magraso A, Jamtveit B (2012) The interface-scale mechanism of reaction-induced fracturing during serpentinization. Geology 40(12):1103–1106CrossRefGoogle Scholar
  70. Podwojewski P (1995) The occurrence and interpretation of carbonate and sulfate minerals in a sequence of Vertisols in New Caledonia. Geoderma 65(3–4):223–248CrossRefGoogle Scholar
  71. Pohl W (1990) Genesis of magnesite deposits—models and trends. Geol Runds 79:291–299CrossRefGoogle Scholar
  72. Pop D, Constantina C, Tătar D, Kiefer W (2004) Raman spectroscopy on gem-quality microcrystalline and amorphous silica varieties from Romania, Studia UBB. Geologia 49(1):41–52Google Scholar
  73. Power IM, Wilson SA, Small DP, Dipple GM, Wan W, Southam G (2011) Microbially mediated mineral carbonation: roles of phototrophy and heterotrophy. Environ Sci Technol 45:9061–9068CrossRefGoogle Scholar
  74. Prigiobbe V, Hänchen M, Costa G, Baciocchi R, Mazzotti M (2009) Analysis of the effect of temperature, pH, CO2 pressure and salinity on the olivine dissolution kinetics. Energy Procedia 1(1):4881–4884CrossRefGoogle Scholar
  75. Prinzhoffer A (1981) Structure et pétrologie d’un cortège ophiolitique: le massif du Sud (Nouvelle-Calédonie): unpublished thesis. E.N.S.M, Paris 306 ppGoogle Scholar
  76. Quesnel B, Gautier P, Boulvais P, Cathelineau M, Maurizot P, Cluzel D, Ulrich M, Guillot S, Lesimple S, Couteau C (2013) Syn-tectonic, meteoric water-derived carbonation of the New Caledonia peridotite nappe. Geology 41:1063–1066CrossRefGoogle Scholar
  77. Renforth P, Washbourne CL, Taylder J, Manning DAC (2011) Silicate production and availability for mineral carbonation. Environ Sci Technol 45:2035–2041CrossRefGoogle Scholar
  78. Rodgers KA, Cressey G (2001) The occurrence, detection and significance of moganite (SiO2) among some silica sinters. Mineral Mag 65(2):157–167CrossRefGoogle Scholar
  79. Rudge JF, Kelemen PB, Spiegelman M (2010) A simple model of reaction-induced cracking applied to serpentinization and carbonation of peridotite. Earth Planet Sci Lett 291(1–4):215–227CrossRefGoogle Scholar
  80. Saldi GD, Daval D, Morvan G, Knauss KG (2013) The role of Fe and redox conditions in olivine carbonation rates: an experimental study of the rate limiting reactions at 90 and 150°C in open and closed systems. Geochim Cosmochim Acta 118:157–183CrossRefGoogle Scholar
  81. Schellart W, Lister G, Toy V (2006) A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. Earth Sci Rev 76(3–4):191–233CrossRefGoogle Scholar
  82. Schulze R, Hill M, Field R, Papin P, Hanrahan R, Byler D (2004) Characterization of carbonated serpentine using XPS and TEM. Energy Convers Manage 45(20):3169–3179CrossRefGoogle Scholar
  83. Sévin B, Ricordel Prognon C, Quesnel F, Cluzel D, Lesimple S, Maurizot P (2012) First palaeomagnetic dating of ferricrete in New Caledonia: new insight on the morphogenesis and palaeoweathering of “Grande Terre”. Terra Nova 24:77–85CrossRefGoogle Scholar
  84. Sherlock R, Logan M (1995) Silica-carbonate alteration of serpentinite; implications for the association of mercury and gold mineralization in Northern California. Explor Min Geol 4(4):395–409Google Scholar
  85. Sipilä J, Teir S, Zevenhoven R (2008) Carbon dioxide sequestration by mineral carbonation: Literature review update 2005–2007, Åbo Akademi Rep, VT, 1, pp 59Google Scholar
  86. Stanger G (1985) Silicified serpentinite in the Semail nappe of Oman. Lithos 18:13–22CrossRefGoogle Scholar
  87. Teir S, Kuusik R, Fogelholm C, Zevenhoven R (2007) Production of magnesium carbonates from serpentinite for long-term storage of CO2. Int J Miner Process 85(1–3):1–15CrossRefGoogle Scholar
  88. Teir S, Eloneva S, Fogelholm C-J, Zevenhoven R (2009) Fixation of carbon dioxide by producing hydromagnesite from serpentinite. Appl Energy 86(2):214–218CrossRefGoogle Scholar
  89. Trescases J (1973) Weathering and geochemical behaviour of the elements of ultramafic rocks in New Caledonia. Bureau Mineral Res Geol Geophys Dep Mineral Energy Canberra Bull 141:149–161Google Scholar
  90. Ulrich M (2010) Péridotites et serpentinites du complexe ophiolitique de la Nouvelle-Calédonie, Unpublished Thesis, Université de la Nouvelle-Calédonie et Université de Grenoble, pp 253Google Scholar
  91. Ulrich M, Picard C, Guillot S, Chauvel C, Cluzel D, Meffre S (2010) Multiple melting stages and refertilization as indicators for ridge to subduction formation: the New Caledonia ophiolite. Lithos 115:223–236CrossRefGoogle Scholar
  92. van Noort R, Spiers CJ, Drury MR, Kandianis MT (2013) Peridotite dissolution and carbonation rates at fracture surfaces under conditions relevant for in situ mineralization of CO2. Geochim Cosmochim Acta 106 (C):1–24CrossRefGoogle Scholar
  93. Whattam SA (2009) Arc-continent collisional orogenesis in the SW Pacific and the nature, source and correlation of emplaced ophiolitic nappe components. Lithos 113(1):88–114CrossRefGoogle Scholar
  94. Whattam SA, Malpas J, Ali J, Smith IE (2008) New SW Pacific tectonic model: cyclical intraoceanic magmatic arc construction and near-coeval emplacement along the Australia-Pacific margin in the Cenozoic. Geochem Geophys Geosyst 9(3). doi: 10.1029/2007GC001710
  95. Williams LA, Crerar DA (1985) Silica diagenesis, II, general mechanisms. J Sediment Res 55(3):312–321Google Scholar
  96. Williams LA, Parks G, Crerar DA (1985) Silica diagenesis, I, solubility controls. J Sediment Petrol 55(3):301–311Google Scholar
  97. Wilson SA, Dipple GM, Power IM, Thom JM, Anderson RG, Raudsepp M, Gabites JE, Southam G (2009) Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: examples from the Clinton Creek and Cassiar chrysotile deposits, Canada. Econ Geol 104(1):95–112CrossRefGoogle Scholar
  98. Yaliçin H, Bozkaya Ö (2004) Ultramafic-rock-hosted vein sepiolite occurrences in the Ankara Ophiolitic Melange, Central Anatolia, Turkey. Clays Clay Mineral 52(2):227–239CrossRefGoogle Scholar
  99. Zedef V, Russell M, Fallick A, Hall A (2000) Genesis of vein stockwork and sedimentary magnesite and hydromagnesite deposits in the ultramafic terranes of southwestern Turkey: a stable isotope study. Econ Geol 95(2):429CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marc Ulrich
    • 1
    • 2
    • 6
  • Manuel Muñoz
    • 2
  • Stéphane Guillot
    • 2
  • Michel Cathelineau
    • 1
  • Christian Picard
    • 3
  • Benoit Quesnel
    • 4
  • Philippe Boulvais
    • 4
  • Clément Couteau
    • 5
  1. 1.Laboratoire Géoressources, CNRS, UMR 7566Université de LorraineNancyFrance
  2. 2.Institut des Sciences de la Terre, CNRS, UMR 5275Université de Grenoble 1GrenobleFrance
  3. 3.Laboratoire Chrono-environnement, UMR 6249Université de Franche-ComtéBesançonFrance
  4. 4.Géosciences Rennes, CNRS, UMR 6118Université de Rennes 1RennesFrance
  5. 5.Service GéologiqueKoniambo Nickel SASNouvelle CalédonieFrance
  6. 6.IPGS-EOST, UMR 7516Université de StrasbourgStrasbourgFrance

Personalised recommendations