Contributions to Mineralogy and Petrology

, Volume 166, Issue 5, pp 1521–1538 | Cite as

Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes

  • Claudio MarchesiEmail author
  • Carlos J. Garrido
  • Jason Harvey
  • José María González-Jiménez
  • Károly Hidas
  • Jean-Pierre Lorand
  • Fernando Gervilla
Original Paper


Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20′N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt–rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35–85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15–20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration.


Abyssal peridotite Chalcophile elements Melting Melt–rock reaction Platinum-group elements Serpentinization 



We are grateful to D. van Acken and two anonymous referees for their constructive reviews of the submitted version of the manuscript. This research used samples provided by the Ocean Drilling Program (ODP). ODP is sponsored by the U.S. National Science Foundation and participating countries under the management of the Joint Oceanographic Institutions (JOI) Inc. C.M.’s research has been supported by a JAE-DOC postdoctoral fellowship of the CSIC co-funded by the European Social Fund, and by a Marie Curie European Re-integration Grant under contract agreement PERG08-GA-2010-276867. This is contribution 352 from the ARC Centre of Excellence for Core to Crust Fluid Systems ( and 907 from the GEMOC Key Centre (


  1. Alard O, Griffin WL, Lorand J-P, Jackson SE, O’Reilly SY (2000) Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407:891–894CrossRefGoogle Scholar
  2. Alard O, Lorand J-P, Reisberg L, Bodinier J-L, Dautria J-M, O’Reilly SY (2011) Volatile-rich metasomatism in Montferrier xenoliths (southern France): implications for the abundances of chalcophile and highly siderophile elements in the subcontinental mantle. J Petrol 52:2009–2045CrossRefGoogle Scholar
  3. Aldanmaz E, Meisel T, Celik OF, Henjes-Kunst F (2012) Osmium isotope systematics and highly siderophile element fractionation in spinel-peridotites from the Tethyan ophiolites in SW Turkey: implications for multi-stage evolution of oceanic upper mantle. Chem Geol 294–295:152–164CrossRefGoogle Scholar
  4. Alt JC, Shanks WC III (1998) Sulfur in serpentinized oceanic peridotites: serpentinization processes and microbial sulfate reduction. J Geophys Res 103(5):9917–9929CrossRefGoogle Scholar
  5. Alt JC, Shanks WC III (2003) Serpentinization of abyssal peridotites from the MARK area, Mid-Atlantic Ridge: sulfur geochemistry and reaction modeling. Geochim Cosmochim Acta 67:641–653CrossRefGoogle Scholar
  6. Alt JC, Shanks WC III, Bach W, Paulick H, Garrido CJ, Beaudoin G (2007) Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15°20′N (ODP Leg 209): a sulfur and oxygen isotope study. Geochem Geophys Geosyst 8(8):Q08002CrossRefGoogle Scholar
  7. Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M (2004) Seawater–peridotite interactions: first insights from ODP Leg 209, MAR 15°N. Geochem Geophys Geosyst 5(9):Q09F26CrossRefGoogle Scholar
  8. Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys Res Lett 33:L13306CrossRefGoogle Scholar
  9. Barnes SJ, Liu W (2012) Pt and Pd mobility in hydrothermal fluids: evidence from komatiites and from thermodynamic modelling. Ore Geol Rev 44:49–58CrossRefGoogle Scholar
  10. Barnes S-J, Savard D, Bédard LP, Maier WD (2009) Selenium and sulfur concentrations in the Bushveld Complex of South Africa and implications for formation of the platinum-group element deposits. Miner Deposita 44:647–663CrossRefGoogle Scholar
  11. Becker H, Shirey SB, Carlson RW (2001) Effects of melt percolation on the Re-Os systematics of peridotites from a Paleozoic convergent plate margin. Earth Planet Sci Lett 188:107–121CrossRefGoogle Scholar
  12. Becker H, Horan MF, Walker RJ, Gao S, Lorand J-P, Rudnick RL (2006) Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta 70:4528–4550CrossRefGoogle Scholar
  13. Bell AS, Simon A, Guillong M (2009) Experimental constraints on Pt, Pd and Au partitioning and fractionation in silicate melt-sulfide-oxide-aqueous fluid systems at 800°C, 150 MPa and variable sulfur fugacity. Geochim Cosmochim Acta 73:5778–5792CrossRefGoogle Scholar
  14. Bockrath C, Ballhaus C, Holzheid A (2004) Fractionation of the platinum-group elements during mantle melting. Science 305:1951–1953CrossRefGoogle Scholar
  15. Brenan JM (2008) Re-Os fractionation by sulfide melt-silicate melt partitioning: a new spin. Chem Geol 248:140–165CrossRefGoogle Scholar
  16. Brenan JM, Andrews D (2001) High-temperature stability of laurite and Ru-Os-Ir alloy and their role in the PGE fractionation in mafic magmas. Can Mineral 39:341–360CrossRefGoogle Scholar
  17. Büchl A, Brügmann G, Batanova VG, Münker C, Hofmann AW (2002) Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos Ophiolite. Earth Planet Sci Lett 204:385–402CrossRefGoogle Scholar
  18. Büchl A, Brügmann G, Batanova VG, Hofmann AW (2004) Os mobilization during melt percolation: the evolution of Os isotope heterogeneities in the mantle sequence of the Troodos ophiolite, Cyprus. Geochim Cosmochim Acta 68:3397–3408CrossRefGoogle Scholar
  19. Cannat M, Lagabrielle Y, de Coutures N, Bougault H, Casey J, Dmitriev L, Fouquet Y (1997) Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15°N region. Tectonophys 279:193–213CrossRefGoogle Scholar
  20. Crocket JH, Fleet ME, Stone WE (1997) Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: the significance of nickel content. Geochim Cosmochim Acta 61:4139–4149CrossRefGoogle Scholar
  21. Delacour A, Früh-Green GL, Bernasconi SM, Kelley DS (2008) Sulfur in peridotites and gabbros at Lost City (30°N, MAR): implications for hydrothermal alteration and microbial activity during serpentinization. Geochim Cosmochim Acta 72:5090–5110CrossRefGoogle Scholar
  22. Delpech G, Lorand J-P, Grégoire M, Cottin J-Y, O’Reilly SY (2012) In-situ geochemistry of sulfides in highly metasomatized mantle xenoliths from Kerguelen, southern Indian Ocean. Lithos 154:296–314CrossRefGoogle Scholar
  23. Escartín J, Cannat M (1999) Ultramafic exposures and the gravity signature of the lithosphere near the Fifteen-Twenty Fracture Zone (Mid-Atlantic Ridge, 14°-16.5°N). Earth Planet Sci Lett 171:411–424CrossRefGoogle Scholar
  24. Escartín J, Mével C, MacLeod CJ, McCaig AM (2003) Constraints on deformation conditions and the origin of oceanic detachments: the Mid-Atlantic Ridge core complex at 15°45′N. Geochem Geophys Geosyst 4(8):1067CrossRefGoogle Scholar
  25. Fellows SA, Canil D (2012) Experimental study of the partitioning of Cu during partial melting of Earth’s mantle. Earth Planet Sci Lett 337–338:133–143CrossRefGoogle Scholar
  26. Finnigan CS, Brenan JM, Mungall JE, McDonough WF (2008) Experiments and models bearing on the role of chromite as a collector of Platinum group minerals by local reduction. J Petrol 49:1647–1665CrossRefGoogle Scholar
  27. Fischer-Gödde M, Becker H, Wombacher F (2011) Rhodium, gold and other highly siderophile elements in orogenic peridotites and peridotite xenoliths. Chem Geol 280:365–383CrossRefGoogle Scholar
  28. Fleet ME, Wu T-W (1993) Volatile transport of platinum-group elements in sulfide-chloride assemblages at 1000°C. Geochim Cosmochim Acta 57:3519–3531CrossRefGoogle Scholar
  29. Fleet ME, Crocket JH, Liu M, Stone WE (1999) Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide-PGE deposits. Lithos 47:127–142CrossRefGoogle Scholar
  30. Fonseca ROC, Laurenz V, Mallmann G, Luguet A, Hoehne N, Jochum KP (2012) New constraints on the genesis and long-term stability of Os-rich alloys in the Earth’s mantle. Geochim Cosmochim Acta 87:227–242CrossRefGoogle Scholar
  31. Fujiwara T, Lin J, Matsumoto T, Kelemen PB, Tucholke BE, Casey JF (2003) Crustal evolution of the Mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma. Geochem Geophys Geosyst 4(3):1024CrossRefGoogle Scholar
  32. Gammons CH, Bloom MS (1993) Experimental investigation of the hydrothermal geochemistry of platinum and palladium: II. The solubility of PtS and PdS in aqueous sulfide solutions to 300°C. Geochim Cosmochim Acta 57:2451–2467CrossRefGoogle Scholar
  33. Godard M, Lagabrielle Y, Alard O, Harvey J (2008) Geochemistry of the highly depleted peridotites drilled at ODP Sites 1272 and 1274 (Fifteen-Twenty Fracture Zone, Mid-Atlantic Ridge): implications for mantle dynamics beneath a slow spreading ridge. Earth Planet Sci Lett 267:410–425CrossRefGoogle Scholar
  34. Handler MR, Bennett VC (1999) Behaviour of platinum-group elements in the subcontinental mantle of eastern Australia during variable metasomatism and melt depletion. Geochim Cosmochim Acta 63:3597–3618CrossRefGoogle Scholar
  35. Handler MR, Bennett VC, Dreibus G (1999) Evidence from correlated Ir/Os and Cu/S for late-stage Os mobility in peridotite xenoliths: implications for Re-Os systematics. Geology 27:75–78CrossRefGoogle Scholar
  36. Hanghøj K, Kelemen PB, Hassler D, Godard M (2010) Composition and genesis of depleted mantle peridotites from the Wadi Tayin massif, Oman ophiolite; major and trace element geochemistry, and Os isotope and PGE systematics. J Petrol 51:201–227CrossRefGoogle Scholar
  37. Harvey J, Gannoun A, Burton KW, Rogers NW, Alard O, Parkinson IJ (2006) Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet Sci Lett 244:606–621CrossRefGoogle Scholar
  38. Harvey J, Dale CW, Gannoun A, Burton KW (2011) Osmium mass balance in peridotite and the effects of mantle-derived sulphides on basalt petrogenesis. Geochim Cosmochim Acta 75:5574–5596CrossRefGoogle Scholar
  39. Helmy HM, Ballhaus C, Wohlgemuth-Ueberwasser C, Fonseca ROC, Laurenz V (2010) Partitioning of Se, As, Sb, Te and Bi between monosulfide solid solution and sulfide melt - Application to magmatic sulfide deposits. Geochim Cosmochim Acta 74:6174–6179CrossRefGoogle Scholar
  40. Holzheid A, Sylvester P, O’Neill HSC, Rubie DC, Palme H (2000) Evidence for a late chondritic veneer in the Earth’s mantle from high-pressure partitioning of palladium and platinum. Nature 406:396–399CrossRefGoogle Scholar
  41. Kelemen PB, Kikawa E, Miller DJ, Party SS (2007) Leg 209 summary: processes in a 20-km-thick conductive boundary layer beneath the Mid-Atlantic Ridge, 14°–16°N. Proc Ocean Drill Progr Sci Results 209 doi: 10.2973/
  42. Klein F, Bach W (2009) Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. J Petrol 50:37–59CrossRefGoogle Scholar
  43. König S, Luguet A, Lorand J-P, Wombacher F, Lissner M (2012) Selenium and tellurium systematics of the Earth’s mantle from high precision analyses of ultra-depleted orogenic peridotites. Geochim Cosmochim Acta 86:354–366CrossRefGoogle Scholar
  44. Lee C-TA (2002) Platinum-group element geochemistry of peridotite xenoliths from the Sierra Nevada and the Basin and Range, California. Geochim Cosmochim Acta 66:3987–4005CrossRefGoogle Scholar
  45. Liu C-Z, Snow JE, Brügmann G, Hellebrand E, Hofmann AW (2009) Non-chondritic HSE budget in Earth’s upper mantle evidenced by abyssal peridotites from Gakkel ridge (Arctic Ocean). Earth Planet Sci Lett 283:122–132CrossRefGoogle Scholar
  46. Lorand J-P, Alard O (2001) Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France). Geochim Cosmochim Acta 65:2789–2806CrossRefGoogle Scholar
  47. Lorand J-P, Alard O (2010) Determination of selenium and tellurium concentrations in Pyrenean peridotites (Ariege, France): new insight into S/Se/Te systematics of the upper in mantle samples. Chem Geol 278:120–130CrossRefGoogle Scholar
  48. Lorand J-P, Pattou L, Gros M (1999) Fractionation of platinum-group elements and gold in the upper mantle: a detailed study in Pyrenean orogenic lherzolites. J Petrol 40:957–981CrossRefGoogle Scholar
  49. Lorand J-P, Schmidt G, Palme H, Kratz K-L (2000) Highly siderophile element geochemistry of the Earth’s mantle: new data for the Lanzo (Italy) and Ronda (Spain) orogenic peridotite bodies. Lithos 53:149–164CrossRefGoogle Scholar
  50. Lorand J-P, Alard O, Luguet A, Keays RR (2003) Sulfur and selenium systematics of the subcontinental lithospheric mantle: inferences from the Massif Central xenolith suite (France). Geochim Cosmochim Acta 67:4137–4151CrossRefGoogle Scholar
  51. Lorand J-P, Delpech G, Grégoire M, Moine B, O’Reilly SY, Cottin J-Y (2004) Platinum-group elements and the multistage metasomatic history of Kerguelen lithospheric mantle (South Indian Ocean). Chem Geol 208:195–215CrossRefGoogle Scholar
  52. Lorand J-P, Luguet A, Alard O, Bezos A, Meisel T (2008) Abundance and distribution of platinum-group elements in orogenic lherzolites; a case study in a Fontete Rouge lherzolite (French Pyrénées). Chem Geol 248:174–194CrossRefGoogle Scholar
  53. Lorand J-P, Alard O, Luguet A (2010) Platinum-group element micronuggets and refertilization process in Lherz orogenic peridotite (northeastern Pyrenees, France). Earth Planet Sci Lett 289:298–310CrossRefGoogle Scholar
  54. Lorand J-P, Luguet A, Alard O (2013) Platinum-group element systematics and petrogenetic processing of the continental upper mantle: a review. Lithos 164–167:2–21CrossRefGoogle Scholar
  55. Luguet A, Alard O, Lorand J-P, Pearson NJ, Ryan C, O’Reilly SY (2001) Laser-ablation microprobe (LAM)-ICPMS unravels the highly siderophile element geochemistry of the oceanic mantle. Earth Planet Sci Lett 189:285–294CrossRefGoogle Scholar
  56. Luguet A, Lorand J-P, Seyler M (2003) Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: a coupled study of samples from the Kane Fracture Zone (45°W 23°20 N, MARK Area, Atlantic Ocean). Geochim Cosmochim Acta 67:1553–1570CrossRefGoogle Scholar
  57. Luguet A, Lorand J-P, Alard O, Cottin J-Y (2004) A multi-technique study of platinum group element systematic in some Ligurian ophiolitic peridotites, Italy. Chem Geol 208:175–194CrossRefGoogle Scholar
  58. Luguet A, Shirey SB, Lorand J-P, Horan MF, Carlson RW (2007) Residual platinum-group minerals from highly depleted harzburgites of the Lherz massif (France) and their role in HSE fractionation of the mantle. Geochim Cosmochim Acta 71:3082–3097CrossRefGoogle Scholar
  59. Maier WD (2005) Platinum-group element (PGE) deposits and occurrences: mineralization styles, genetic concepts, and exploration criteria. J Afr Earth Sci 41:165–191CrossRefGoogle Scholar
  60. Marchesi C, Griffin WL, Garrido CJ, Bodinier J-L, O’Reilly SY, Pearson NJ (2010) Persistence of mantle lithospheric Re-Os signature during asthenospherization of the subcontinental lithospheric mantle: insights from in situ isotopic analysis of sulfides from the Ronda peridotite (Southern Spain). Contrib Mineral Petrol 159:315–330CrossRefGoogle Scholar
  61. Mavrogenes JA, O’Neill HSC (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180CrossRefGoogle Scholar
  62. McDonough WF, Sun S–S (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  63. Meisel T, Moser J (2004) Reference materials for geochemical PGE analysis: new analytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MS in 11 geological reference materials. Chem Geol 208:319–338CrossRefGoogle Scholar
  64. Morgan JW (1986) Ultramafic xenoliths: clues to Earth’s late accretionary history. J Geophys Res 91(B12):12375–12387CrossRefGoogle Scholar
  65. Mountain BW, Wood SA (1988) Chemical controls on the solubility, transport and deposition of platinum and palladium in hydrothermal solutions: a thermodynamic approach. Econ Geol 83:492–510CrossRefGoogle Scholar
  66. O’Neill HSC, Dingwell DB, Borisov A, Spettel B, Palme H (1995) Experimental petrochemistry of some highly siderophile elements at high temperatures, and some implications for core formation and the mantle’s early history. Chem Geol 120:255–273CrossRefGoogle Scholar
  67. Palme H, Jones A (2003) Solar system abundances of the elements. In: Davis AM (ed) Meteorites, Comets and Planets, Treatise Geochemistry 1. Elsevier, Oxford, pp 41–61CrossRefGoogle Scholar
  68. Pan P, Wood SA (1994) Solubility of Pt and Pd sulfides and Au metal in aqueous bisulfide solutions II. Results at 200° to 350°C and saturated vapor pressure. Miner Depos 29:373–390CrossRefGoogle Scholar
  69. Paulick H, Bach W, Godard M, De Hoog JCM, Suhr G, Harvey J (2006) Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chem Geol 234:179–210CrossRefGoogle Scholar
  70. Peach CL, Mathez EA, Keays RR (1990) Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: implications for partial melting. Geochim Cosmochim Acta 54:3379–3389CrossRefGoogle Scholar
  71. Pearson DG, Irvine GJ, Ionov DA, Boyd FR, Dreibus GE (2004) Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem Geol 208:29–59CrossRefGoogle Scholar
  72. Pearson DG, Parman SW, Nowell GM (2007) A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 449:202–205CrossRefGoogle Scholar
  73. Peregoedova A, Barnes S-J, Baker DR (2004) The formation of Pt-Ir alloys and Cu-Pd-rich sulfide melts by partial desulfurization of Fe-Ni-Cu sulfides: results of experiments and implications for natural systems. Chem Geol 208:247–264CrossRefGoogle Scholar
  74. Prichard HM, Ixer RA, Lord RA, Maynard J, Williams N (1994) Assemblages of platinum-group minerals and sulfides in silicate lithologies and chromite-rich rocks within the Shetland ophiolite. Can Mineral 32:271–294Google Scholar
  75. Rehkämper M, Halliday AN, Alt J, Fitton JG, Zipfel J, Takazawa E (1999) Non-chondritic platinum-group element ratios in oceanic mantle lithosphere: petrogenetic signature of melt percolation? Earth Planet Sci Lett 172:65–81CrossRefGoogle Scholar
  76. Richardson T, Burnham OM (2002) Precious metal analysis at the Geoscience Laboratories: results from the new low-level analytical facility. Ontario Geol Surv Open File Rep 6100:35Google Scholar
  77. Rose-Weston L, Brenan JM, Fei Y, Secco RA, Frost DJ (2009) Effect of pressure, temperature, and oxygen fugacity on the metal-silicate partitioning of Te, Se, and S: implications for earth differentiation. Geochim Cosmochim Acta 73:4598–4615CrossRefGoogle Scholar
  78. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5):Q05004CrossRefGoogle Scholar
  79. Savard D, Barnes S-J, Meisel T (2010) Comparison between Nickel-Sulfur Fire Assay Te co-precipitation and Isotope Dilution with High-Pressure Asher acid digestion for the determination of platinum-group elements, rhenium and gold. Geostand Geoanal Res 34:281–291CrossRefGoogle Scholar
  80. Seyler M, Lorand J-P, Dick HJB, Drouin M (2007) Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20′: ODP Hole 1274A. Contrib Mineral Petrol 153:303–319CrossRefGoogle Scholar
  81. Shi R, Alard O, Zhi X, O’Reilly SY, Pearson NJ, Griffin WL, Zhang M, Chen X (2007) Multiple events in the Neo-Tethyan oceanic upper mantle: evidence from Ru-Os-Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites. Tibet. Earth Planet Sci Lett 261:33–48CrossRefGoogle Scholar
  82. Shirai N, Nishino T, Li X, Amakawa Y, Ebihara M (2003) Precise determination of PGE in a GSJ reference sample JP-1 by ID-ICPMS after nickel sulfide fire assay preconcentration. Geochem J 37:531–536CrossRefGoogle Scholar
  83. Snow JE, Schmidt G (1998) Constraints on Earth accretion deduced from noble metals in the oceanic mantle. Nature 391:166–169CrossRefGoogle Scholar
  84. Snow JE, Schmidt G, Rampone E (2000) Os isotopes and highly siderophile elements (HSE) in the Ligurian ophiolites, Italy. Earth Planet Sci Lett 175:119–132CrossRefGoogle Scholar
  85. van Acken D, Becker H, Hammerschmidt K, Walker RJ, Wombacher F (2010) Highly siderophile elements and Sr–Nd isotopes in refertilized mantle peridotites - A case study from the Totalp ultramafic body, Swiss Alps. Chem Geol 276:257–268CrossRefGoogle Scholar
  86. Wang Z, Becker H, Gawronski T (2013) Partial re-equilibration of highly siderophile elements and the chalcogens in the mantle: a case study on the Baldissero and Balmuccia peridotite massifs (Ivrea Zone, Italian Alps). Geochim Cosmochim Acta 108:21–44CrossRefGoogle Scholar
  87. Wood SA (1987) Thermodynamic calculations of the volatility of the platinum group elements (PGE): the PGE content of fluids at magmatic temperatures. Geochim Cosmochim Acta 51:3041–3050CrossRefGoogle Scholar
  88. Wood SA, Mountain BW, Pan P (1992) The aqueous geochemistry of platinum, palladium and gold: recent experimental constraints and re-evaluation of theoretical predictions. Canad Mineral 30:955–982Google Scholar
  89. Wood SA, Pan P, Zhang Y, Mucci A (1994) The solubility of Pt and Pd sulfides and Au in bisulfide solutions I. Results at 25°-90°C and 1 bar pressure. Miner Depos 29:309–317CrossRefGoogle Scholar
  90. Xiao Z, Gammons CH, Williams-Jones AE (1998) Experimental study of copper(I) chloride complexing in hydrothermal solutions at 40 to 300°C and saturated water vapor pressure. Geochim Cosmochim Acta 62:2949–2964CrossRefGoogle Scholar
  91. Xiong Y, Wood SA (2000) Experimental quantification of hydrothermal solubility of platinum-group elements with special reference to porphyry copper environments. Mineral Petrol 68:1–28CrossRefGoogle Scholar
  92. Yamamoto M (1976) Relationship between Se/S and sulfur isotope ratios of hydrothermal sulfide minerals. Miner Deposita 11:197–209CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Claudio Marchesi
    • 1
    Email author
  • Carlos J. Garrido
    • 1
  • Jason Harvey
    • 2
  • José María González-Jiménez
    • 3
  • Károly Hidas
    • 1
  • Jean-Pierre Lorand
    • 4
  • Fernando Gervilla
    • 1
    • 5
  1. 1.Instituto Andaluz de Ciencias de la TierraCSIC-Universidad de GranadaArmillaSpain
  2. 2.School of Earth and EnvironmentUniversity of LeedsLeedsUK
  3. 3.ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC National Key Centre, Department of Earth and Planetary SciencesMacquarie UniversitySydneyAustralia
  4. 4.Laboratoire de Planétologie et Géodynamique de Nantes, CNRS UMR 6112Université de NantesNantes Cedex 3France
  5. 5.Departamento de Mineralogía y Petrología, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations