Contributions to Mineralogy and Petrology

, Volume 166, Issue 5, pp 1375–1388 | Cite as

Crystal structure, Raman and FTIR spectroscopy, and equations of state of OH-bearing MgSiO3 akimotoite

  • Yu YeEmail author
  • Joseph R. Smyth
  • Steven D. Jacobsen
  • Wendy R. Panero
  • David A. Brown
  • Tomoo Katsura
  • Yun-Yuan Chang
  • Joshua P. Townsend
  • Przemyslaw Dera
  • Sergey Tkachev
  • Cayman Unterborn
  • Zhenxian Liu
  • Céline Goujon
Original Paper


MgSiO3 akimotoite is stable relative to majorite-garnet under low-temperature geotherms within steeply or rapidly subducting slabs. Two compositions of Mg–akimotoite were synthesized under similar conditions: Z674 (containing about 550 ppm wt H2O) was synthesized at 22 GPa and 1,500 °C and SH1101 (nominally anhydrous) was synthesized at 22 GPa and 1,250 °C. Crystal structures of both samples differ significantly from previous studies to give slightly smaller Si sites and larger Mg sites. The bulk thermal expansion coefficients of Z674 are (153–839 K) of a 1 = 20(3) × 10−9 K−2 and a 0 = 17(2) × 10−6 K−1, with an average of α 0 = 27.1(6) × 10−6 K−1. Compressibility at ambient temperature of Z674 was measured up to 34.6 GPa at Sector 13 (GSECARS) at Advanced Photon Source Argonne National Laboratory. The second-order Birch–Murnaghan equation of state (BM2 EoS) fitting yields: V 0 = 263.7(2) Å3, K T0 = 217(3) GPa (K′ fixed at 4). The anisotropies of axial thermal expansivities and compressibilities are similar: α a  = 8.2(3) and α c  = 10.68(9) (10−6 K−1); β a  = 11.4(3) and β c  = 15.9(3) (10−4 GPa). Hydration increases both the bulk thermal expansivity and compressibility, but decreases the anisotropy of structural expansion and compression. Complementary Raman and Fourier transform infrared (FTIR) spectroscopy shows multiple structural hydration sites. Low-temperature and high-pressure FTIR spectroscopy (15–300 K and 0–28 GPa) confirms that the multiple sites are structurally unique, with zero-pressure intrinsic anharmonic mode parameters between −1.02 × 10−5 and +1.7 × 10−5 K−1, indicating both weak hydrogen bonds (O–H···O) and strong OH bonding due to long O···O distances.


Akimotoite Crystal structure Thermal expansion Compressibility Anisotropy FTIR 



This work was supported by US National Science Foundation Grants EAR 11-13369 to JRS, EAR-0748707 (CAREER) to SDJ, and EAR-0955647 (CAREER) to WRP. We also acknowledge the support from Carnegie/DOE Alliance Center (CDAC) and the David and Lucile Packard Foundation. Synthesis was carried out at Bayerisches Geoinstitut (BGI), through support of the BGI Visitors Program. Neal Blair is acknowledged for access to the FTIR microscope at Northwestern University. GeoSoilEnviroCARS was supported by the NSF (EAR-0622171), the Department of Energy (DOE) DE-FG02-94ER14466, and the State of Illinois. Use of the Advanced Photon Source was supported by the DOE Office of Science, Office of Basic Energy Sciences, Under Contract No. DE-AC02-06CH11357. The use of the U2A beamline at the National Synchrotron Light Source beamline was supported by COMPRES, through the NSF Cooperative Agreement EAR 06-49658 and by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.


  1. Angel RJ (2000) Equations of state. In: Hazen RM, Downs RT (eds) High-pressure and high-temperature crystal chemistry, MSA. Rev Mineral Geochem 41:35–60Google Scholar
  2. Ashida T, Kume S, Ito E, Navrotsky A (1988) MgSiO3 ilmenite: heat capacity, thermal expansivity, and enthalpy of transformation. Phys Chem Miner 16:239–245CrossRefGoogle Scholar
  3. Bolfan-Casanova N, Keppler H, Rubie DC (2002) Hydroxyl in MgSiO3 akimotoite: a polarized and high-pressure IR study. Am Mineral 87:603–608Google Scholar
  4. Couvy H, Chen J, Drozd V (2010) Compressibility of nanocrystalline forsterite. Phys Chem Miner 37:343–351CrossRefGoogle Scholar
  5. Cromer DT, Mann J (1968) X-ray scattering factors computed from numerical Hartree–Fock wave functions. Acta Crystallogr A24:321–325Google Scholar
  6. Da Silva CRS, Karki BB, Stixrude L, Wentzcovitch RM (1999) Ab initio study of the elastic behavior of MgSiO3 ilmenite at high pressure. Geophys Res Lett 26(7):943–946CrossRefGoogle Scholar
  7. Dera P (2007a) GSE-ADA data analysis program for monochromatic single crystal diffraction with area detector. GeoSoilEnviroCARS, ArgonneGoogle Scholar
  8. Dera P (2007b) RSV reciprocal space viewer program for single crystal data analysis. GeoSoilEnviroCARS, ArgonneGoogle Scholar
  9. Dorogokupets PI, Dewaele A (2007) Equations of state of MgO, Au, Pt, NaCl-B1 and NaCl-B2: internally consistent high-temperature pressure scales. High Press Res 27:431–436CrossRefGoogle Scholar
  10. Downs RT, Bartelmehs KL, Gibbs GV, Boisen MB (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. Am Mineral 78:1104–1107Google Scholar
  11. Farrugia LJ (1999) WinGX software package. J Appl Crystallogr 32:837–838CrossRefGoogle Scholar
  12. Gasparik T (1990) Phase relations in the transition zone. J Geophys Res 95:15751–15769CrossRefGoogle Scholar
  13. Hazen RM (1993) Comparative compressibilities of silicate spinels: anomalous behavior of (Mg, Fe)2SiO4. Science 259:206–209CrossRefGoogle Scholar
  14. Hazen RM, Downs RT, Conrad PG, Finger LW, Gasparik T (1994) Comparative compressibilities of majorite-type garnets. Phys Chem Miner 21:344–349CrossRefGoogle Scholar
  15. Holl CM, Smyth JR, Jacobsen SD, Frost DJ (2008) Effects of hydration on the structure and compressibility of wadsleyite, β-(Mg2SiO4). Am Mineral 93:598–607CrossRefGoogle Scholar
  16. Horiuchi H, Hirano M, Ito E, Matsui Y (1982) MgSiO3 (ilmenite-type): single crystal X-ray diffraction study. Am Mineral 67:788–793Google Scholar
  17. Hugh-Jones DA, Angel RJ (1994) A compressional study of MgSiO3 orthoenstatite up to 8.5 GPa. Am Mineral 79:405–410Google Scholar
  18. Inoue T, Yurimoto H, Kudoh Y (1995) Hydrous modified spinel, Mg1.75SiH0.5O4: a new water reservoir in the mantle transition region. Geophys Res Lett 22:117–120CrossRefGoogle Scholar
  19. Ito E, Matsui Y (1977) Silicates ilmenites and the post-spinel transformations. In: Manghnani and Akimoto S (eds) High Press Res Appl Geophys. Academic Press, New York, pp 193–206Google Scholar
  20. Jacobsen SD, Smyth JR (2006) Effect of water on the sound velocities of ringwoodite in the transition zone. In: Jacobsen SD, van der Lee S (eds) Earth’s deep water cycle, vol 168., American Geophysical Union Monograph SeriesAGU, Washington, pp 131–145CrossRefGoogle Scholar
  21. Jacobsen SD, Liu Z, Boffa-ballaran T, Littlefield EF, Ehm L, Hemley RJ (2010) Effect of H2O on upper mantle phase transitions in MgSiO3: is the depth of the seismic X-discontinuity an indicator of mantle water content? Phys Earth Planet Int 183:234–244CrossRefGoogle Scholar
  22. Karki BB, Wentzcovitch RM (2002) First-principles lattice dynamics and thermoelasticity of MgSiO3 ilmenite at high pressure. J Geophys Res 107(B11):2267. doi: 10.1029/2001JB000702 Google Scholar
  23. Knittle E, Jeanloz R (1987) Synthesis and equation of state of (Mg, Fe)SiO3 perovskite to over 100 Gigapascals. Science 235:668–670CrossRefGoogle Scholar
  24. Kuroda K, Irifune T, Inoue T, Nishiyama N, Miyashita M, Funakoshi K, Utsumi W (2000) Determination of the phase boundary between ilmenite and perovskite in MgSiO3 by in situ X-ray diffraction and quench experiments. Phys Chem Miner 27:523–532CrossRefGoogle Scholar
  25. Li L, Weidner DJ, Brodholt J, Alfè D, Price GD (2009) Ab initio molecular dynamics study of elasticity of akimotoite MgSiO3 at mantle conditions. Phys Earth Planet Int 173:115–120CrossRefGoogle Scholar
  26. Libowitzky E, Rossman GR (1997) An IR absorption calibration for water in minerals. Am Mineral 82:1111–1115Google Scholar
  27. Mao HK, Hemley RJ, Shu J, Chen L, Jephcoat AP, Bassett WA (1989) The effect of pressure, temperature, and composition on lattice parameters and density of (Mg, Fe)SiO3-perovskite to 30 GPa. Annu Rep Dir Geophys Lab 1988–1989:82–89Google Scholar
  28. McCreery RL (2005) Signal-to-noise in Raman spectroscopy. In: Winefordner JD (ed) Raman spectroscopy for chemical analysis. John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/0471721646.ch4
  29. Mookherjee M, Stixrude L (2009) Structure and elasticity of serpentine at high-pressure. Earth Planet Sci Lett 279:11–19CrossRefGoogle Scholar
  30. Okada T, Narita T, Nagai T, Yamanaka T (2008) Comparative Raman spectroscopic study on ilmenite-type MgSiO3 (akimotoite), MgGeO3, and MgTiO3 (geikielite) at high temperatures and high pressures. Am Mineral 93:39–47CrossRefGoogle Scholar
  31. Patterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Mineral 105:20–29Google Scholar
  32. Reynard B, Fiquet G, Itié J-P, Rubie DC (1996) High-pressure X-ray diffraction study and equation of state of MgSiO3 ilmenite. Am Mineral 81:45–50Google Scholar
  33. Rivers M, Prakapenka VB, Kubo A, Pullins C, Holl CM, Jacobsen SD (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Press Res 28:273–292CrossRefGoogle Scholar
  34. Ross NL, Hazen RM (1990) High-pressure crystal chemistry of MgSiO3 perovskite. Phys Chem Miner 17:228–237CrossRefGoogle Scholar
  35. Sawamoto H (1987) Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2200 °C: phase stability and properties of tetragonal garnet. In: Manghnani MH, Syono Y (eds) High Press Res Miner Phys. American Geophysical Union, Washington, pp 209–219Google Scholar
  36. Sheldrick GM (1997) SHELXL97, Release 97-2. Program for the refinement of crystal structures. University of Göttingen, GöttingenGoogle Scholar
  37. Shiraishi R, Ohtani E, Kanagawa K, Shimojuku A, Zhao D (2008) Crystallographic preferred orientation of akimotoite and seismic anisotropy of Tonga slab. Nature 455:657–660CrossRefGoogle Scholar
  38. Tokonami M (1965) Atomic scattering factor for O2−. Acta Crystallogr 19:486CrossRefGoogle Scholar
  39. Wang Y, Uchida T, Zhang J, Rivers ML, Sutton SR (2004) Thermal equation of state of akimotoite MgSiO3 and effects of the akimotoite-garnet transformation on seismic structure near the 660 km discontinuity. Phys Earth Planet Int 143–144:57–80CrossRefGoogle Scholar
  40. Weidner D, Ito E (1985) Elasticity of MgSiO3 in the ilmenite phase. Phys Earth Planet Int 40:65–70CrossRefGoogle Scholar
  41. Kato T, Ohtani E, Morishima H, Yamazaki D, Suzuki A, Suto M, Kubo T (1995) In situ X-ray observation of high-pressure phase transitions of MgSiO3 and thermal expansion of MgSiO3 perovskite at 25 GPa by double-stage multianvil system. J Geophys Res 100(B10):20475–20481Google Scholar
  42. Yagi T, Mao HK, Bell PM (1982) Hydrostatic compression of perovskite-type MgSiO3. In: Saxena SK (ed) Advances in physical geochemistry. Springer, Berlin, pp 317–325CrossRefGoogle Scholar
  43. Ye Y, Schwering RA, Smyth JR (2009) Effects of hydration on thermal expansion of forsterite, wadsleyite, and ringwoodite at ambient pressure. Am Mineral 94:899–904CrossRefGoogle Scholar
  44. Ye Y, Smyth JR, Hushur A, Manghnani MH, Lonappan D, Dera P, Frost DJ (2010) Crystal structure of hydrous wadsleyite with 2.8 % H2O and compressibility to 60 GPa. Am Mineral 95:1765–1772CrossRefGoogle Scholar
  45. Ye Y, Brown DA, Smyth JR, Panero WR, Chang Y-Y, Jacobsen SD, Townsend J, Thomas S-M, Hauri EH, Dera P (2012) Compressibility and thermal expansion of hydrous ringwoodite with 2.5(3) wt% H2O. Am Mineral 97:573–582CrossRefGoogle Scholar
  46. Yusa H, Inoue T (1997) Compressibility of hydrous wadsleyite (β-phase) in Mg2SiO4 by high pressure X-ray diffraction. Geophys Res Lett 24:1831–1834CrossRefGoogle Scholar
  47. Yusa H, Inoue T, Ohishi Y (2000) Isothermal compressibility of hydrous ringwoodite and its relation to the mantle discontinuities. Geophys Res Lett 27:413–416CrossRefGoogle Scholar
  48. Zhang Y, Zhao D, Matsui M (2005) Anisotropy of akimotoite: a molecular dynamics study. Phys Earth Planet Int 151:309–319CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yu Ye
    • 1
    • 9
    Email author
  • Joseph R. Smyth
    • 2
  • Steven D. Jacobsen
    • 3
  • Wendy R. Panero
    • 4
  • David A. Brown
    • 2
  • Tomoo Katsura
    • 5
  • Yun-Yuan Chang
    • 3
  • Joshua P. Townsend
    • 3
  • Przemyslaw Dera
    • 6
  • Sergey Tkachev
    • 6
  • Cayman Unterborn
    • 4
  • Zhenxian Liu
    • 7
  • Céline Goujon
    • 8
  1. 1.Department of PhysicsUniversity of ColoradoBoulderUSA
  2. 2.Department of Geological SciencesUniversity of ColoradoBoulderUSA
  3. 3.Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonUSA
  4. 4.School of Earth SciencesOhio State UniversityColumbusUSA
  5. 5.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  6. 6.Center for Advanced Radiation SourcesUniversity of Chicago, Argonne National LaboratoryArgonneUSA
  7. 7.Geophysical LaboratoryCarnegie Institution of WashingtonWashingtonUSA
  8. 8.Institut NéelCNRS and Université Joseph FourierGrenoble Cedex 9France
  9. 9.School of Earth and Space ExplorationArizona State UniversityTempeUSA

Personalised recommendations