Contributions to Mineralogy and Petrology

, Volume 166, Issue 5, pp 1335–1353 | Cite as

Experimental simulation of magma–carbonate interaction beneath Mt. Vesuvius, Italy

  • E. M. JolisEmail author
  • C. Freda
  • V. R. Troll
  • F. M. Deegan
  • L. S. Blythe
  • C. L. McLeod
  • J. P. Davidson
Original Paper


We simulated the process of magma–carbonate interaction beneath Mt. Vesuvius in short duration piston-cylinder experiments under controlled magmatic conditions (from 0 to 300 s at 0.5 GPa and 1,200 °C), using a Vesuvius shoshonite composition and upper crustal limestone and dolostone as starting materials. Backscattered electron images and chemical analysis (major and trace elements and Sr isotopes) of sequential experimental products allow us to identify the textural and chemical evolution of carbonated products during the assimilation process. We demonstrate that melt–carbonate interaction can be extremely fast (minutes), and results in dynamic contamination of the host melt with respect to Ca, Mg and 87Sr/86Sr, coupled with intense CO2 vesiculation at the melt–carbonate interface. Binary mixing between carbonate and uncontaminated melt cannot explain the geochemical variations of the experimental charges in full and convection and diffusion likely also operated in the charges. Physical mixing and mingling driven by exsolving volatiles seems to be a key process to promote melt homogenisation. Our results reinforce hypotheses that magma–carbonate interaction is a relevant and ongoing process at Mt. Vesuvius and one that may operate not only on a geological, but on a human timescale.


Mt. Vesuvius Magma–carbonate interaction Crustal assimilation CO2 liberation Experimental petrology 



We are grateful to L. Civetta for providing the starting materials. V. Misiti and A. Cavallo kindly helped during the experimental and EMPA work at INGV and G. Nowell kindly supported the micro-drilling and strontium isotope analysis at Durham University. Discussion with S. Mollo, G. Orsi, C. Siebe, L. Dallai, and T. Walter is much appreciated. We thank D. Baker and two anonymous referees for constructive reviews. We also thank the Swedish Science Foundation (VR), the Centre for Natural Disaster Science (CNDS), Uppsala University (UU), the Royal Swedish Academy of Science (KVA), the Irish Research Council for Science (IRCSET), and the Istituto Nazionale di Geofisica e Vulcanologia (INGV) for generous financial support of our work.

Supplementary material

410_2013_931_MOESM1_ESM.pdf (139 kb)
Supplementary material 1 (PDF 140 kb)
410_2013_931_MOESM2_ESM.pdf (147 kb)
Supplementary material 2 (PDF 147 kb)
410_2013_931_MOESM3_ESM.pdf (103 kb)
Supplementary material 3 (PDF 103 kb)
410_2013_931_MOESM4_ESM.docx (43 kb)
Supplementary material 4 (DOCX 44 kb)


  1. Auger E, Gasparini P, Virieux J, Zollo A (2001) Seismic evidence of an extended magmatic sill under Mt. Vesuvius. Science 294:1510–1512CrossRefGoogle Scholar
  2. Ayuso RA, De Vivo B, Rolandi G, Seal RR II, Paone A (1998) Geochemical and isotopic (Nd–Pb–Sr–O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. J Volcanol Geotherm Res 82:53–78CrossRefGoogle Scholar
  3. Baker DR (1991) Interdiffusion of hydrous dacitic and rhyolitic melts and the efficacy of rhyolite contamination of dacitic enclaves. Contrib Mineral Petrol 106:462–473CrossRefGoogle Scholar
  4. Baker DR, Freda C, Brooker RA, Scarlato P (2005) Volatile diffusion in silicate melts and its effects on melt inclusions. Ann Geophys 28:699–717Google Scholar
  5. Barberi F, Bizouard H, Clocchiatti R, Metrich N, Santacroce R, Sbrana A (1981) The Somma-Vesuvius magma chamber: a petrological and vulcanological approach. Bull Volcanol 44:295–315CrossRefGoogle Scholar
  6. Behrens H, Misiti V, Freda C, Vetere F, Botcharnikov RE, Scarlato P (2009) Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250°C and pressure from 50 to 500 MPa. Am Mineral 94:105–120CrossRefGoogle Scholar
  7. Berrino G, Corrado G, Riccardi U (1998) Sea gravity on the Gulf of Naples: a contribution to delineating the structural pattern of the Vesuvian área. J Volcanol Geotherm Res 82:139–150CrossRefGoogle Scholar
  8. Blank JG, Brooker RA (1994) Experimental studies of carbon dioxide in silicate melts: solubility, speciation, and stable carbon isotope behaviour. In: Carroll MR, Holloway JR (ed) Volatiles in magmas. Rev Mineral 20:157–186Google Scholar
  9. Blythe L, Misiti V, Masotta M, Taddeucci J, Freda C, Troll VR, Deegan FM, Jolis EM (2012) Viscosity controlled magma-carbonate interaction: a comparison of Mt. Vesuvius (Italy) and Mt. Merapi (Indonesia). Geophys Res Abstracts 14, EGU2012-4779-1Google Scholar
  10. Botcharnikov R, Freise M, Holtz F, Behrens H (2005) Solubility of C–O–H mixtures in natural melts: new experimental data and implication range of recent models. Ann Geophys 48:633–646Google Scholar
  11. Brocchini D, Principe C, Castradori D, Laurenzi MA, Gorla L (2001) Quaternary evolution of the southern sector of the Campanian Plain and early Somma-Vesuvius activity: insights from the Trecase 1 well. Mineral Petrol 73:67–91CrossRefGoogle Scholar
  12. Chadwick JP, Troll VR, Ginibre C, Morgan D, Gertisser R, Waight TE, Davidson JP (2007) Carbonate assimilation at Merapi volcano, Java, Indonesia: insights from crystal isotope stratigraphy. J Petrol 48:1793–1812CrossRefGoogle Scholar
  13. Charlier BLA, Ginibre C, Morgan D, Nowell GM, Pearson DG, Davidson JP, Ottley CJ (2006) Methods for microsampling and high-precision analysis of strontium and rubidium at single crystal scale for petrological and geochronological applications. Chem Geol 232:114–133CrossRefGoogle Scholar
  14. Civetta L, Galati R, Santacroce R (1991) Magma mixing and convective compositional layering within the Vesuvius magma chamber. Bull Volcanol 53:287–300CrossRefGoogle Scholar
  15. Civetta L, D’Antonio M, De Lorenzo S, Di Renzo V, Gasparini P (2004) Thermal and geochemical constraints on the ‘deep’ magmatic structure of Mt. Vesuvius. J Volcanol Geotherm Res 133:1–12CrossRefGoogle Scholar
  16. D’Antonio M, Civetta L, Orsi G, Pappalardo L, Piochi M, Carandente A, De Vita S, Di Vito MA, Isaia R, Southon J (1999) The present state of the magmatic system of the Campi Flegrei caldera based on the reconstruction of its behaviour in the past 12 ka. J Volcanol Geotherm Res 91:247–268CrossRefGoogle Scholar
  17. Dallai L, Freda C, Gaeta M (2004) Oxygen isotope geochemistry of pyroclastic clinopyroxene monitors carbonate contributions to Roman-type ultrapotassic magmas. Contrib Mineral Petrol 148:247–263CrossRefGoogle Scholar
  18. Dallai L, Cioni R, Boschi C, D’Oriano C (2011) Carbonate-derived CO2 purging magma at depth: influence on the eruptive activity of Somma-Vesuvius, Italy. Earth Planet Sci Lett 310:84–95CrossRefGoogle Scholar
  19. De Campos CP, Dingwell DB, Perugini D, Civetta L, Fehr TK (2008) Heterogeneities in Magma Chambers: insights from the behavior of major and minor elements during mixing experiments with natural alkaline melts. Chem Geol 256:130–144CrossRefGoogle Scholar
  20. Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP, McLeod CL, Davidson JP (2010) Magma-carbonate interaction processes and associated CO2 release at Merapi volcano, Indonesia: insights from experimental petrology. J Petrol 51:1027–1051CrossRefGoogle Scholar
  21. Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP (2011) Fast and furious: crustal CO2 release at Merapi volcano, Indonesia. Geol Today 27:57–58CrossRefGoogle Scholar
  22. Del Moro A, Fulignati P, Marianelli P, Sbrana A (2001) Magma contamination by direct wall rock interaction: constraints from xenoliths from the wall of carbonate-hosted magma chamber (Vesuvius 1944 eruption). J Volc Geotherm Res 112:15–24CrossRefGoogle Scholar
  23. Del Pezzo E, Bianco F, De Siena L, Zollo A (2006) Small scale shallow attenuation structure at Mt. Vesuvius, Italy. Phys Earth Planet Inter 157:257–268CrossRefGoogle Scholar
  24. Di Matteo V, Mangiacapra A, Dingwell DB, Orsi G (2006) Water solubility and speciation in shoshonitic and latitic composition from Campi Flegrei Caldera (Italy). Chem Geol 229:113–124CrossRefGoogle Scholar
  25. Di Renzo V, Di Vito MA, Arienzo I, Carandente A, Civetta L, D’Antonio M, Giordano F, Orsi G, Tonarini S (2007) Magmatic History of Somma-Vesuvius on the basis of new geochemical and isotopic data from a deep borehole (Camaldoli della Torre). J Petrol 48:753–784CrossRefGoogle Scholar
  26. Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273:1054–1055CrossRefGoogle Scholar
  27. Dixon JE (1997) Degassing of alkali basalts. Am Mineral 82:368–378Google Scholar
  28. Font L, Davidson JP, Pearson DG, Nowell GM, Jerram DA, Ottley CJ (2008) Sr and Pb isotope micro-analysis of plagioclase crystals from Skye lavas: an insight into open-system processes in a flood basalt province. J Petrol 49:1449–1471CrossRefGoogle Scholar
  29. Freda C, Gaeta M, Palladino DM, Trigila R (1997) The Villa Senni Eruption (Alban Hills, central Italy): the role of H2O and CO2 on the magma chamber evolution and on the eruptive scenario. J Volcanol Geotherm Res 78:103–120CrossRefGoogle Scholar
  30. Freda C, Baker D, Ottolini L (2001) Reduction of water loss from gold-palladium capsules during piston cylinder experiments by use of pyrophyllite powder. Am Mineral 86:234–237Google Scholar
  31. Freda C, Gaeta M, Misiti V, Mollo S, Dolfi D, Scarlato P (2008) Magma-carbonate interaction: an experimental study on ultrapotassic rocks from Alban Hills (Central Italy). Lithos 101:397–415CrossRefGoogle Scholar
  32. Freda C, Gaeta M, Giaccio B, Marra F, Palladino DM, Scarlato P, Sottili G (2011) CO2-driven large mafic explosive eruptions: the Pozzolane Rosse case study from the Colli Albani Volcanic District (Italy). Bull Volcanol 73:241–256CrossRefGoogle Scholar
  33. Fulignati P, Gioncada A, Sbrana A (1995) The magma chamber related hydrothermal system of Vesuvius, first mineralogical and fluid inclusion data on hydrothermalized subvolcanic and lavic samples from phreatomagmatic eruptions. Per Mineral 64:185–187Google Scholar
  34. Fulignati P, Marianelli P, Sbrana A (1998) New insights on the thermometamorphic-metasomatic magma chamber shell of the 1944 eruption of Vesuvius. Acta Vulcanol 10:47–54Google Scholar
  35. Fulignati P, Marianelli P, Santacroce R, Sbrana A (2004) Probing the Vesuvius magma chamber-host rock interface through xenoliths. Geol Mag 141:417–428CrossRefGoogle Scholar
  36. Fulignati P, Panichi C, Sbrana A, Caliro S, Gioncada A, Del Moro A (2005) Skarn formation at the walls of the 79AD magma chamber of Vesuvius (Italy): minerological and isotopic constraints. N Jb Miner Abh 181:53–66CrossRefGoogle Scholar
  37. Gaeta M, Di Rocco T, Freda C (2009) Carbonate assimilation in open magmatic systems: the role of melt-bearing skarns and cumulate forming processes. J Petrol 50:361–385CrossRefGoogle Scholar
  38. Ghiorso MS, Hirschmann MM, Sack RO (1994) New software models-thermodynamics of magmatic systems. EOS Trans Am Geophys Union 75:574–576CrossRefGoogle Scholar
  39. Gilg HA, Lima A, Somma R, Belkin HE, De Vivo B, Ayuso RA (2001) Isotope geochemistry and fluid inclusions study of skarns from Vesuvius. Mineral Petrol 73:145–176CrossRefGoogle Scholar
  40. Goff F, Love SP, Warren RG, Counce D, Obenholzner J, Siebe C, Schmidt SC (2001) Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popcatépetl volcano, Mexico. Chem Geol 177:133–156CrossRefGoogle Scholar
  41. Holloway JR (1976) Fluids in the evolution of granitic magmas: consequences of finite CO2 solubility. Geol Soc Am Bull 87:1513–1518CrossRefGoogle Scholar
  42. Holloway JR, Blank JG (1994) Application of experimental results to C–O–H species in natural melts. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Rev Mineral 30:187–230Google Scholar
  43. Iacono-Marziano G, Gaillard F, Pichavant M (2008) Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes. Contrib Mineral Petrol 155:719–738CrossRefGoogle Scholar
  44. Iacono-Marziano G, Gaillard F, Scaillet B, Pichavant M, Chiodini G (2009) Role of non-mantle CO2 in the dynamics of volcano degassing: the Mount Vesuvius example. Geology 37:319–322CrossRefGoogle Scholar
  45. Iannace A, Capuano M, Galluccio L (2011) Dolomites and dolomites’’ in Mesozoic platform carbonates of the Southern Apennines: geometric distribution, petrography and geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol 310:324–339CrossRefGoogle Scholar
  46. Iezzi G, Mollo S, Ventura G, Cavallo A, Romano C (2008) Experimental solidification of anhydrous latitic and trachytic melts at different cooling rates: the role of nucleation kinetics. Chem Geol 253:91–101CrossRefGoogle Scholar
  47. Lesher CE, Hervig RL, Tinker D (1996) Self diffusion of network formers (silicon and oxygen) in naturally occurring basaltic liquid. Geochim Cosmochim Acta 60:405–413CrossRefGoogle Scholar
  48. Lesne P, Scaillet B, Pichavant M, Beny J-M (2010) The carbon dioxide solubility in alkali basalts: an experimental study. Contrib Mineral Petrol 162:133–151CrossRefGoogle Scholar
  49. Liang Y, Richter FM, Davis AM, Watson EB (1996) Diffusion in silicate melts I. Self diffusion in CaO–Al2O3–SiO2 at 1500°C and 1 Gpa. Geochim Cosmochim Acta 60:4353–4367CrossRefGoogle Scholar
  50. Metz P, Milke R (2012) Mechanism and kinetics of forsterite formation in metamorphic siliceous dolomites: finding form a rock-sample experiment. Eur J Mineral 24:59–72CrossRefGoogle Scholar
  51. Mollo S, Gaeta M, Freda C, Di Rocco T, Misiti V, Scarlato P (2010) Carbonate assimilation in magmas: a reappraisal based on experimental petrology. Lithos 114:503–514CrossRefGoogle Scholar
  52. Mollo S, Heap MJ, Iezzi G, Hess K-U, Scarlato P, Dingwell D (2012) Volcanic edifice weakening via decarbonation: a self-limiting processes? Geophys Res Lett 39:L15307. doi: 10.1029/2012GL052613 CrossRefGoogle Scholar
  53. Moore G (2008) Interpreting H2O and CO2 contents in melt inclusions: constraints from solubility experiments and modeling. Rev Mineral Geochem 69:333–361CrossRefGoogle Scholar
  54. Orsi G, De Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera(Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214CrossRefGoogle Scholar
  55. Paone A (2006) The geochemical evolution of the Mt. Somma-Vesuvius volcano. Mineral Petrol 87:53–80CrossRefGoogle Scholar
  56. Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95CrossRefGoogle Scholar
  57. Peccerillo A (1999) Multiple metasomatism in central-southern Italy: geochemical effects, timing and geodynamic implications. Geology 27:315–318CrossRefGoogle Scholar
  58. Peccerillo A (2005) Plio-quaternary volcanism in Italy. Petrology, geochemistry, geodynamics. Springer, Berlin, pp 133–135Google Scholar
  59. Perugini D, Petrelli M, Poli G (2006) Diffusive fractionation of trace elements by chaotic mixing of magmas. Earth Planet Sci Lett 243:669–680CrossRefGoogle Scholar
  60. Perugini D, De Campos CP, Dingwell DB, Petrelli M, Poli G (2008) Trace element mobility during magma mixing: preliminary experimental results. Chem Geol 256:146–157CrossRefGoogle Scholar
  61. Piochi M, Ayuso RA, De Vivo B, Somma R (2006) Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy: geochemical and Sr isotope evidence. Lithos 86:303–329CrossRefGoogle Scholar
  62. Rittmann A (1933) Evolution and differentiation des Somma-Vesuvius-magmas. Zs. Vulkanologie 15:8–94Google Scholar
  63. Rolandi G, Munno R, Postiglione I (2004) The A.D. 472 eruption of the Somma volcano. J Volcanol Geotherm Res 129:291–319CrossRefGoogle Scholar
  64. Schaaf P, Stimac J, Siebe C, Macias JL (2005) Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, Central Mexico. J Petrol 46:1243–1282CrossRefGoogle Scholar
  65. Somma R, Ayuso RA, De Vivo B, Rolandi G (2001) Major, trace element and isotope geochemistry (Sr-Nd-Pb) of interplinian magmas from Mt. Somma-Vesuvius (Southern Italy). Mineral Petrol 73:121–143CrossRefGoogle Scholar
  66. Thirlwall MF (1991) Long-term reproducibility of multicollector Sr an Nd isotope ratio analysis. Chem Geol 94:85–104CrossRefGoogle Scholar
  67. Troll VR, Hilton DR, Jolis EM, Chadwick JP, Blythe LS, Deegan FM, Schwarzkopf LM, Zimmer M (2012a) Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia. Geophys Res Lett 39:L11302. doi: 10.1029/2012GL051307 CrossRefGoogle Scholar
  68. Troll VR, Deegan FM, Jolis EM, Harris C, Chadwick JP, Gertisser R, Schwarzkopf LM, Borisova AY, Bindeman IN, Sumarti S, Preece K (2012b) Magmatic differentiation processes at Merapi Volcano: inclusions petrology and oxygen isotopes. J Volcanol Res (in press). doi: 10.16/j.jvolgeores.2012.11001
  69. Turi B, Taylor HP Jr (1976) Oxygen isotope studies of potassic volcanic rocks of the Roman Province, Central Italy. Contrib Mineral Petrol 55:1–31CrossRefGoogle Scholar
  70. Vetere F, Botcharnikov RE, Holtz F, Behrens H, De Rosa R (2011) Solubility of H2O and CO2 in shoshonitic melts at 1250°C and pressures from 50 to 400 MPa: implications from Campi Flegrei magmatic systems. J Volcanol Geotherm Res 202:251–261CrossRefGoogle Scholar
  71. Watson BE (1982) Basalt contamination by continental crust: some experiments and models. Contrib Mineral Petrol 80:73–87CrossRefGoogle Scholar
  72. Watson EB, Jurewicz SR (1984) Behavior of alkalies diffusive of granitic xenoliths with basaltic magma. J Geol 92:121–131CrossRefGoogle Scholar
  73. Watson BE, Sneeringer MA, Ross A (1982) Diffusion of dissolved carbonate in magmas: experimental results and applications. Earth Planet Sci Lett 61:356–358CrossRefGoogle Scholar
  74. Werner C, Brantley S (2003) CO2 emissions from the Yellowstone volcanic system. Geochem Geophys Geosyst 4(7):1061. doi: 10.1029/2002GC000473 Google Scholar
  75. Zhang Y (1993) A modified effective binary diffusion model. J Geophys Res 98:11901–11920CrossRefGoogle Scholar
  76. Zhang Y (2010) Diffusion in minerals and melts: theoretical background. In Zhang Y, Cherniak DJ (eds) Rev Mineral Geochem 72:5–59Google Scholar
  77. Zhang Y, Stolper EM (1991) Water diffusion in a basaltic melt. Nature 351:306–309CrossRefGoogle Scholar
  78. Zollo A, Gasparini P, Virieux J, Le Meur H, De Natale G, Biella G, Boschi E, Capuano P, De Franco R, Dell’Aversana P, De Matteis R, Guerra I, Iannaccone G, Mirabile L, Vilardo G (1996) Seismic evidence for a low-velocity zone in the upper crust beneath Mount Vesuvius. Science 274:592–594CrossRefGoogle Scholar
  79. Zollo A, Gasparini P, Virieux J, Biella G, Boschi E, Capuano P, De Franco R, Dell’Aversana P, De Matteis R, De Natale G, Iannaccone G, Guerra I, Le Meur H, Mirabile L (1998) An image of Mt. Vesuvius obtained by 2D seismic tomography. J Volcanol Geotherm Res 82:161–173CrossRefGoogle Scholar
  80. Zollo A, Marzocchi W, Capuano P, Lomax A, Iannaccone G (2002) Space and time behavior of seismic activity at Mt. Vesuvius volcano, Southern Italy. Bull Seismol Soc Am 92:625–640CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • E. M. Jolis
    • 1
    Email author
  • C. Freda
    • 2
  • V. R. Troll
    • 1
    • 2
  • F. M. Deegan
    • 1
    • 3
  • L. S. Blythe
    • 1
  • C. L. McLeod
    • 4
    • 5
  • J. P. Davidson
    • 4
  1. 1.Department of Earth Sciences, CEMPEGUppsala UniversityUppsalaSweden
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly
  3. 3.Department of GeosciencesSwedish Museum of Natural HistoryStockholmSweden
  4. 4.Department of Earth SciencesDurham University, Science LabsDurhamUK
  5. 5.Department of Earth and Atmospheric SciencesUniversity of HoustonHoustonUSA

Personalised recommendations