Contributions to Mineralogy and Petrology

, Volume 166, Issue 5, pp 1323–1334 | Cite as

Pink manganian phengite in a high P/T meta-conglomerate from northern Syros (Cyclades, Greece)

  • Rainer Altherr
  • Christian Soder
  • Sandra Panienka
  • Daniel Peters
  • Hans-Peter Meyer
Original Paper

Abstract

A new occurrence of Mn-rich rocks was discovered within the high-pressure/low-temperature metamorphic rocks on the Palos peninsula of Syros (Greece). Near the summit of Mount Príonas, a meta-conglomerate consists of calcite (~63 wt%), pink manganian phengite, blue–purple manganian aegirine–jadeite, microcline, albite and quartz. In addition, it contains abundant braunite-rich aggregates (up to ~1.5 cm in diameter) that include hollandite [(Ba0.98–1.02K<0.01Na<0.02Ca<0.03) (Mn1.02–1.523+Fe0.38–0.883+Ti0.29–0.92Mn5.11–5.764+)O16], barite and manganian hematite. Due to metamorphic recrystallization and deformation, the contacts between clasts and matrix are blurred and most clasts have lost their identity. In back-scattered electron images, many aegirine–jadeite grains appear patchy and show variable jadeite contents (Jd10–67). These pyroxenes occur in contact with either quartz or albite. Manganian phengite (3.41–3.49 Si per 11 oxygen anions) is of the 3T type and contains 1.4–2.2 wt% of Mn2O3. At the known PT conditions of high-pressure metamorphism on Syros (~1.4 GPa/ 470 °C), the mineral sub-assemblage braunite + quartz + calcite (former aragonite) suggests high oxygen fugacities relative to the HM buffer (+7 ≤ ∆fO2 ≤ + 17) and relatively high CO2 fugacities. The exact origin of the conglomerate is not known, but it is assumed that the Fe–Mn-rich and the calcite-rich particles originated from different sources. Braunite has rather low contents of Cu (~0.19 wt%) and the concentrations of Co, Ni and Zn are less than 0.09 wt%. Hollandite shows even lower concentrations of these elements. Furthermore, the bulk-rock compositions of two samples are characterized by low contents of Cu, Co and Ni, suggesting a hydrothermal origin of the manganese ore. Most likely, these Fe–Mn–Si oxyhydroxide deposits consisted of ferrihydrite, todorokite, birnessite, amorphous silica (opal-A) and nontronite. Al/(Al + Fe + Mn) ratios of 0.355 and 0.600 suggest the presence of an aluminosilicate detrital component.

Keywords

Manganian phengite Braunite Hollandite High-pressure metamorphism Syros Greece 

References

  1. Abs-Wurmbach I, Tj Peters, Langer K, Schreyer W (1983) Phase relations in the system Mn–Si–O: an experimental and petrological study. Neues Jahrbuch Miner Abh 146:258–279Google Scholar
  2. Altherr R, Siebel W (2002) I-type plutonism in a continental back-arc setting: miocene granitoids and monzonites from the Central Aegean Sea, Greece. Contrib Mineral Petrol 143:397–415CrossRefGoogle Scholar
  3. Altherr R, Schliestedt M, Okrusch M, Seidel E, Kreuzer H, Harre W, Lenz H, Wendt I, Wagner GA (1979) Geochronology of high-pressure rocks from Sifnos (Cyclades, Greece). Contrib Mineral Petrol 70:245–255CrossRefGoogle Scholar
  4. Altherr R, Kreuzer H, Wendt I, Lenz H, Wagner GA, Keller J, Harre W, Höhndorf A (1982) A late oligocene/early miocene high temperature belt in the Attic-Cycladic crystalline complex (SE Pelagonian, Greece). Geol Jahrb E23:97–164Google Scholar
  5. Altherr R, Henjes-Kunst F, Matthews A, Friedrichsen H, Hansen BT (1988) O-Sr isotopic variations in Miocene granitoids from the Aegean: evidence for an origin by combined assimilation and fractional crystallization. Contrib Mineral Petrol 100:528–541CrossRefGoogle Scholar
  6. Altherr R, Kreuzer H, Lenz H, Wendt I, Harre W, Dürr S (1994) Further evidence for a Late Cretaceous low-pressure/high-temperature terrane in the Cyclades, Greece: petrology and geochronology of crystalline rocks from the islands of Donoussa and Ikaria. Chem Erde 54:319–328Google Scholar
  7. Andriessen PAM, Boelrijk NAIM, Hebeda EH, Priem HNA, Verdumen EAT, Verschure RH (1979) Dating the events of metamorphism and granitic magmatism in the Alpine Orogen of Naxos (Cyclades, Greece). Contrib Mineral Petrol 69:215–255CrossRefGoogle Scholar
  8. Annersten H, Halenius U (1976) Ion distribution in pink muscovite: a discussion. Am Mineral 61:1045–1050Google Scholar
  9. Aplin A (2000) Mineralogy of modern marine sediments: a geochemical framework. EMU Notes Mineral 2:125–172Google Scholar
  10. Biagioni C, Capalbo C, Pasero M (2013) Nomenclature tunings in the hollandite supergroup. Eur J Mineral 25:85–90CrossRefGoogle Scholar
  11. Bonnati E, Kraemer T, Rydell H (1972) Classification and genesis of submarine iron-manganese deposits. In: Horn DR (ed) Ferromanganese deposits on the ocean floor. National Science Foundation, Washington DC, pp 149–166Google Scholar
  12. Boström K (1973) The origin and fate of ferromanganoan active ridge sediments. Stockholm Contrib Geol 27:149–243Google Scholar
  13. Brady JB, Markeley MJ, Schumacher JC, Cheney JT, Bianciardi GA (2004) Aragonite pseudomorphs in high-pressure marbles of Syros, Greece. J Struct Geol 26:3–9CrossRefGoogle Scholar
  14. Breithaupt A (1865) Mineralogische Studien. Berg- und Hüttenmännische Zeitung 24:335–337Google Scholar
  15. Brigatti MF, Mottana A, Malferrari D, Cibin G (2007) Crystal structure and chemical composition of Li-, Fe-, and Mn-rich micas. Am Mineral 92:1395–1400CrossRefGoogle Scholar
  16. Bröcker M, Enders M (2001) Unusual bulk-rock compositions in eclogite-facies rocks from Syros and Tinos (Cyclades, Greece): implications for U–Pb zircon geochronology. Chem Geol 175:581–603CrossRefGoogle Scholar
  17. Bröcker M, Franz L (2006) Dating metamorphism and tectonic juxtaposition on Andros island (Cyclades, Greece): results of a Rb–Sr study. Geol Mag 143:609–620CrossRefGoogle Scholar
  18. Bröcker M, Kreuzer H, Matthews A, Okrusch M (1993) 40Ar/39Ar and oxygen isotope studies of polymetamorphism from Tinos island, Cycladic blueschist belt, Greece. J Metamorph Geol 11:223–240CrossRefGoogle Scholar
  19. Bröcker M, Bieling D, Hacker B, Gans P (2004) High-Si phengite records the time of greenschist facies overprinting: implications for models suggesting mega-detachments in the Aegean Sea. J Metamorphic Geol 22:427–442CrossRefGoogle Scholar
  20. Brown P, Essene EJ, Peacor DR (1978) The mineralogy and petrology of manganese-rich rocks from St. Marcel, Piedmont Italy. Contrib Mineral Petrol 67:227–232CrossRefGoogle Scholar
  21. Brusnitsyn AI (2007) Associations of Mn-bearing minerals as indicators of oxygen fugacity during the metamorphism of metalliferous deposits. Geochem Int 45:345–363CrossRefGoogle Scholar
  22. Cabella R, Gaggero L, Lucchetti G (1991) Isothermal-isobaric mineral equilibria in braunite-, rhodonite-, johannsenite-, calcite-bearing assemblages from Northern Apennine metacherts (Italy). Lithos 27:149–154CrossRefGoogle Scholar
  23. Cabella R, Gaggero L, Lucchetti G, Montana A (1992) Hollandite-cryptomelane and braunite in Mn-ores from upper Jurassic meta-arenites and marble (Internal Briançonnais, Maritime Alps). Rendiconti Lincei 3:33–41CrossRefGoogle Scholar
  24. Canet C, Prol-Ledesma RM, Proenza JA, Rubio-Ramos MA, Forrest MJ, Torres-Vera MA, Rodríguez-Díaz AA (2005) Mn–Ba–Hg mineralization at shallow submarine hydrothermal vents in Bahía Concepcíon, Baja California Sur, Mexico. Chem Geol 224:96–112CrossRefGoogle Scholar
  25. Carlson WD (1980) The calcite-aragonite equilibrium: effects of Sr substitution and anion orientational disorder. Am Mineral 65:1252–1262Google Scholar
  26. Carlson WD (1983) The polymorphs of CaCO3 and the aragonite-calcite transformation. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry, reviews in mineralogy 11. Mineralogical Society of America, Washington DC, pp 191–225Google Scholar
  27. Cortesogno L, Gaggero L, Lucchetti G, Cabella R (2002) Compositions and miscibility gap in Na–Ca clinopyroxenes through high-pressure metamorphism. Periodico di Mineralogia 71:1–25Google Scholar
  28. Dasgupta S, Sengupta P, Bhattacharya PK, Mukherjee M, Fukuoka M, Banerjee H, Roy S (1989) Mineral reactions in manganese oxide rocks: p-T-X phase relations. Econ Geol 84:434–443CrossRefGoogle Scholar
  29. Dasgupta S, Banerjee H, Fukuoka M, Bhattacharya PK, Roy S (1990) Petrogenesis of metamorphosed manganese deposits and the nature of the precursor sediments. Ore Geol Rev 5:359–384CrossRefGoogle Scholar
  30. De Capitani C, Peters T (1981) The solvus in the system MnCO3–CaCO3. Contrib Mineral Petrol 76:394–400CrossRefGoogle Scholar
  31. Dixon JE (1976) Glaucophane schists of Syros, Greece. Bulletin de la Société géologique de France 18:280Google Scholar
  32. Dubinin AV, Uspenskaya TYu, Gavrilenko GM, Rashidov VA (2008) Geochemistry and genesis of Fe–Mn mineralization in island arcs in the West Pacific Ocean. Geochem Int 46:1206–1227CrossRefGoogle Scholar
  33. Gautier P, Brun JP (1994) Crustal-scale geometry and kinematics of late-orogenic extension in the central Aegean (Cyclades and Evvia islands). Tectonophysics 238:399–424CrossRefGoogle Scholar
  34. Glasby GP, Cherkashov GA, Gavrilenko GM, Rashidov VA, Slovtsov IB (2006) Submarine hydrothermal activity and mineralization on the Kurile and western Aleutian island arcs, N.W Pacific. Marine Geol 231:163–180CrossRefGoogle Scholar
  35. Grapes RH, Hashimoto S (1978) Manganiferous schists and their origin, Hidaka mountains, Hokkaido, Japan. Contrib Mineral Petrol 68:23–35CrossRefGoogle Scholar
  36. Gresens RL, Stensrud HL (1977) More data on red muscovite. Am Mineral 62:1245–1251Google Scholar
  37. Griffin WL, Mottana A (1982) Crystal chemistry of clinopyroxenes from the St. Marcel manganese deposit, Val d’Aosta Italy. Am Mineral 67:58–586Google Scholar
  38. Griffith EM, Paytan A (2012) Barite in the ocean—occurrence, geochemistry and palaeoceanographic applications. Sedimentology 59:1817–1835CrossRefGoogle Scholar
  39. Hein JR, Schulz MS, Dunham RE, Stern RJ, Bloomer SH (2008) Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific. J Geophys Res 113:B08S14CrossRefGoogle Scholar
  40. Heinrich EW, Levinson AA (1953) Studies in the mica group; mineralogy of the rose muscovites. Am Mineral 38:25–49Google Scholar
  41. Heinrich EW, Levinson AA (1955) Studies in the mica group; mangan-muscovite from Mattkärr, Finland. Am Mineral 40:1132–1135Google Scholar
  42. Kaliwoda M, Marschall HR, Marks MA, Ludwig T, Altherr R, Markl G (2011) Boron and boron isotope systematics in the peralkaline Illímaussaq intrusion (South Greenland) and its granitic country rocks: interplay between magmatic and hydrothermal processes. Lithos 125:51–64CrossRefGoogle Scholar
  43. Katzir Y, Matthews A, Garfunkel Z, Schliestedt M, Avigad D (1996) The tectono-metamorphic evolution of a dismembered ophiolite (Tinos, Cyclades, Greece). Geol Mag 133:237–254CrossRefGoogle Scholar
  44. Keiter M, Piepjohn K, Ballhaus C, Bode M, Lagos M (2004) Structural development of high-pressure metamorphic rocks on Syros island (Cyclades, Greece). J Struct Geol 26:1433–1445CrossRefGoogle Scholar
  45. Keiter M, Ballhaus C, Tomaschek F (2011) A new geological map of the Island of Syros (Aegean Sea, Greece): Implications for lithostratigraphy and structural history of the Cycladic Blueschist Unit. The Geological Society of America, Special Paper 481, 43 p, Boulder, Colorado, USAGoogle Scholar
  46. Knurr RA, Bailey SW (1986) Refinement of Mn-substituted muscovite and phlogopite. Clays Clay Miner 34:7–16CrossRefGoogle Scholar
  47. Lagos M, Scherer EE, Tomaschek F, Münker C, Keiter M, Berndt J, Ballhaus C (2007) High precision Lu–Hf geochronology of Eocene eclogite-facies rocks from Syros, Cyclades, Greece. Chem Geol 243:16–35CrossRefGoogle Scholar
  48. Marschall HR, Ludwig T (2004) The low-boron contest: minimising surface contamination and analysing boron concentrations at the ng/g-level by secondary ion mass spectrometry. Mineral Petrol 81:265–278CrossRefGoogle Scholar
  49. Martin S, Kienast JR (1987) The HP-LT manganiferous quartzites of Praborna, Piemonte ophiolite nappe, Italian Western Alps. Schweiz Mineral Petrogr Mitt 67:339–360Google Scholar
  50. Martin S, Rebay G, Kienast JR, Mevel C (2008) An eclogitised oceanic palaeo-hydrothermal field from the St. Marcel Valley (Italian Western Alps). Ofioliti 33:49–63Google Scholar
  51. Meixner H (1939) Alurgit und seine Vorkommen: beziehungen zu Fuchsit und Mariposit. Annalen Naturhist Museum Wien 50:694–703Google Scholar
  52. Mottana A (1986) Blueschist-facies metamorphism of manganiferous cherts: a review of the alpine occurrences. In: Evans BW, Brown EH (eds) Blueschists and Eclogites, Geological Society of America Memoir 164. The Geological Society of America Inc, Bolder, pp 267–299CrossRefGoogle Scholar
  53. Okrusch M, Bröcker M (1990) Eclogites associated with high-grade blueschists in the cyclades archipelago, Greece: a review. Eur Journ Mineral 2:451–478Google Scholar
  54. Penfield SH (1893) On some minerals from the manganese mines of St. Marcel in Piedmont Italy. Am J Sci 46:288–295CrossRefGoogle Scholar
  55. Perseil EA, Mottana A (1998) Evolution cristallochimique des oxydes de manganèse dans le gisement de St. Marcel-Praborna (V. Aoste, Italie). Rendiconti Lincei 9:315–336CrossRefGoogle Scholar
  56. Peters T, Trommsdorff V, Sommerauer J (1978) Manganese pyroxenoids and carbonates: critical phase relations in metamorphic assemblages from the Alps. Contrib Mineral Petrol 66:383–388CrossRefGoogle Scholar
  57. Post JE, Von Dreele RB, Buseck PR (1982) Symmetry and cation displacements in hollandites: refinements of hollandite, cryptomelane and priderite. Acta Crystallogr B38:1056–1065Google Scholar
  58. Pouchou JL, Pichoir F (1984) A new model for quantitative analyses. I. Application to the analysis of homogeneous samples. La Recherche Aérospatiale 3:13–38Google Scholar
  59. Pouchou JL, Pichoir F (1985) “PAP” (ϕρZ) correction procedure for improved quantitative microanalysis. In: Armstrong JT (Ed), Microbeam Analysis, pp 104–106Google Scholar
  60. Richardson SM (1975) A pink muscovite with reverse pleochroism from Archer’s Post, Kenya. Am Mineral 60:73–78Google Scholar
  61. Richardson SM (1976) Ion distribution in pink muscovite: a reply. Am Mineral 61:1051–1052Google Scholar
  62. Richardson SM, Richardson JW Jr (1982) Crystal structure of a pink muscovite from Archer’s Post, Kenya: implications for reverse pleochroism in dioctahedral micas. Am Mineral 67:69–75Google Scholar
  63. Ridley J (1984) Evidence of a temperature-dependent ‘blueschist’ to ‘eclogite’ transformation in high-pressure metamorphism of metabasic rocks. J Petrol 25:852–870CrossRefGoogle Scholar
  64. Rieder M, Cavazzini G, D’Yakonov YSD, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Müller G, Neiva AMR, Radoslovich EW, Robert J-L, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of the Micas. Clays Clay Miner 46:586–595CrossRefGoogle Scholar
  65. Roy S (1997) Genetic diversity of manganese deposition in the terrestrial geological record. In: Nicholson K, Hein JR, Bühn B, Dasgupta S (eds) Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits, Geological Society Special Publication No. 119, pp 5-27, LondonGoogle Scholar
  66. Roy S, Purkait PK (1968) Mineralogy and genesis of the metamorphosed manganese silicate rocks (gondite) of Gowari Wadhona, Madhya Pradesh, India. Contrib Mineral Petrol 20:86–114CrossRefGoogle Scholar
  67. Sánchez-Gómez M, Avigad D, Heimann A (2002) Geochronology of clasts in allochthonous Miocene sedimentary sequences on Mykonos and Paros Islands: implications for back-arc extension in the Aegean Sea. J Geol Soc London 159:45–60CrossRefGoogle Scholar
  68. Schaller WT, Henderson EP (1926) Purple muscovite from New Mexico. Am Mineral 11:5–16Google Scholar
  69. Schliestedt M, Altherr R, Matthews A (1987) Evolution of the cycladic crystalline complex: petrology, isotope geochemistry and geochronology. In: Helgeson HC (ed) Chemical transport in metasomatic processes, NATO ASI Series C 218. D Reidel Publishing Company, Dordrecht, pp 389–428CrossRefGoogle Scholar
  70. Schumacher JC, Brady JB, Cheney JT, Tonnsen RR (2008) Glaucophane-bearing marbles on Syros, Greece. J Petrol 49:1667–1686CrossRefGoogle Scholar
  71. Speer JA (1983) Crystal chemistry and phase relations of orthorhombic carbonates. In: Reeder RJ (ed) Carbonates: mineralogy and chemistry, reviews in mineralogy 11. Mineralogical Society of America, Washington DC, pp 145–190Google Scholar
  72. Stolz J, Engi M, Rickli M (1997) Tectonometamorphic evolution of SE Tinos, Cyclades, Greece. Schweiz Mineral Petrogr Mitt 77:209–231Google Scholar
  73. Sun Z, Zhou H, Yang Q, Sun Z, Bao S, Yao H (2011) Hydrothermal Fe–Si–Mn oxide deposits from the Central and South Valu Fa Ridge, Lau Basin. Appl Geochem 26:1192–1204CrossRefGoogle Scholar
  74. Sun Z, Zhou H, Glasby GP, Yang Q, Yin X, Li J, Chen Z (2012) Formation of Fe–Mn–Si oxide and nontronite deposits in hydrothermal fields on the Valu Fa Ridge, Lau Basin. J Asian Earth Sci 43:64–76CrossRefGoogle Scholar
  75. Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—recrystallization and mobilization of zircon during high-pressure metamorphism. J Petrol 44:1977–2002CrossRefGoogle Scholar
  76. Toth JR (1980) Deposition of submarine crusts rich in manganese and iron. Geol Soc Am Bull 91:44–54CrossRefGoogle Scholar
  77. Trotet F, Vidal O, Jolivet L (2001) Exhumation of Syros and Sifnos metamorphic rocks (Cyclades, Greece). New constraints on the P–T paths. Eur J Mineral 13:901–920CrossRefGoogle Scholar
  78. Tumiati S, Martin S, Godard G (2010) Hydrothermal origin of manganese in the high-pressure ophiolite metasediments of Praborna ore deposit (Aosta Valley, Western Alps). Eur J Mineral 22:577–594CrossRefGoogle Scholar
  79. Usui A (1992) Hydrothermal manganese minerals in LEG 126 cores. Proc Ocean Drill Prog Sci Results 126:113–123Google Scholar
  80. Usui A, Nishimura A (1992) Submersible observations of hydrothermal manganese deposits on the Kaikata Seamount, Izu-Ogasawara (Bonin) Arc. Mar Geol 106:203–216CrossRefGoogle Scholar
  81. Usui A, Mellin TA, Nohara M, Yuasa M (1989) Structural stability of marine 10 Å manganates from the Ogasawara (Bonin) arc: implications for low-temperature hydrothermal activity. Mar Geol 86:41–56CrossRefGoogle Scholar
  82. Wang Q, Grau-Crespo R, de Leeuw NH (2011) Mixing thermodynamics of the calcite-structured (Mn, Ca)CO3 solid solution: a computer simulation study. J Phys Chem B 115:13854–13861CrossRefGoogle Scholar
  83. Webb RW (1939) Investigation of a new occurrence of alurgite from California. Am Mineral 24:123–129Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rainer Altherr
    • 1
  • Christian Soder
    • 1
  • Sandra Panienka
    • 1
  • Daniel Peters
    • 1
  • Hans-Peter Meyer
    • 1
  1. 1.Institute of Earth SciencesUniversity of HeidelbergHeidelbergGermany

Personalised recommendations