Contributions to Mineralogy and Petrology

, Volume 166, Issue 5, pp 1305–1321 | Cite as

Small-scale coexistence of island-arc- and enriched-MORB-type basalts in the central Vanuatu arc

  • Fanny SorbadereEmail author
  • Pierre Schiano
  • Nicole Métrich
  • Antonella Bertagnini
Original Paper


We report here major, trace element and Sr–Nd–Pb isotopic data for a new set of basaltic lavas and melt inclusions hosted in Mg-rich olivines (Fo86–91) from Mota Lava, in the Banks islands of the Vanuatu island arc. The results reveal the small-scale coexistence of typical island-arc basalts (IAB) and a distinct type of Nb-enriched basalts (NEB) characterized by primitive mantle-normalized trace element patterns without high-field-strength element (HFSE) depletion. The IAB show trace element patterns with prominent negative HFSE anomalies acquired during melting of mantle sources enriched with slab-derived, H2O-rich components during subduction. In contrast, the NEB display trace element features that compare favourably with enriched-mid-ocean ridge basalt (MORB) and the most enriched basalts from the Vanuatu back-arc troughs. Both their trace element and Nd–Sr isotopic compositions require partial melting of an enriched-MORB-type mantle source, almost negligibly contaminated by slab-derived fluids (~0.2 wt%). The coexistence of these two distinct types of primitive magma, at the scale of one volcanic island and within a relatively short span of time, would reflect a heterogeneous mantle source and/or tapping of distinct mantle sources. Direct ascent of such distinct magmas could be favoured by the extensive tectonic setting of Mota Lava Island, allowing decompression melting and sampling of variable mantle sources. Significantly, this island is located at the junction of the N–S back-arc troughs and the E–W Hazel Home extensional zone, where the plate motion diverges in both direction and rate. More broadly, this study indicates that crustal faulting in arc contexts would permit basaltic magmas to reach Earth’s surface, while preserving the geochemical heterogeneity of their mantle sources.


Vanuatu arc Island-arc basalts Nb-enriched basalts Mantle source 



The authors would like to thank J-L Devidal for assistance with the electron microprobe and LA-ICP-MS analyses, C. Bosq for providing clean-laboratory facilities, D. Auclair for TIMS and H. Rizo for MC-ICP-MS analyses. We also thanks C. Macpherson and an anonymous reviewer for their constructive reviews, and C. Pin for insightful discussion, which has improved our manuscript. This work was supported by the ANR contract ANR-06-CATT-02 Arc-Vanuatu and ST-INSU-2010 program. This is Laboratory of Excellence ClerVolc contribution n° 69.


  1. Abratis M, Wörner G (2001) Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology 29:127–130CrossRefGoogle Scholar
  2. Ash R, Carney JN, Macfarlane A (1980) Geology of the Northern Banks Islands. New Hebrides Geological survey report, pp 19–22Google Scholar
  3. Ayers JC, Watson EB (1993) Rutile solubility and mobility in supercritical aqueous fluids. Contrib Mineral Petrol 114:321–330CrossRefGoogle Scholar
  4. Barsdell M, Smith IEM, Spörli KB (1982) The origin of reversed geochemical zoning in the northern New Hebrides volcanic arc. Contrib Mineral Petrol 81:148–155CrossRefGoogle Scholar
  5. Bergeot N, Bouin MN, Diament M, Pelletier B, Régnier M, Calmant S, Ballu V (2009) Horizontal and vertical interseismic velocity fields in the Vanuatu subduction zone from GPS measurements: evidence for a central Vanuatu locked zone. J Geophys Res 114:B06405. doi: 101029/2007JB005249 CrossRefGoogle Scholar
  6. Briqueu L, Laporte C, Crawford AJ, Hasenaka T, Baker PE, Coltorti M (1994) Temporal magmatic evolution of the Aoba Basin, central New Hebrides island arc: Pb, Sr, and Nd isotopic evidence for the coexistence of two mantle components beneath the arc. In: Greene HG, Collot J-Y, Stokking LB et al (eds) Proceeding of the Ocean Drilling Program, pp 393–401Google Scholar
  7. Calmant S, Pelletier B, Lebellegard P (2003) New insights on the tectonics along the New Hebrides subduction zone based on GPS results. J Geophys Res 108:B6. doi: 101029/2001JB000644 CrossRefGoogle Scholar
  8. Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newsletter 25:187–198CrossRefGoogle Scholar
  9. Castillo PR (2008) Origin of the adakite-high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico. Geol Soc Am 120:451–462CrossRefGoogle Scholar
  10. Castillo PR, Solidum RU, Punongbayan RS (2002) Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited. Geology 30:707–710CrossRefGoogle Scholar
  11. Charvis P, Pelletier B (1989) The northern New Hebrides backarc troughs: history and relation with the North-Fiji Basin. Tectonophysics 170:259–277CrossRefGoogle Scholar
  12. Chatelain J-L, Molnar P, Prévot R, Isacks B (1992) Detachment of part of the downgoing slab and uplift of the New Hebrides (Vanuatu) Islands. Geophys Res Lett 19:1507–1510CrossRefGoogle Scholar
  13. Chen Y, Provost A, Schiano P, Cluzel N (2011) The rate of water loss from olivine-hosted melt inclusions. Contrib Mineral Petrol 162:625–636CrossRefGoogle Scholar
  14. Collot JY, Daniel J, Burne RV (1985) Recent tectonics associated with the subduction/collision of the d’Entrecasteaux zone in the Central New Hebrides. Tectonophysics 112:325–356CrossRefGoogle Scholar
  15. Crawford AJ, Briqueu L, Laporte C, Hasenaka T (1995) Coexistence of Indian and Pacific oceanic upper mantle reservoirs beneath the central New Hebrides island arc. Geophys Monogr 88:199–217CrossRefGoogle Scholar
  16. Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138:68–83CrossRefGoogle Scholar
  17. Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24CrossRefGoogle Scholar
  18. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665CrossRefGoogle Scholar
  19. DeLong SE, Hodges FN, Arculus RJ (1975) Ultramafic and mafic inclusions, Kanaga Island, Alaska, and the occurrence of alkaline rocks in island arcs. J Geol 83:721–736CrossRefGoogle Scholar
  20. Donnelly KE, Goldstein SL, Langmuir CH, Spiegelman M (2004) Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet Sci Lett 226:347–366CrossRefGoogle Scholar
  21. Eggins SM (1993) Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatu. Contrib Mineral Petrol 114:79–100CrossRefGoogle Scholar
  22. Eissen J-P, Nahora M, Cotton J, Hirose K (1994) North-Fiji Basin basalts and their magma sources: part I Incompatible element constraints. Mar Geol 116:153–178CrossRefGoogle Scholar
  23. Escuder Viruete J, Contreras F, Stein G, Urien P, Joubert M, Pérez-Estaún A, Friedman F, Ullrich T (2007) Magmatic relationships and ages between adakites, magnesian andesites and Nb-enriched basalt-andesites from Hispaniola: record of a major change in the Caribbean island arc magma sources. Lithos 99:151–177CrossRefGoogle Scholar
  24. Faure F, Schiano P (2005) Experimental investigation of equilibrium conditions during forsterite growth and melt inclusion formation. Earth Planet Sci Lett 236:882–898CrossRefGoogle Scholar
  25. Gaetani GA, Kent AJR, Grove TL, Hutcheon ID, Stolper EM (2003) Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib Mineral Petrol 145:391–405CrossRefGoogle Scholar
  26. Gagnon J, Fryer BJ, Samson IM, Williams-Jones AE (2008) Quantitative analysis of certified reference materials by LA-ICP-MS and without an internal standard. J Anal At Spectrom 23:1529–1537CrossRefGoogle Scholar
  27. Giardini D, Woodhouse JH (1986) Horizontal shear flow in the mantle beneath the Tonga arc. Nature 319:551–555CrossRefGoogle Scholar
  28. Gorring ML, Kay SM (2001) Mantle processes and sources of Neogene slab window magmas from Southern Patagonia, Argentina. J Petrol 42:1067–1094CrossRefGoogle Scholar
  29. Green DR, Schmidt MS, Hibberson WO (2004) Island-arc ankaramites: primitive melts from fluxed refractory lherzolitic mantle. J Petrol 45:391–403CrossRefGoogle Scholar
  30. Greene HG, Collot JY, Fisher MA, Crawford AJ (1994) Neogene tectonic evolution of the New Hebrides island arc: a review incorporating ODP Drilling results. Proc ODP Sci Results 134:19–46Google Scholar
  31. Gregoire M, McInnes BIA, O’Reilly SY (2001) Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea Part2 Trace element characteristics of slab-derived fluids. Lithos 59:91–108CrossRefGoogle Scholar
  32. Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt Shasta region, N California. Contrib Mineral Petrol 142:375–396CrossRefGoogle Scholar
  33. Halliday AN, Lee D-C, Tommasini S, Davies GR, Paslick CR, Fitton JG, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133:379–395CrossRefGoogle Scholar
  34. Hastie AR, Mitchell SF, Kerr AC, Minifie MJ, Millar IL (2011) Geochemistry of rare high-Nb basalt lavas: are they derived from a mantle wedge metasomatised by slab melts? Geochim Cosmochim Acta 75:5049–5572CrossRefGoogle Scholar
  35. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314CrossRefGoogle Scholar
  36. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 383:219–229CrossRefGoogle Scholar
  37. Ionov DA, Hofmann AW (1995) Nb-Ta-rich mantle amphiboles and micas: implications for subduction-related metasomatic trace element fractionations. Earth Planet Sci Lett 131:341–356CrossRefGoogle Scholar
  38. Jarosewich E, Parkes AS, Wiggins LB (1979) Microprobe analyses of four natural glasses and one mineral: an interlaboratory study of precision and accuracy. Smiths Contrib Earth Sci 22:53–67Google Scholar
  39. Johnson ER, Wallace PJ, Deldago Granados H, Manea VC, Kent AJR, Bindeman IN, Donegan CS (2009) Subduction-related volatile recycling and magma generation beneath Central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. J Petrol 50:1729–1764CrossRefGoogle Scholar
  40. Kapezhinskas PK, Defant MJ, Drummond MS (1996) Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochim Cosmochim Acta 60:1217–1229CrossRefGoogle Scholar
  41. Kelemen PB, Kinzler RJ, Johnson KTM, Irving AJ (1990) High Field Strength element depletions in arc basalts due to mantle-magma interaction. Nature 345:521–524CrossRefGoogle Scholar
  42. Kelemen PB, Shimizu N, Dunn T (1993) Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet Sci Lett 120:111–134CrossRefGoogle Scholar
  43. Kent AJR, Peate DW, Newman S, Stolper EM, Pearce JA (2002) Chlorine in submarine glasses from the Lau Basin: seawater contamination and constraints on the composition of slab-derived fluids. Earth Planet Sci Lett 202:361–377CrossRefGoogle Scholar
  44. Laporte C, Briqueu L, Cluzel D, Eissen JP (1998) Isotopic gradient along the New Hebrides arc (Vanuatu, SW Pacific) Collision of the d’Entrecasteaux zone and heterogeneity of mantle sources. Earth Planet Sci 326:101–106Google Scholar
  45. Le Roux PJ, Shirey SB, Hauri EH, Perfit MR, Bender JF (2006) The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth Planet Sci Lett 251:209–231CrossRefGoogle Scholar
  46. Louat R, Pelletier B (1989) Seismotectonics and present-day relative plate motion in the New Hebrides arc-North-Fiji basin region. Tectonophysics 167:41–55CrossRefGoogle Scholar
  47. Macpherson CG, Chiang KK, Hall R, Nowell GM, Castillo PR, Thirlwall MF (2010) Plio-Pleistocene intra-plate magmatism from the southern Sulu Arc, Semporna peninsula, Sabah, Borneo: implication for high-Nb basalt in subduction zones. J Volcnaol Geotherm Res 190:25–38CrossRefGoogle Scholar
  48. Mahoney JJ, Graham DW, Christie DM, Johnson KTM, Hall LS, Vonderhaar DL (2002) Between a hotspot and a cold spot: isotopic variation in the Southeast Indian Ridge asthenosphere, 86°E–118°E. J Petrol 43:1155–1176CrossRefGoogle Scholar
  49. Maillet P, Ruellan E, Gérard M, Person A, Bellon H, Cotten J, Joron JL, Nakada S, Price RC (1995) Tectonics, magmatism, and evolution of the New Hebrides backarc troughs (south-west Pacific). In: Taylor B (ed) Back-arc basins. Tectonics and Magmatism, Plenum, New York, pp 177–235CrossRefGoogle Scholar
  50. Massare D, Métrich N, Clocchiatti R (2002) High-temperature experiments on silicate melt inclusions in olivine at one atmosphere. Inference on temperatures of homogenization and H2O concentrations. Chem Geol 183:87–98CrossRefGoogle Scholar
  51. McConachy TF, Arculus RJ, Yeats CJ, Binns RA, Barriga FJAS, McInnes BIA, Sestak S, Sharpe R, Rakau B, Tevi T (2005) New hydrothermal activity and alkalic volcanism in the backarc Coriolis troughs, Vanuatu. Geol Soc Am 33:61–64Google Scholar
  52. Métrich N, Wallace PJ (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Rev Mineral Geochem 69:363–402CrossRefGoogle Scholar
  53. Montjaret MJ, Bellon H, Maillet P (1991) Magmatism of the troughs behind the New Hebrides island arc (RV Jean Charcot SEAPSO 2 cruise): K-Ar geochronology and petrology. J Volcanol Geotherm Res 46:265–280CrossRefGoogle Scholar
  54. Monzier M, Robin C, Eissen JP, Cotton J (1997) Geochemistry vs seismo-tectonics along the volcanic New Hebrides Central Chain (Southwest Pacific). J Volcanol Geotherm Res 78:1–29CrossRefGoogle Scholar
  55. Nicholls IA, Ringwood AE (1972) Production of silica-saturated tholeiites magmas in island arcs. Earth Planet Sci Lett 17:243–246CrossRefGoogle Scholar
  56. Nohara M, Hirose K, Eissen J-P, Urabe T, Joshima M (1994) North-Fiji Basin basalts and their magma sources II: Sr–Nd isotopic and trace element constraints. Mar Geol 116:179–196CrossRefGoogle Scholar
  57. Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285CrossRefGoogle Scholar
  58. Peate DW, Pearce JA, Hawkesworth CJ, Colley H, Edwards CMH, Hirose K (1997) Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable mantle wedge composition. J Petrol 38:1331–1358CrossRefGoogle Scholar
  59. Peccerillo P, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkek. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  60. Pelletier B, Calmant S, Pillet R (1998) Current tectonics of the Tonga-New Hebrides region. Earth Planet Sci Lett 164:263–276CrossRefGoogle Scholar
  61. Polat A, Kerrich R (2001) Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 27 GPa Wana greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes. Contrib Mineral Petrol 141:36–52CrossRefGoogle Scholar
  62. Prévot R, Roecker SW, Isacks BL, Chatelain JL (1991) Mapping of low P wave velocity structures in the subducting plate of the central New Hebrides, Southwest Pacific. J Geophys Res 96:825–842CrossRefGoogle Scholar
  63. Prévot R, Chatelain J-L, Roecker SW, Grasso J-R (1994) A shallow double seismic zone beneath the New Hebrides (Vanuatu): evidence for fragmentation and accretion of the descending plate? Geophys Res Lett 21:2159–2162CrossRefGoogle Scholar
  64. Price RC, Johnson LE, Crawford AJ (1990) Basalts of the North-Fiji basin: the generation of back arc basin magmas by mixing of depleted and enriched mantle sources. Contrib Mineral Petrol 190:106–121CrossRefGoogle Scholar
  65. Reagan MK, Gill JB (1989) Coexisting calcalkaline high-niobium basalts from Turrialba volcano, implications for residual titanates in arc magma sources. J Geophys Res 94:4619–4633CrossRefGoogle Scholar
  66. Reagan MK, Rowe MC (2009) Nb in basalts from Turrialba volcano, Costa Rica revisited Goldschmidt Conference. Abstract A1078Google Scholar
  67. Sajona FG, Maury RC, Bellon H, Cotton J, Defant M (1996) High-field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao (Philippines). J Petrol 37:693–726CrossRefGoogle Scholar
  68. Schiano P, Clocchiatti R, Shimizu N, Maury RC, Jochum KP, Hofmann AW (1995) Hydrous silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377:595–600CrossRefGoogle Scholar
  69. Schuth S, Rohrbach A, Münker C, Ballhaus C, Garbe-Schönberg D, Qopoto C (2004) Geochemical constraints on the petrogenesis of arc picrites and basalts, New Georgia Group, Solomon islands. Contrib Mineral Petrol 148:288–304CrossRefGoogle Scholar
  70. Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243CrossRefGoogle Scholar
  71. Sorbadere F, Schiano P, Métrich N, Garaebiti E (2011) Insights into the origin of primitive silica-undersaturated arc magmas of Aoba volcano (Vanuatu arc). Contrib Mineral Petrol 162:995–1009CrossRefGoogle Scholar
  72. Sorbadere F, Schiano P, Métrich N (2013) Constraints in the origin of nepheline primitive magmas in island arcs inferred from olivine-hosted melt inclusion compositions. J Petrol 54:215–233CrossRefGoogle Scholar
  73. Streck MJ, Leeman WP, Chesley J (2007) High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35:351–354CrossRefGoogle Scholar
  74. Tatsumi Y (1989) Migration of fluid phases and genesis of basalt magmas in subduction zones. J Geophys Res 94:4697–4707CrossRefGoogle Scholar
  75. Taylor FW, Bevis MG, Schutz BE, Kuang D, Recy J, Calmant S, Charley S, Regnier M, Perin B, Jackson M, Reichenfeld C (1995) Geodesic measurements of convergence at the New Hebrides island arc indicate arc fragmentation caused by the impinging aseismic ridge. Geology 23:1011–1014CrossRefGoogle Scholar
  76. Thirlwall MF (2002) Multicollector ICP-MS analysis of Pb isotopes using a 207Pb-204Pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chem Geol 184:255–279CrossRefGoogle Scholar
  77. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39CrossRefGoogle Scholar
  78. Waters CL, Sims KWW, Perfit MR, Blichert-Toft J, Blusztajn J (2011) Perspective on the genesis of E-MORB from chemical and isotopic heterogeneity at 9–10°N East Pacific Rise. J Petrol 52:565–602CrossRefGoogle Scholar
  79. Woodhead JD, Eggins S, Gamble JA (1993) High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet Sci Lett 114:491–504CrossRefGoogle Scholar
  80. Woodhead JD, Hergt JM, Davidson JP, Eggins SM (2001) Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet Sci Lett 192:331–346CrossRefGoogle Scholar
  81. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fanny Sorbadere
    • 1
    • 2
    • 3
    Email author
  • Pierre Schiano
    • 1
    • 2
    • 3
  • Nicole Métrich
    • 4
    • 5
  • Antonella Bertagnini
    • 5
  1. 1.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.CNRS, UMR 6524, LMVClermont-FerrandFrance
  3. 3.IRD, R 163, LMVClermont-FerrandFrance
  4. 4.Institut de Physique du Globe de Paris, Sorbonne Paris-citéUniversité Paris Diderot, UMR 7154 CNRSParisFrance
  5. 5.Sezione di PisaIstituto Nazionale di Geofisica e VulcanologiaPisaItaly

Personalised recommendations