Contributions to Mineralogy and Petrology

, Volume 166, Issue 4, pp 1235–1251 | Cite as

Combined U/Pb and (U–Th)/He geochronometry of basalt maars in Western Carpathians: implications for age of intraplate volcanism and origin of zircon metasomatism

  • Vratislav Hurai
  • Martin Danišík
  • Monika Huraiová
  • Jean-Louis Paquette
  • Alexander Ádám
Original Paper

Abstract

The age of intraplate volcanism in northern Pannonian Basin of Carpathians is revisited using a combination of zircon U/Pb, zircon (U–Th)/He and apatite (U–Th)/He dating techniques, complemented by electron microprobe (EMP) characterisation of dated minerals. A total of six maar structures and diatremes in the South-Slovakian Volcanic Field (SSVF) were dated and the obtained new ages yielded the following key findings: Two isolated maars in SE part indirectly dated by geomorphologic constraints to Late Pleistocene are actually of Pliocene (2.8 ± 0.2 Ma) and Late Miocene (5.5 ± 0.6 Ma) ages. In contrast, two maars in NW part of the study area are of Late Pliocene age (4.1 ± 0.4 and 5.2–5.4 Ma), younger than the Late Miocene age (~6.5 Ma) inferred previously from K/Ar data on the proximal basaltic lava flows. These maars therefore belong to the second volcanic phase that was previously identified only in SE part of the SSVF. In the light of the new geochronologic data, it seems likely that the Pliocene phreatomagmatic eruptions may have occurred along extension-related, NW- and NE-trending orthogonal faults. EMP analyses and imaging revealed an extensive syn- and post-growth metasomatic replacement by dissolution-reprecipitation in the majority of zircons. Abundant silicate melt inclusions in porous metasomatised parts of the zircons are diagnostic of magmatic rather than hydrothermal metasomatism. Consistent ages of the metasomatised and non-metasomatised zones do not indicate disturbance of the U–Pb system during the metasomatism. Enrichment in U and Th loss in the metasomatised zircons are diagnostic of an increasing oxygen fugacity triggered by degassing of the volatile residual melt during the final stages of alkali basalt fractionation. Rare zircon-to-baddeleyite transformation was probably connected with lowered silica activity in carbonated basaltic magmas in south-eastern part of the study area.

Keywords

Zircon Apatite (U–Th)/He geochronology U/Pb geochronology Maar Alkali basalt Pannonian Basin Slovakia 

Supplementary material

410_2013_922_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 32 kb)
410_2013_922_MOESM2_ESM.xls (137 kb)
Supplementary material 2 (XLS 137 kb)

References

  1. Baldwin SL, Ireland TR (1995) A tale of two eras: Pliocene-Pleistocene unroofing of Cenozoic and late Archean zircons from active metamorphic core complexes, Solomon Sea, Papua New Guinea. Geology 23:1023–1026CrossRefGoogle Scholar
  2. Balogh K, Mihaliková A, Vass D (1981) Radiometric dating of basalts in Southern and Central Slovakia. Záp Karpaty Sér Geol 7:113–126Google Scholar
  3. Balogh K, Vass D, Ravasz-Baranyai L (1994) K/Ar ages in the case of correlated K and excess Ar concentrations: a case study for the alkaline olivine basalt of Somoska, Slovak-Hungarian frontier. Geol Carpath 45:97–102Google Scholar
  4. Chen Y, Smith PE, Evensen NM, York D, Lajoie KR (1996) The edge of time: dating young volcanic ash layers with the 40Ar-39Ar laser probe. Science 274:1176–1178CrossRefGoogle Scholar
  5. Cherniak DJ, Watson EB (2001) Pb diffusion in zircon. Chem Geol 172:5–24CrossRefGoogle Scholar
  6. Corfu F, Hanchar JM, Hoskin PWO (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon Min Soc Am Rev Mineral Geochem 53:469–500Google Scholar
  7. Danišík M, Shane P, Schmitt AK, Hogg A, Santos GM, Storm S, Evans NJ, Fifield LK, Lindsay JM (2012a) Re-anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined 238U/230Th disequilibrium and (U–Th)/He zircon ages. Earth Planet Sci Lett 349–350:240–250CrossRefGoogle Scholar
  8. Danišík M, Kuhlemann J, Dunkl I, Székely B, Evans NJ, Frisch W (2012b) Survival of ancient landforms in a collisional setting as revealed by combined fission track and (U–Th)/He thermochronometry: a case study from Corsica (France). J Geol 120:155–173CrossRefGoogle Scholar
  9. Demény A, Vennemann TW, Ahijado A, Casillas R (2004) Oxygen isotope thermometry in carbonatites, Fuerteventura, Canary Islands, Spain. Mineral Petrol 80:155–172CrossRefGoogle Scholar
  10. Dobosi G, Fodor RV, Goldberg SA (1995) Late-Cenozoic alkali basalt magmatism in Northern Hungary and Slovakia: petrology, source compositions and relationship to tectonics. Acta Volcanol 7:199–207Google Scholar
  11. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274CrossRefGoogle Scholar
  12. Ehlers TA, Farley KA (2003) Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet Sci Lett 206:1–14CrossRefGoogle Scholar
  13. Farley KA (2000) Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J Geophys Res 105:2903–2914CrossRefGoogle Scholar
  14. Farley KA (2002) (U–Th)/He dating: techniques, calibrations, and applications. Mineral Soc Am Rev Mineral Geochem 47:819–844CrossRefGoogle Scholar
  15. Farley KA, Wolf RA, Silver LT (1996) The effect of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60:4223–4229CrossRefGoogle Scholar
  16. Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50CrossRefGoogle Scholar
  17. Gradstein FM, Ogg JG, Smith AG (2004) A geologic time scale 2004. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. Harlow DE, Lewerentz A, Schersten A (2012) Alteration of zircon in alkaline fluids: nature and experiment. Mineral Mag 75:1813Google Scholar
  19. Hók J, Vojtko R, Slaninka I (2011) Genesis and evolution of elevation structure of the Cerová vrchovina Mts. Acta Geol Slov 3:113–121 (in Slovak)Google Scholar
  20. Hourigan JK, Reiners PW, Brandon MT (2005) U–Th zonation dependent alpha-ejection in (U–Th)/He chronometry. Geochim Cosmochim Acta 69:3349–3365CrossRefGoogle Scholar
  21. Hurai V, Simon K, Wiechert U, Hoefs J, Konečný P, Huraiová M, Pironon J, Lipka J (1998) Immiscible separation of metalliferous Fe/Ti-oxide melt from fractionating alkaline basalt: P-T-fO2 conditions and two-liquid elemental partitioning. Contrib Mineral Petrol 133:12–29CrossRefGoogle Scholar
  22. Hurai V, Paquette J-L, Huraiová M, Konečný P (2010) U–Th–Pb geochronology of zircon and monazite from syenite and pincinite xenoliths in Pliocene alkali basalts of the intra-Carpathian back-arc basin. J Volcanol Geotherm Res 198:275–287CrossRefGoogle Scholar
  23. Hurai V, Paquette J-L, Huraiová M, Sabol M (2012) U–Pb geochronology of zircons from fossiliferous sediments of the Hajnáčka I maar (Slovakia)—type locality of the MN 16a biostratigraphic subzone. Geol Mag 149:989–1000CrossRefGoogle Scholar
  24. Hurai V, Huraiová M, Milovský R, Luptáková J, Konečný P (2013) High-pressure aragonite phenocrysts in carbonatite and carbonated syenite xenoliths within an alkali basalt. Am Mineral 98:1074–1077CrossRefGoogle Scholar
  25. Huraiová M, Konečný P, Konečný V, Simon K, Hurai V (1996) Mafic and salic igneous xenoliths in late tertiary alkaline basalts: fluid inclusion and mineralogical evidence for a deep crustal magmatic reservoir in the Western Carpathians. Eur J Mineral 8:901–916Google Scholar
  26. Huraiová M, Hurai V, Konečný P (2011) Finding of baddeleyite (ZrO2) in basalt maar near Hajnáčka (southern Slovakia). Mineralia Slov 43:255–262 (in Slovak)Google Scholar
  27. Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69CrossRefGoogle Scholar
  28. Kantor J, Wiegerová V (1981) Radiometric ages of some basalts of Slovakia by 40Ar/40K method. Geol Zborn Geol Carpath 17:117–130Google Scholar
  29. Konečný V, Lexa J, Balogh K, Konečný P (1995) Alkali basalt volcanism in Southern Slovakia: volcanic forms and time evolution. Acta Vulcanol 7:167–172Google Scholar
  30. Konečný V, Kováč M, Lexa J, Šefara J (2002) Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGS Stephan Müller Spec Publ Ser 1:165–194Google Scholar
  31. Konečný V, Lexa J, Konečný P, Balogh K, Elečko M, Hurai V, Huraiová M, Pristaš J, Sabol M, Vass D (2004) Guidebook to the Southern Slovakia alkali basalt volcanic field. Štátny Geologický Ústav D, ŠtúraGoogle Scholar
  32. Ludwig KR (2001) User’s manual for Isoplot/Ex version 2.49, a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, BerkeleyGoogle Scholar
  33. McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, OxfordGoogle Scholar
  34. McDowell FW, McIntosh WC, Farley KA (2005) A precise 40Ar-39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chem Geol 214:249–263CrossRefGoogle Scholar
  35. Meesters AGCA, Dunai TJ (2002) Solving the production–diffusion equation for finite diffusion domains of various shapes part 2, application to cases with alpha ejection and non-homogeneous distribution of the source. Chem Geol 186:345–363CrossRefGoogle Scholar
  36. Nemcok M, Pospisil L, Lexa J, Donelick RA (1998) Tertiary subduction and slab break-off model of the Carpathian-Pannonian region. Tectonophysics 295:307–340CrossRefGoogle Scholar
  37. Paquette J-L, Mergoil-Daniel J (2009) Origin and U–Pb dating of zircon-bearing nepheline syenite xenoliths preserved in basaltic tephra (Massif Central, France). Contrib Mineral Petrol 158:245–262CrossRefGoogle Scholar
  38. Paquette J-L, Tiepolo M (2007) High resolution (5 μm) U–Th–Pb isotopes dating of monazite with excimer laser ablation (ELA)-ICPMS. Chem Geol 240:222–237CrossRefGoogle Scholar
  39. Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülőp A, Márton E, Panaiotu C, Cvetković V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57:511–530Google Scholar
  40. Planderová E (1986) Biostratigraphic evaluation of sediments of the Poltár formation. Geol Práce Správy 84:113–118 (in Slovak)Google Scholar
  41. Pupin J-P (2000) Granite genesis related to geodynamics from Hf-Y in zircon. Geol Soc Am Spec Pap 350:245–256Google Scholar
  42. Reiners PW (2005) Zircon (U–Th)/He thermochronometry. Mineral Soc Am Rev Mineral Geochem 58:151–179CrossRefGoogle Scholar
  43. Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004) Zircon (U–Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta 68:1857–1887CrossRefGoogle Scholar
  44. Schärer U (1984) The effect of initial Th-230 disequilibrium on young U–Pb ages—the Makalu Case, Himalaya. Earth Planet Sci Lett 67:191–204CrossRefGoogle Scholar
  45. Schmitt AK, Grove M, Harrison TM, Lovera O, Hulen J, Walters M (2003) The Geysers—Cobb Mountain magma system, California (part 1): U–Pb zircon ages of volcanic rocks, conditions of zircon crystallization and magma residence times. Geochim Cosmochim Acta 67:3423–3442CrossRefGoogle Scholar
  46. Schmitt AK, Wetzel F, Cooper KM, Zou H, Wőrner G (2010) Magmatic longevity of Laacher See volcano (Eifel, Germany) indicated by U–Th dating of intrusive carbonatites. J Petrol 51:1053–1085CrossRefGoogle Scholar
  47. Schmitt AK, Danišík M, Evans NJ, Siebel W, Kiemele E, Aydin F, Harvey JC (2011) Acigol rhyolite field, Central Anatolia (part 1): high-resolution dating of pre-eruptive zircon residence and rhyolite eruption episodes. Contrib Mineral Petrol 162:1215–1231CrossRefGoogle Scholar
  48. Seghedi I, Downes H, Vaselli O, Szakács A, Balogh K, Pécskay Z (2004) Post-collisional tertiary-quaternary mafic alkalic magmatism in the Carpathian-Pannonian region: a review. Tectonophysics 393:43–62CrossRefGoogle Scholar
  49. Seifert W, Kämpf H, Wasternack J (2000) Compositional variation in apatite, phlogopite and other accessory minerals of the ultramafic Delitzsch complex, Germany: implication for cooling history of carbonatites. Lithos 53:81–100CrossRefGoogle Scholar
  50. Siebel W, Schmitt AK, Danišík M, Chen F, Meier S, Weiß S, Eroğlu S (2009) Prolonged mantle residence of zircon xenocrysts from the western Eger rift. Nat Geosci 2:886–890CrossRefGoogle Scholar
  51. Slaninka I, Frankovská J, Kordík J (2008) Selection of sites for deep geological repository of radioactive wastes in Slovakia. Enviromag 5:13 (in Slovak)Google Scholar
  52. Soman A, Tomaschek F, Berndt J, Geisler T, Scherer E (2006) Hydrothermal re-equilibration of zircon from an alkali pegmatite of Malawi. Beihefte Eur J Mineral 18:132Google Scholar
  53. Spandler C, Hermann J, Rubatto D (2004) Exsolution of thortveitite, yttrialite, and xenotime during low-temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon. Am Mineral 89:1795–1806Google Scholar
  54. Spell TL, Smith EI, Sanford A, Zanetti KA (2001) Systematics of xenocrystic contamination: preservation of discrete feldspar populations at McCullough Pass Caldera revealed by 40Ar/39Ar dating. Earth Planet Sci Lett 190:153–165CrossRefGoogle Scholar
  55. Stoppa F, Liu Y (1995) Chemical composition and petrogenetic implications of apatites from some ultra-alkaline Italian rocks. Eur J Mineral 7:391–402Google Scholar
  56. Tera F, Wasserburg G (1972) U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304CrossRefGoogle Scholar
  57. Tiepolo M (2003) In situ Pb geochronology of zircon with laser ablation-inductively coupled plasma-sector field mass spectrometry. Chem Geol 141:1–19Google Scholar
  58. Vass D, Elečko M (1992) Explanations to geological map of Lučenec Basin and Cerova Highlands, scale 1:50 000. GÚDŠ Publishers, Bratislava (in Slovak)Google Scholar
  59. Vass D, Kraus I (1985) Two basalts of different age in southern Slovakia and their relation to the Poltár formation. Mineralia Slov 17:435–440 (in Slovak)Google Scholar
  60. Vass D, Konečný V, Elečko M, Kozač J, Molnár A, Zakovič M (1998) Diatomite deposit of basalt maar near Jelšovec and possibilities of its usage. Mineral Slov 30:333–356 (in Slovak)Google Scholar
  61. Vass D, Konečný V, Túnyi I, Dolinský P, Balogh K, Hudáčková N, Kováčová-Slamková M, Beláček B (2000) Origin of Pliocene vertebrate bone accumulation at Hajnáčka, Southern Slovakia. Geol Carpath 51:69–82Google Scholar
  62. Vass D, Elečko M, Konečný V (2007) Geology of Lučenská kotlina depression and Cerová vrchovina upland. GÚDŠ Publishers, BratislavaGoogle Scholar
  63. Vermeesch P (2009) Radialplotter: a Java application for fission track, luminescence and other radial plots. Radiat Meas 44:409–410CrossRefGoogle Scholar
  64. Vermeesch P (2010) Helioplot, and the treatment of overdispersed (U–Th–Sm)/He data. Chem Geol 271:108–111CrossRefGoogle Scholar
  65. Walter RC, Manega PC, Hay RL (1991) Laser-fusion Ar40/Ar39 dating of bed I, Olduvai-Gorge, Tanzania. Nature 354:145–149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vratislav Hurai
    • 1
  • Martin Danišík
    • 2
  • Monika Huraiová
    • 3
  • Jean-Louis Paquette
    • 4
    • 5
    • 6
  • Alexander Ádám
    • 7
  1. 1.Geological InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of Earth and Ocean SciencesThe University of WaikatoHamiltonNew Zealand
  3. 3.Department of Mineralogy and PetrologyComenius UniversityBratislavaSlovakia
  4. 4.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalClermont-FerrandFrance
  5. 5.CNRS, UMR6524, LMVClermont-FerrandFrance
  6. 6.IRD, R 163, LMVClermont-FerrandFrance
  7. 7.Gemerské Dechtáre 107Slovakia

Personalised recommendations