Contributions to Mineralogy and Petrology

, Volume 166, Issue 3, pp 887–910 | Cite as

Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite

  • Timothy L. Grove
  • Eva S. Holbig
  • Jay A. Barr
  • Christy B. Till
  • Michael J. Krawczynski
Original Paper


Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.


Garnet lherzolite Mantle melting Tibetan Plateau Kilauea Hawaii Experimental petrology 



The paper is dedicated to the memory of a great igneous petrologist, Ian Carmichael. Ian was like a father to many of us. He was always there to provide encouragement, support and criticism. Often all three of these were administered with equal enthusiasm. This work was first presented at a career celebration for Ian held at Camp Davis field station, Wyoming, August 12–16, 2005. Support for this work was provided through the National Science Foundation from grants EAR-0507486, EAR-0538179 and EAR-1118598. The authors gratefully acknowledge constructive comments of two anonymous reviewers and Tom Sisson, who suggested that we look at the melting conditions of the common and voluminous alkali basalts and tholeiites present at Hawaii.

Supplementary material

410_2013_899_MOESM1_ESM.doc (36 kb)
Supplementary material 1 (DOC 36 kb)
410_2013_899_MOESM2_ESM.xls (98 kb)
Supplementary material 2 (XLS 97 kb)


  1. Armstrong JT (1995) CITZAF—a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin-films, and particles. Microbeam Anal 4:177–200Google Scholar
  2. Asimow PD, Hirschmann MM, Ghiorso MS, Ohara MJ, Stolper EM (1995) The effect of pressure-induced solid–solid phase-transitions on decompression melting of the mantle. Geochim Cosmochim Acta 59(21):4489–4506CrossRefGoogle Scholar
  3. Asimow PD, Hirschmann MM, Stolper E (1997) An analysis of variations in isentropic melt productivity. Philos Trans R Soc Lond Ser A 355:255–281CrossRefGoogle Scholar
  4. Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58(13):2811–2827CrossRefGoogle Scholar
  5. Barr JA, Grove TL (2013) Experimental petrology of the Apollo 15 group A green glasses: melting primordial lunar mantle and magma ocean cumulate assimilation. Geochim Cosmochim Acta. doi: 10.1016/j.gca.2012.12.035
  6. Boyd FR, England JL (1960) Apparatus for phase equilibrium studies at pressures up to 50 kilobars and temperatures up to 1750 °C. J Geophys Res 65:741–748CrossRefGoogle Scholar
  7. Brey G, Green DH (1975) Role of CO2 in genesis of olivine melilite. Contrib Mineral Petrol 49(2):93–103. doi: 10.1007/bf00373853 CrossRefGoogle Scholar
  8. Clague DA (1987) Hawaiian alkaline volcanism. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geol Soc Spec Pub 30:227–252Google Scholar
  9. Clague DA, Moore JG, Dixon JE, Freisen WB (1995) Petrology of submarine lavas from Kilauea’s Puna Ridge, Hawaii. J Petrol 36(2):299–349CrossRefGoogle Scholar
  10. Clague DA, Davis AL, Bischoff JL, Dixon JE, Geyer R (2000) Lava bubble-wall fragments formed by submarine hydrovolcanic explosions on Loihi seamount and Kilauea volcano. Bull Volcanol 61:437–449CrossRefGoogle Scholar
  11. Coombs ML, Sisson TW, Lipman PL (2004) Major element, sulfur, and chlorine concentrations of glasses from the submarine flank of Kilauea volcano, Hawaii, collected during the 1998–2002 Japan Marine Science and Technology Center (JAMSTEC) cruises. U.S. Geological Survey Open File Report: OF 2004–1378, p 7.
  12. Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440(7084):659–662. doi: 10.1038/nature04612 CrossRefGoogle Scholar
  13. Dasgupta R, Hirschmann MM (2007) Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Mineral 92:370–379CrossRefGoogle Scholar
  14. Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48(11):2093–2124. doi: 10.1093/petrology/egm053 CrossRefGoogle Scholar
  15. Ding L, Kapp P, Zhong DL, Deng WM (2003) Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction. J Petrol 44(10):1833–1865CrossRefGoogle Scholar
  16. Eggins SM (1992) Petrogenesis of Hawaiian tholeiites: 2. Aspects of dynamic melt segregation. Contrib Mineral Petrol 110:398–410CrossRefGoogle Scholar
  17. Eggler DH (1978) Effect of CO2 upon partial melting of peridotite in system Na2O–CaO–Al2O3–MgO–SiO2–CO2 to 35 kb, with an analysis of melting in a peridotite-H2O–CO2 system. Am J Sci 278(3):305–343CrossRefGoogle Scholar
  18. Frey FA, Wise WS, Garcia MO, West H, Kwon ST, Kennedy A (1990) Evolution of Mauna Kea Volcano, Hawaii: petrologic and geochemical constraints on postshield volcanism. J Geophys Res 95:1271–1300CrossRefGoogle Scholar
  19. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131(4):323–346CrossRefGoogle Scholar
  20. Garcia MO, Muenow DW, Aggrey KE, O'Neill JR (1989) Major element, volatile, and stable isotope geochemistry of Hawaiian submarine tholeiitic glasses. J Geophys Res 94(B8):10525–10538CrossRefGoogle Scholar
  21. Garcia MO, Foss DJO, West HB, Mahoney JJ (1995) Geochemical and isotopic evolution of Loihi volcano, Hawaii. J Petrol 36:1647–1674Google Scholar
  22. Grove TL, Bence AE (1977) Experimental study of pyroxene-liquid interaction in quartz-normative basalt 15597. Proc Lunar Sci Conf 8:1549–1579Google Scholar
  23. Gudfinnsson GH, Presnall DC (1996) Melting relations of model lherzolite in the system CaO–MgO–Al2O3–SiO2 at 2.4-3.4 GPa and the generation of komatiites. J Geophys Res 101(B12):27701–27709. doi: 10.1029/96jb02462 Google Scholar
  24. Gudfinnsson GH, Presnall DC (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Petrol 46(7):1645–1659CrossRefGoogle Scholar
  25. Guo ZF, Wilson M, Liu JQ, Mao Q (2006) Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J Petrol 47(6):1177–1220CrossRefGoogle Scholar
  26. Hart SR, Zindler A (1986) In search of a bulk-earth composition. Chem Geol 57(3–4):247–267CrossRefGoogle Scholar
  27. Hays JF (1967) Lime-alumina-silica. In: Carnegie Institution of Washington Year Book, vol 65. Carnegie Institution of Washington, Washington, DC, pp 234–239Google Scholar
  28. Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELTS2.XLS software program for primary magma calculation. Geochem Geophys Geosyst 9:art. no.-Q09001Google Scholar
  29. Hesse M, Grove TL (2003) Absarokites from the western Mexican Volcanic Belt: constraints on mantle wedge conditions. Contrib Mineral Petrol 146:10–27CrossRefGoogle Scholar
  30. Hirose K (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res L 24(22):2837–2840. doi: 10.1029/97gl02956 CrossRefGoogle Scholar
  31. Hirschmann MM, Kogiso T, Baker MB, Stolper EM (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31(6):481–484CrossRefGoogle Scholar
  32. Hofmann AW, Feigenson MD, Raczek I (1984) Case studies on the origin of basalt: III. Petrogenesis of the Mauna Ulu erup-tion, Kilauea, 1969–1971. Contrib Mineral Petrol 88:24–35CrossRefGoogle Scholar
  33. Holbig ES, Grove TL (2008) Mantle melting beneath the Tibetan Plateau: experimental constraints on the generation of ultra-potassic lavas from Qiangtang, Tibet. J Geophys Res 113(B04210). doi: 10.1029/2007JB005149
  34. Johannes W, Chipman DW, Hays JF, Bell PM, Mao HK, Newton RC, Boettcher AL, Seifert F (1971) An interlaboratory comparison of piston-cylinder pressure calibration using the albite-breakdown reaction. Contrib Mineral Petrol 32:24–38CrossRefGoogle Scholar
  35. Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102(B1):853–874Google Scholar
  36. Kinzler RJ, Grove TL (1992) Primary magmas of midocean ridge basalts 1. Experiments and methods. J Geophys Res 97(B5):6885–6906Google Scholar
  37. Kinzler RJ, Grove TL (1992) Primary magmas of midocean ridge basalts 2. Applications. J Geophys Res 97(B5):6907–6926Google Scholar
  38. Kinzler RJ, Grove TL (1993) Corrections and further discussion of the primary magmas of mid-ocean ridge basalts, 1 and 2. J Geophys Res 98(B12):22339–22347Google Scholar
  39. Kinzler RJ, Grove T (1999) Origin of depleted cratonic harzburgites by deep fractional melt extraction and shallow olivine cumulate infusion. In: Gurney JJ (ed) Proceedings of the 7th international kimberlite conference, pp 437–443Google Scholar
  40. Klemme S, O’Neill HSC (2000) The near-solidus transition from garnet lherzolite to spinel lherzolite. Contrib Mineral Petrol 138(3):237–248. doi: 10.1007/s004100050560 CrossRefGoogle Scholar
  41. Kogiso T, Hirose K, Takahashi E (1998) Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth Planet Sci Lett 162(1–4):45–61. doi: 10.1016/s0012-821x(98)00156-3 CrossRefGoogle Scholar
  42. Kogiso T, Hirschmann MM, Frost DJ (2003) High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet Sci Lett 216(4):603–617. doi: 10.1016/s0012-821x(03)00538-7 CrossRefGoogle Scholar
  43. Kogiso T, Hirschmann MM, Pertermann M (2004) High-pressure partial melting of mafic lithologies in the mantle. J Petrol 45(12):2407–2422. doi: 10.1093/petrology/egh057 CrossRefGoogle Scholar
  44. Krawczynski MJ, Olive JL (2011) A new fitting algorithm for petrologic mass-balance problems. Abstract V53B-2613, presented at 2011 Fall Meeting, AGU, San Francisco, Calif, 5–9 DecGoogle Scholar
  45. Kushiro I (1975) Nature of silicate melt and its significance in magma genesis—regularities in shift of liquidus boundaries involving olivine, pyroxene and silica minerals. Am J Sci 275(4):411–431CrossRefGoogle Scholar
  46. Kushiro I (1996) Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. In: Basu A, Hart SR (eds) Earth processes: reading the isotopic code AGU monograph, vol 95. American Geophysical Union, Washington, DC, pp 109–122Google Scholar
  47. Longhi J (1995) Liquidus equilibria of some primary lunar and terrestrial melts in the garnet stability. Geochim Cosmochim Acta 59(11):2375–2386CrossRefGoogle Scholar
  48. Longhi J (2002) Some phase equilibrium systematics of lherzolite melting: I. Geochem Geophys Geosyst 3:art. no.-1020Google Scholar
  49. Longhi J (2005) Temporal stability and pressure calibration of barium carbonate and talc/pyrex pressure media in a piston-cylinder apparatus. Am Mineral 90:206–218CrossRefGoogle Scholar
  50. MacDonald GA, Katsura T (1964) Chemical composition of Hawaiian lavas. J Petrol 5:82–133CrossRefGoogle Scholar
  51. MacGregor I (1965) Stability fields of spinel and garnet peridotites in the synthetic system CaO–MgO–Al2O3–SiO2. Carnegie Inst Wash Year Book 64:126–134Google Scholar
  52. Médard E, McCammon CA, Barr JA, Grove TL (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93:1838–1844CrossRefGoogle Scholar
  53. Moore JG, Clague DA (1987) Coastal lava flows from Mauna Loa and Hualalai, Kona, Hawaii. Bull Volcanol 57:752–764CrossRefGoogle Scholar
  54. Moore JG, Clague DA, Normark WA (1982) Diverse basalt types from Loihi seamount, Hawaii. Geology 10:88–92CrossRefGoogle Scholar
  55. Moore JG, Fornari DJ, Clague DA (1985) Basalts from the 1977 submarine eruption of Mauna Loa, Hawaii: new data on the variation of palagonitization rate with temperature. U S Geol Survey Bull 1663:1–11Google Scholar
  56. Naka J, Kanamatsu T, Lipman PW, Sisson TW, Tsuboyama N, Morgan JK, Smith JR, Ui T (2002) Deep-sea volcaniclastic sedimentation around the southern flank of Hawaii. In: Takahashi E, Lipman PW, Garcia MO, Naka J, Aramaki S (eds) Hawaiian volcanoes: deep underwater perspectives. Amer Geophys Union Geophys Monogr 128:29–50Google Scholar
  57. Nomade S, Renne PR, Mo XX, Zhao ZD, Zhou S (2004) Miocene volcanism in the Lhasa block, Tibet: spatial trends and geodynamic implications. Earth Planet Sci Lett 221(1–4):227–243CrossRefGoogle Scholar
  58. O’Neill HSC (1981) The transitions between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol 77(2):185–194. doi: 10.1007/bf00636522 CrossRefGoogle Scholar
  59. O’Hara MJ, Richardson SW, Wilson G (1971) Garnet peridotite stability and occurrence in crust and mantle. Contrib Mineral Petrol 32:48–68CrossRefGoogle Scholar
  60. Pertermann M, Hirschmann MM, Hametner K, Gunther D, Schmidt MW (2004) Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite. Geochem Geophys Geosyst 5. doi: 10.1029/2003gc000638
  61. Presnall DC, Dixon JR, O’Donnell TH, Dixon SA (1979) Generation of mid-ocean ridge tholeiites. J Petrol 20:3–35CrossRefGoogle Scholar
  62. Sisson TW, Lipman PW, Naka J (2002) Submarine alkalic through tholeiitic shield-stage development of Kilauea volcano, Hawaii. In: Takahashi E, Lipman PW, Garcia MO, Naka J, Aramaki S (eds) Hawaiian volcanoes: deep underwater perspectives. Amer Geophys Union Geophys Monogr 128:193–219Google Scholar
  63. Sisson TW, Kimura JI, Coombs ML (2009) Basanite-nephelinite suite from early Kilauea: carbonated melts of phlogopite-garnet peridotite at Hawaii’s leading magmatic edge. Contrib Mineral Petrol 158(6):803–829. doi: 10.1007/s00410-009-0411-8 CrossRefGoogle Scholar
  64. Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source for Hawaiian shield lavas. Nature 434(7033):590–597CrossRefGoogle Scholar
  65. Stolper E, Sherman S Garcia M, Baker M, Seaman S (2004) Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii. Geochem Geophys Geosyst 5:Q07G15. doi: 10.1029/2003gc000553
  66. Takahahshi E, Nakajima K, Wright TL (1998) Origin of the Columbia River basalts: melting model of a heterogeneous plume head. Earth Planet Sci Lett 162(1–4):63–80. doi: 10.1016/s0012-821x(98)00157-5 CrossRefGoogle Scholar
  67. Takahashi E (1986) Melting of a dry peridotite KLB-1 up to 14 GPa—implications on the origin of peridotitic upper mantle. J Geophys Res 91(B9):9367–9382Google Scholar
  68. Thibault Y, Edgar AD, Lloyd FE (1992) Experimental investigation of melts from a carbonated phlogopite lherzolite—implications for metasomatism in the continental lithospheric mantle. Am Mineral 77(7–8):784–794Google Scholar
  69. Till CB, Grove TL, Krawczynski MJ (2012) A melting model for variably depleted and enriched lherzolite in the plagioclase and spinel stability fields. J Geophys Res 117. doi: 10.1029/2011jb009044
  70. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39CrossRefGoogle Scholar
  71. Tormey DR, Grove TL, Bryan WB (1987) Experimental petrology of normal MORB near the Kane fracture zone: 22–25 N, mid-Atlantic ridge. Contrib Mineral Petrol 96:121–139CrossRefGoogle Scholar
  72. Ulmer P (1989) The dependence of the Fe2+-Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition; an experimental study to 30 kbars. Contrib Mineral Petrol 101(3):261–273CrossRefGoogle Scholar
  73. Wagner TP, Grove TL (1998) Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Liauea volcano, Hawaii. Contrib Mineral Petrol 131(1):1–12CrossRefGoogle Scholar
  74. Walker D, Agee CB (1988) Ureilite compaction. Meteoritics 23(1):81–91CrossRefGoogle Scholar
  75. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60CrossRefGoogle Scholar
  76. Walter MJ, Presnall DC (1994) Melting behavior of simplified lherzolite in the system CaO–MgO–Al2O3–SiO2–Na2O from 7 to 35 kbar. J Petrol 35(2):329–359CrossRefGoogle Scholar
  77. Williams HM, Turner SP, Pearce JA, Kelley SP, Harris NBW (2004) Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modeling. J Petrol 45(3):555–607CrossRefGoogle Scholar
  78. Wyllie PJ, Huang WL (1976) Carbonation and melting reactions in system CaO–MgO–SiO2–CO2 at mantle pressures with geophysical and petrological applications. Contrib Mineral Petrol 54(2):79–107. doi: 10.1007/bf00372117 CrossRefGoogle Scholar
  79. Yang HJ, Kinzler RJ, Grove TL (1996) Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib Mineral Petrol 124:1–18CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Timothy L. Grove
    • 1
  • Eva S. Holbig
    • 1
  • Jay A. Barr
    • 1
  • Christy B. Till
    • 2
  • Michael J. Krawczynski
    • 3
  1. 1.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.US Geological SurveyMenlo ParkUSA
  3. 3.Department of Earth, Environmental and Planetary SciencesCase Western Reserve UniversityClevelandUSA

Personalised recommendations