Contributions to Mineralogy and Petrology

, Volume 166, Issue 2, pp 491–509 | Cite as

The effects of undercooling and deformation rates on the crystallization kinetics of Stromboli and Etna basalts

Original Paper

Abstract

We have investigated the effect of undercooling and deformation on the evolution of the texture and the crystallization kinetics of remelted basaltic material from Stromboli (pumice from the March 15, 2007 paroxysmal eruption) and Etna (1992 lava flow). Isothermal crystallization experiments were conducted at different degrees of undercooling and different applied strain rate (T = 1,157–1,187 °C and \( \dot{\gamma }_{i} \) = 4.26 s−1 for Stromboli; T = 1,131–1,182 °C and \( \dot{\gamma }_{i} \) = 0.53 s−1 for Etna). Melt viscosity increased due to the decrease in temperature and the increase in crystal content. The mineralogical assemblage comprises Sp + Plg (dominant) ± Cpx with an overall crystal fraction (ϕ) between 0.06 and 0.27, increasing with undercooling and flow conditions. Both degree of undercooling and deformation rate deeply affect the kinetics of the crystallization process. Plagioclase nucleation incubation time strongly decreases with increasing ΔT and flow, while slow diffusion-limited growth characterizes low ΔT—low deformation rate experiments. Both Stromboli (high strain rate) and Etna (low strain rate) plagioclase growth rates (G) display relative small variations with Stromboli showing higher values (4.8 ± 1.9 × 10−9 m s−1) compared to Etna (2.1 ± 1.6 × 10−9 m s−1). Plagioclase average nucleation rates J continuously increase with undercooling from 1.4 × 106 to 6.7 × 106 m−3 s−1 for Stromboli and from 3.6 × 104 to 4.0 × 106 m−3 s−1 for Etna. The extremely low value of 3.6 × 104 m−3 s−1 recorded at the lowest undercooling experiment for Etna (ΔT = 20 °C) indicates that the crystallization process is growth-dominated and that possible effects of textural coarsening occur. G values obtained in this paper are generally one or two orders of magnitude higher compared to those obtained in the literature for equivalent undercooling conditions. Stirring of the melt, simulating magma flow or convective conditions, facilitates nucleation and growth of crystals via mechanical transportation of matter, resulting in the higher J and G observed. Any modeling pertaining to magma dynamics in the conduit (e.g., ascent rate) and lava flow emplacement (e.g., flow rate, pāhoehoe–‘a‘ā transition) should therefore take the effects of dynamic crystallization into account.

Keywords

Basalts Plagioclase CSD Nucleation Growth Crystallization kinetics 

References

  1. Armienti P (2008) Decryption of igneous rock textures: crystal size distribution tools. Minerals Inclusions Volcan Process 69:623–649. doi:10.2138/rmg.2008.69.16 Google Scholar
  2. Armienti P, Pareschi MT, Innocenti F, Pompilio M (1994) Effects of magma storage and ascent on the kinetics of crystal-growth—the case of the 1991–93 Mt Etna eruption. Contrib Miner Petrol 115:402–414CrossRefGoogle Scholar
  3. Armienti P, Francalanci L, Landi P (2007) Textural effects of steady state behaviour of the Stromboli feeding system. J Volcanol Geoth Res 160:86–98. doi:10.1016/j.volgeores.2006.05.004 CrossRefGoogle Scholar
  4. Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1132Google Scholar
  5. Avrami M (1939) Kinetics of phase change I. J Chem Phys 7:1103–1112CrossRefGoogle Scholar
  6. Avrami M (1940) Kinetics of phase change II. J Chem Phys 8:212–224CrossRefGoogle Scholar
  7. Bindeman IN (2003) Crystal sizes in evolving silicic magma chambers. Geology 31:367–370CrossRefGoogle Scholar
  8. Blundy J, Cashman KV (2008) Petrologic reconstruction of magmatic system variables and processes. Rev Mineral Geochem 69:179–239. doi:10.2138/rmg.2008.69.6 CrossRefGoogle Scholar
  9. Brugger CR, Hammer JE (2010) Crystal size distribution analysis of plagioclase in experimentally decompressed hydrous rhyodacite magma. Earth Planet Sci Lett 300:246–254. doi:10.1016/j.epsl.2010.09.046 CrossRefGoogle Scholar
  10. Burkhard DJM (2002) Kinetics of crystallization: example of micro-crystallization in basalt lava. Contrib Miner Petrol 142:724–737. doi:10.1007/s00410-001-0321-x CrossRefGoogle Scholar
  11. Calvari S, Coltelli M, Neri M, Pompilio M, Scrivano V (1994) The 1991–1993 Etna eruption: chronology and lava flow-field evolution. Acta Vulcanol 4:1–14Google Scholar
  12. Cashman KV (1990) Textural constraints on the kinetics of crystallization of igneous rocks. In: Nicholls J, Russell JK (eds) Modern methods of igneous petrology: understanding magmatic processes. Rev Mineral Soc Am 259–314Google Scholar
  13. Cashman KV (1993) Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contrib Miner Petrol 113:126–142CrossRefGoogle Scholar
  14. Cashman KV, Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. II: Makaopuhi lava lake. Contrib Miner Petrol 99:292–305CrossRefGoogle Scholar
  15. Cashman KV, Thornber C, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of Pahoehoe Lava to ‘A‘a. Bull Volcanol 61:306–323CrossRefGoogle Scholar
  16. Couch S (2003) Experimental investigation of crystallization kinetics in a haplogranite system. Am Mineral 88:1471–1485Google Scholar
  17. Couch S, Harford CL, Sparks RSJ, Carroll MR (2003) Experimental constraints on the conditions of formation of highly calcic plagioclase microlites at the Soufrire Hills Volcano, Montserrat. J Petrol 44:1455–1475CrossRefGoogle Scholar
  18. Crisp J, Cashman KV, Bonini JA, Hougen SB, Pieri DC (1994) Crystallization history of the 1984 Mauna Loa lava flow. J Geophys Res 99:7177–7198. doi:10.1029/93JB02973 CrossRefGoogle Scholar
  19. Emerson OH (1926) The formation of aa and pahoehoe. Am J Sci Ser 5 V:109–114. doi:10.2475/ajs.s5-12.68.109
  20. Gardner CA, Cashman KV, Neal CA (1998) Tephra-fall deposits from the 1992 eruption of Crater Peak, Alaska: implications of clast textures for eruptive processes. Bull Volcanol 59:537–555. doi:10.1007/s004450050208 CrossRefGoogle Scholar
  21. Garrido CJ, Kelemen PB, Hirth G (2001) Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: plagioclase crystal size distributions in gabbros from the Oman ophiolite. Geochem Geophys Geosyst 2:1041. doi:10.1029/2000GC000136 CrossRefGoogle Scholar
  22. Geschwind C-H, Rutherford MJ (1995) Crystallization of microlites during magma ascent: the fluid mechanics of 1980–1986 eruptions at Mount St Helens. Bull Volcanol 57:356–370. doi:10.1007/BF00301293 Google Scholar
  23. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Miner Petrol 119:197–212. doi:10.1007/BF00307281 CrossRefGoogle Scholar
  24. Giordano D, Potuzak M, Romano C, Dingwell DB, Nowak M (2008a) Viscosity and glass transition temperature of hydrous melts in the system CaAl2Si2O8–CaMgSi2O6. Chem Geol 256:203–215. doi:10.1016/j.chemgeo.2008.06.027 CrossRefGoogle Scholar
  25. Giordano D, Russell JK, Dingwell DB (2008b) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134. doi:10.1016/j.epsl.2008.03.038 CrossRefGoogle Scholar
  26. Hammer JE, Rutherford MJ (2002) An experimental study of the kinetics of decompression-induced crystallization in silicic melt. J Geophys Res-Solid Earth 107:2021. doi:10.1029/2001jb000281 CrossRefGoogle Scholar
  27. Hammer JE, Cashman KV, Hoblitt RP, Newman S (1999) Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bull Volcanol 60:355–380CrossRefGoogle Scholar
  28. Harris AJL, Rowland SK (2009) Effusion rate controls on lava flow length and the role of heat loss: a review. In: Thordarson T, Self S, Larsen S, et al (eds) Studies in volcanology: the legacy of George Walker. Special Publications of IAVCEI, 2, Geological Society, London, pp 33–51Google Scholar
  29. Higgins MD (1996a) Magma dynamics beneath Kameni volcano, Thera, Greece, as revealed by crystal size and shape measurements. J Volcanol Geoth Res 70:37–48CrossRefGoogle Scholar
  30. Higgins MD (1996b) Crystal size distributions and other quantitative textural measurements in lavas and tuff from Egmont volcano (Mt Taranaki), New Zealand. Bull Volcanol 58:194–204CrossRefGoogle Scholar
  31. Higgins MD (1998) Origin of anorthosite by textural coarsening: quantitative measurements of a natural sequence of textural development. J Petrol 39:1307–1323CrossRefGoogle Scholar
  32. Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85:1105–1116Google Scholar
  33. Higgins MD (2002) Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans. Am Mineral 87:171–175Google Scholar
  34. Higgins MD (2006a) Verification of ideal semi-logarithmic, lognormal or fractal crystal size distributions from 2D datasets. J Volcanol Geoth Res 154:8–16. doi:10.1016/j.jvolgeores.2005.09.015 CrossRefGoogle Scholar
  35. Higgins MD (2006b) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. Higgins MD, Roberge J (2003) Crystal size distribution of plagioclase and amphibole from Soufriere Hills Volcano, Montserrat: evidence for dynamic crystallization-textural coarsening cycles. J Petrol 44:1401–1411CrossRefGoogle Scholar
  37. Hon KA, Gansecki C, Kauahikaua J (2003) The transition from ‘a‘ā to pāhoehoe crust on flows emplaced during the Pu‘u ‘O‘o- Kupaianaha eruption. In: Heliker CA, Swanson DA, Takahashi TJ (eds) The Pu‘u ‘O‘o-Kupaianaha eruption of Kilauea volcano, Hawai‘i: the first 20 years: U.S. Geological Survey Professional Paper 1676. pp 89–104Google Scholar
  38. Iezzi G, Mollo S, Ventura G, Cavallo A, Romano C (2008) Experimental solidification of anhydrous latitic and trachytic melts at different cooling rates: the role of nucleation kinetics. Chem Geol 253:91–101. doi:10.1016/j.chemgeo.2008.04.008 CrossRefGoogle Scholar
  39. Kilburn CRJ (1981) Pāhoehoe and ‘a‘ā lavas: a discussion and continuation of the model of Peterson and Tilling. J Volcanol Geoth Res 11:373–382CrossRefGoogle Scholar
  40. Kile DE, Eberl DD (2003) On the origin of size-dependent and size-independent crystal growth: influence of advection and diffusion. Am Mineral 88:1514–1521Google Scholar
  41. Kirkpatrick RJ (1975) Crystal growth from the melt: a review. Am Mineral 60:798–814Google Scholar
  42. Kirkpatrick RJ (1976) Towards a kinetic model for the crystallization of magma bodies. J Geophys Res 81:2565–2572CrossRefGoogle Scholar
  43. Kirkpatrick RJ (1977) Nucleation and growth of plagioclase, Makaopuhi and Alae lava lakes, Kilauea Volcano, Hawaii. Geol Soc Am Bull 88:78–84CrossRefGoogle Scholar
  44. Kouchi A, Tsuchiyama A, Sunagawa I (1986) Effect of stirring on crystallization kinetics of basalt: texture and element partitioning. Contrib Miner Petrol 93:429–438CrossRefGoogle Scholar
  45. Landi P, Corsaro RA, Francalanci L, Civetta L, Miraglia L, Pompilio M, Tesoro R (2009) Magma dynamics during the 2007 Stromboli eruption (Aeolian Islands, Italy): mineralogical, geochemical and isotopic data. J Volcanol Geoth Res 182:255–268. doi:10.1016/j.jvolgeores.2008.11.010 CrossRefGoogle Scholar
  46. Larsen JF (2005) Experimental study of plagioclase rim growth around anorthite seed crystals in rhyodacitic melt. Am Mineral 90:417–427. doi:10.2138/am.2005.1456 CrossRefGoogle Scholar
  47. Lasaga AC (1998) Kinetic theory in the earth sciences. Princeton University Press, PrincetonGoogle Scholar
  48. Lofgren GE (1974) An experimental study of plagioclase crystal morphology: isothermal crystallization. Am J Sci 274:243–273CrossRefGoogle Scholar
  49. Lofgren GE (1980) Experimental studies on the dynamic crystallization of silicate melts. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, Princeton, pp 487–552Google Scholar
  50. Lofgren GE (1983) Effect of heterogeneous nucleation on basaltic textures: a dynamic crystallization study. J Petrol 24:229–255. doi:10.1093/petrology/24.3.229 CrossRefGoogle Scholar
  51. Maaloe S, Tumyr O, James D (1989) Population density and zoning of olivine phenocrysts in tholeiites from Kauai, Hawaii. Contrib Miner Petrol 101:176–186CrossRefGoogle Scholar
  52. Macdonald GA (1953) Pahoehoe, aa, and block lava. Am J Sci 251:169–191. doi:10.2475/ajs.251.3.169 CrossRefGoogle Scholar
  53. Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I. Theory. Contrib Miner Petrol 99:277–291. doi:10.1007/BF00375362 CrossRefGoogle Scholar
  54. Marsh BD (1998) On the interpretation of crystal size distributions in magmatic systems. J Petrol 39:553–599CrossRefGoogle Scholar
  55. Marsh BD (2007) Crystallization of silicate magmas deciphered using crystal size distributions. J Am Ceram Soc 90:746–757. doi:10.1111/j.1551-2916.2006.01473.x CrossRefGoogle Scholar
  56. Morgan DJ, Jerram DA (2006) On estimating crystal shape for crystal size distribution analysis. J Volcanol Geoth Res 154:1–7. doi:10.1016/j.jvolgeores.2005.09.016 CrossRefGoogle Scholar
  57. Muncill GE, Lasaga AC (1988) Crystal-growth kinetics of plagioclase in igneous systems: isothermal H2O-saturated experiments and extension of a growth model to complex silicate melts. Am Mineral 73:982–992Google Scholar
  58. Orlando A, D’Orazio M, Armienti P, Borrini D (2008) Experimental determination of plagioclase and clinopyroxene crystal growth rates in an anhydrous trachybasalt from Mt Etna (Italy). Eur J Mineral 20:653–664. doi:10.1127/0935-1221/2008/0020-1841 CrossRefGoogle Scholar
  59. Peterson TD (1996) A refined technique for measuring crystal size distributions in thin section. Contrib Miner Petrol 124:395–405CrossRefGoogle Scholar
  60. Peterson DW, Tilling RI (1980) Transition of basaltic lava from pahoehoe to a’a, Kilauea Volcano, Hawaii: field observations and key factors. J Volcanol Geothermal Res 7Google Scholar
  61. Piochi M, Mastrolorenzo G, Pappalardo L (2005) Magma ascent and eruptive processes from textural and compositional features of Monte Nuovo pyroclastic products, Campi Flegrei, Italy. Bull Volcanol 67:663–678. doi:10.1007/s00445-005-0410-1 CrossRefGoogle Scholar
  62. Pupier E, Duchene S, Toplis MJ (2008) Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid. Contrib Miner Petrol 155:555–570. doi:10.1007/s00410-007-0258-9 CrossRefGoogle Scholar
  63. Randolph AD, Larson MA (1971) Theory of particulate processes: analysis and techniques of continuous crystallization. Academic Press, New YorkGoogle Scholar
  64. Resmini RG (2007) Modeling of crystal size distributions (CSDs) in sills. J Volcanol Geoth Res 161:118–130. doi:10.1016/j.jvolgeores.2006.06.023 CrossRefGoogle Scholar
  65. Resmini RG, Marsh BD (1995) Steady-state volcanism, paleoeffusion rates, and magma system volume inferred from plagioclase crystal size distributions in mafic lavas: Dome Mountain, Nevada. J Volcanol Geoth Res 68:273–296CrossRefGoogle Scholar
  66. Royet J (1991) Stereology: a method for analyzing images. Prog Neurobiol 37:433–474. doi:10.1016/0301-0082(91)90009-P CrossRefGoogle Scholar
  67. Saar MO, Manga M, Cashman KV, Fremouw S (2001) Numerical models of the onset of yield strength in crystal-melt suspensions. Earth Planet Sci Lett 187:367–379CrossRefGoogle Scholar
  68. Sahagian DL, Proussevitch AA (1998) 3D particle size distributions from 2D observations: stereology for natural applications. J Volcanol Geoth Res 84:173–196. doi:10.1016/S0377-0273(98)00043-2 CrossRefGoogle Scholar
  69. Salisbury MJ, Bohrson WA, Clynne MA, Ramos FC, Hoskin P (2008) Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: implications for timescales of magma chamber processes associated with the 1915 eruption of Lassen Peak, CA. J Petrol 49:1755–1780. doi:10.1093/petrology/egn045 CrossRefGoogle Scholar
  70. Saltikov S (1967) The determination of the size distribution of particles in an opaque material from a measurement of the size distribution of their sections. In: Elias H (ed) Proceedings of the second international congress for stereology. Springer, Berlin, pp 163–173Google Scholar
  71. Sato H (1995) Textural difference between pahoehoe and aa lavas of Izu-Oshima volcano, Japan: an experimental study on population-density of plagioclase. J Volcanol Geoth Res 66:101–113CrossRefGoogle Scholar
  72. Simakin AG, Chevychelov VY (1995) Experimental studies of feldspar crystallization from the granitic melt with various water-content. Geohimia 2:216–238Google Scholar
  73. Simakin AG, Salova TP (2004) Plagioclase crystallization from a Hawaiitic melt in experiments and in volcanic conduit. Petrology 12:82–92Google Scholar
  74. Soule SA, Cashman KV (2005) Shear rate dependence of the pāhoehoe-to-‘a‘ā transition: analog experiments. Geology 33:361–364. doi:10.1130/G21269.1 CrossRefGoogle Scholar
  75. Spillar V, Dolejs D (2013) Calculation of time-dependent nucleation and growth rates from quantitative textural data: inversion of crystal size distribution. J Petrol 54:913–931. doi:10.1093/petrology/egs091 CrossRefGoogle Scholar
  76. Swanson DA (1973) Pahoehoe flows from the 1969–1971 Mauna Ulu Eruption, Kilauea Volcano, Hawaii. Geol Soc Am Bull 84:615–626. doi:10.1130/0016-7606(1973)84<615:PFFTMU>2.0.CO;2 CrossRefGoogle Scholar
  77. Swanson SE (1977) Relation of nucleation and crystal-growth rate to the development of granitic textures. Am Mineral 62:966–978Google Scholar
  78. Toschev S (1973) Homogeneous nucleation. In: Hartman P (ed) Crystal growth—an introduction. Elsevier, New York, pp 1–49Google Scholar
  79. Tsuchiyama A (1983) Crystallization kinetics in the system CaMgSi2O6–CaAl2Si2O6: the delay in nucleation of diopside and anorthite. Am Mineral 68:687–698Google Scholar
  80. Turner S, George R, Jerram DA, Carpenter N, Hawkesworth C (2003) Case studies of plagioclase growth and residence times in island arc lavas from Tonga and the Lesser Antilles, and a model to reconcile discordant age information. Earth Planet Sci Lett 214:279–294CrossRefGoogle Scholar
  81. Uhlmann DR, Klein LC, Handwerker CA (1977) Crystallization kinetics, viscous flow, and thermal history of lunar breccias 67975. In: Proc Lunar Sci Conf 8th, pp 2067–2078Google Scholar
  82. Underwood EE (1970) Quantitative stereology. Addison-Wesley Pub. Co., ReadingGoogle Scholar
  83. Vona A, Romano C, Dingwell DB, Giordano D (2011) The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochim Cosmochim Acta 75:3214–3236. doi:10.1016/j.gca.2011.03.031 CrossRefGoogle Scholar
  84. Voorhees PW (1992) Ostwald ripening of two-phase mixtures. Annu Rev Mater Sci 22:197–215. doi:10.1146/annurev.ms.22.080192.001213 CrossRefGoogle Scholar
  85. Walker D, Kirkpatrick RJ, Longhi J, Hays JF (1976) Crystallization history of lunar picritic basalt sample 12002: phase-equilibria and cooling-rate studies. Geol Soc Am Bull 87:646–656. doi:10.1130/0016-7606(1976)87<646 CrossRefGoogle Scholar
  86. Zieg MJ, Lofgren GE (2006) An experimental investigation of texture evolution during continuous cooling. J Volcanol Geoth Res 154:74–88. doi:10.1016/j.jvolgeores.2005.09.020 CrossRefGoogle Scholar
  87. Zieg MJ, Marsh BD (2002) Crystal size distributions and scaling laws in the quantification of igneous textures. J Petrol 43:85–101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dipartimento di ScienzeUniversità degli Studi Roma TreRomeItaly

Personalised recommendations