Advertisement

Contributions to Mineralogy and Petrology

, Volume 166, Issue 2, pp 471–490 | Cite as

Multiple ways of producing intermediate and silicic rocks within Thingmúli and other Icelandic volcanoes

  • Gilles Charreteur
  • Christian TegnerEmail author
  • Karsten Haase
Original Paper

Abstract

Major and trace element compositions of rocks and coexisting phenocrysts of the Thingmúli volcano suggest a revision of the existing models for the formation of intermediate and silicic melts in Iceland. The new data define two compositional tholeiitic trends with a significant gap between them. A high-iron trend (HFe) contains 6–14 wt% total FeO in silicic rocks with c. 1 wt% MgO, as well as sodic plagioclase and hedenbergite phenocrysts. A low-iron trend (LFe) contains 3–5 wt% FeO at c. 1 wt% MgO, which is typical of Iceland but higher than MORB compositions. The most evolved phenocrysts of the LFe trend do not reach iron-rich end members. The HFe trend is interpreted as a result of fractional crystallization; numerical modelling using the MELTS algorithm suggests that crystallization took place under redox conditions constrained to one-log unit below the fayalite-magnetite-quartz oxygen buffer (FMQ-1). The LFe trend is explained by a combination of mixing between rhyolite and ferrobasalt, assimilation of hydrated crust and fractional crystallization under higher redox conditions (FMQ). The two trends and the gap are best defined in a plot of Mg# versus SiO2 that is useful to unravel petrogenetic processes. For example, intermediate and silicic rocks of the Holocene volcanic systems of spreading rifts (e.g. Krafla), propagating rifts (e.g. Hekla) and off-rifts (Öræfajökull) also fall into high- and low-iron fields and outline a gap similar to Thingmúli. The identification of two compositional trends in erupted intermediate and silicic volcanic products shows that processes in the deep roots of single volcanic systems are highly diverse and likely controlled by local variations in the thermal gradients and the extend of hydrothermal alteration. Generalizations about the relationship between the compositions of intermediate and silicic rocks and plate tectonic setting, therefore, should be avoided.

Keywords

Thingmuli volcano Iceland Rhyolite Basalt Intermediate rocks Fractional crystallization Magma mixing 

Notes

Acknowledgments

Kristján E. Karlsson and Jakob K. Keiding are gratefully thanked for their help during fieldwork. We also thank Morten S. Riishuus, Erwan Hallot, Tod Waight, Valentin Troll and Peter Thy for their helpful comments on the manuscript. Funding from the Danish Agency for Science, Technology and Innovation, and from the Danish Natural Science Research Council is acknowledged. Journal reviews by Georg Zellmer and two anonymous reviewers and editorial handling by Jochen Hoefs improved the manuscript considerably and is appreciated.

Supplementary material

410_2013_886_MOESM1_ESM.pdf (50 kb)
Supplementary material 1 (PDF 49 kb)
410_2013_886_MOESM2_ESM.pdf (76 kb)
Supplementary material 2 (PDF 75 kb)
410_2013_886_MOESM3_ESM.pdf (122 kb)
Supplementary material 3 (PDF 121 kb)
410_2013_886_MOESM4_ESM.pdf (81 kb)
Supplementary material 4 (PDF 81 kb)

References

  1. Akselsson J (1946) A contribution to the geology of the Kerlingarfjöll. Acta Nat Island 1:1–15Google Scholar
  2. Annen C, Sparks RJS (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203(3–4):937–955CrossRefGoogle Scholar
  3. Arculus R (2003) Use and abuse of the terms calcalkaline and calcalkalic. J Petrol 44(5):929–935CrossRefGoogle Scholar
  4. Asimow A, Ghiorso M (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1131Google Scholar
  5. Beard J, Lofgren G (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1.3 and 6.9 kb. J Petrol 32(2):365–401CrossRefGoogle Scholar
  6. Bourgeois O, Dauteuil O, Hallot E (2005) Rifting above a mantle plume: structure and development of the Iceland plateau. Geodin Acta 1:1–22Google Scholar
  7. Brophy JG (2009) La–SiO2 and Yb–SiO2 systematics in mid-ocean ridge magmas: implications for the origin of oceanic plagiogranite. Contrib Mineral Petrol 158(1):99–111CrossRefGoogle Scholar
  8. Carmichael ISE (1964) The petrology of Thingmúli, a tertiary volcano in eastern Iceland. J Petrol 5(3):435–460CrossRefGoogle Scholar
  9. Carmichael ISE (1967) The mineralogy of Thingmúli, a tertiary volcano in eastern Iceland. Am Mineral 52(11–1):1815–1841Google Scholar
  10. Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106(2):129–141CrossRefGoogle Scholar
  11. Charreteur G (2012) Intermediate and silicic rocks in accretion context: studies of the Thingmúli volcanic system and of the Rauðafell composite complex, eastern Iceland. Ph.D. Thesis, Aarhus University, DenmarkGoogle Scholar
  12. Charreteur G, Tegner C (2013) Magmatic emulsion texture formed by mixing during extrusion, Rauðafell composite complex, Breiðdalur volcano, eastern Iceland. Bull VolcanGoogle Scholar
  13. Chekol TA, Kobayashi K, Yokoyama T, Sakaguchi C, Nakamura E (2011) Timescales of magma differentiation from basalt to andesite beneath Hekla Volcano, Iceland: constraints from U-series disequilibria in lavas from the last quarter-millennium flows. Geochim Cosmochim Acta 75:256–283CrossRefGoogle Scholar
  14. Daly RA (1925) The geology of Ascension Island. Proc Am Acad Arts Sci 60:1–80CrossRefGoogle Scholar
  15. Dick HJB, Ozawa K, Meyer PS, Niu Y, Robinson PT, Constantin M, Hebert R, Maeda J, Natland JH, Hirth JG and Mackie SM (2002). Primary silicate mineral chemistry of a 1.5-km section of very slow spreading lower ocean crust: ODP Hole 735B, Southwest Indian Ridge. In: Natland JH, Dick HJB, Miller DJ and Von Herzen RP (eds.). Proc ODP Sci Results, vol 176, pp 1–61Google Scholar
  16. Elders WA, Fridleifsson GO, Zierenberg RA, Pope EC, Mortensen AK, Gudmundsson A, Lowenstern JB, Marks NE, Owens L, Bird DK, Reed M, Olsen NJ, Schiffman P (2011) Origin of a rhyolite that intruded a geothermal well while drilling at the Krafla volcano Iceland. Geology 39(3):231–234CrossRefGoogle Scholar
  17. Flude S, Mcgarvie DW, Burgess R, Tindle AG (2010) Rhyolites at Kerlingarfjoll, Iceland: the evolution and lifespan of silicic central volcanoes. Bull Volcanol 72:523–538CrossRefGoogle Scholar
  18. Foulger GR, Du Z, Julian BR (2003) Icelandic-type crust. Geophys J Int 155:567–590CrossRefGoogle Scholar
  19. Fridleifsson IB, Gibson IL, Hall JM, Johnson HP, Christensen NI, Schmincke HU, Schönharting G (1982) The Iceland research drilling project. J Geophys Res 87(B8):6359–6361CrossRefGoogle Scholar
  20. Frost BR, Lindsley DH (1992) Equilibria among Fe-Ti oxides, pyroxenes, olivine, and quartz: part II application. Am Mineral 77:1004–1020Google Scholar
  21. Geist D, Howard KA, Larson P (1995) The generation of oceanic rhyolites by crystal fractionation—the basalt-rhyolite association at volcan-alcedo, galapagos-archipelago. J Petrol 36(4):965–982CrossRefGoogle Scholar
  22. Ghiorso MS, Sack O (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212CrossRefGoogle Scholar
  23. Grönvold K (1972) Structural and petrochemical studies in the Kerlingarfjoll region, Central Iceland. Ph.D. Thesis, Oxford UniversityGoogle Scholar
  24. Grönvold K, Mäkipä H (1978) Chemical composition of Krafla lavas 1975–1977. Nordic Volcanological Institute Report vol 7816, pp 49Google Scholar
  25. Haase KM, Stroncik NA, Hékinian R, Stoffer P (2005) Nb-depleted andesites from the Pacific-Antarctic Rise as analogs for early continental crust. Geology 33(12):921–924CrossRefGoogle Scholar
  26. Hards VL, Kempton PD, Thompson RN, Greenwood PB (2000) The magmatic evolution of the Snaefell volcanic centre; an example of volcanism during incipient rifting in Iceland. J Volcanol Geoth Res 99(1–4):97–121CrossRefGoogle Scholar
  27. Hémond C, Arndt NT, Lichtenstein U, Hofmann AW, Oskarsson N, Steinthorsson S (1993) The heterogeneous Iceland plume: Nd-Sr-O isotopes and trace element constraints. J Geophys Res 98(B9):15833–15850CrossRefGoogle Scholar
  28. Jakobsson SP, Jónasson K, Sigurdsson IA (2008) The three igneous rock series of Iceland. Jokull 58:117–138Google Scholar
  29. Jerram DA, Martin VM (2008) Understanding crystal populations and their significance through the magma plumbing system. Geol Soc Lond Special Publ 304(1):133–148. doi: 10.1144/SP304.7 CrossRefGoogle Scholar
  30. Jónasson K (1994) Rhyolite volcanism in the Krafla central volcano, north-east Iceland. Bull Volcanol 56(6):516–528CrossRefGoogle Scholar
  31. Jónasson K (2005) Magmatic evolution of the Heidarspordur ridge NE-Iceland. J Volcanol Geoth Res 147:109–124CrossRefGoogle Scholar
  32. Jónasson K (2007) Silicic volcanism in Iceland: composition and distribution within the active volcanic zones. J Geodynamics 43(1):101–117CrossRefGoogle Scholar
  33. Keiding JK, Sigmarsson O (2012) Geothermobarometry of the 2010 Eyjafjallajökull eruption: new constraints on Icelandic magma plumbing systems. J Geophys Res 117. doi: 10.1029/2011JB008829
  34. Kelemen PB (1995) Genesis of high Mg# andesites and the continental crust. Contrib Mineralog Petrol 120(1):1–19CrossRefGoogle Scholar
  35. Kelley DF, Barton M (2008) Pressures of crystallization of Icelandic magmas. J Petrol 49(3):465–492CrossRefGoogle Scholar
  36. Kitagawa H, Kobayashi K, Makishima A, Nakamura E (2008) Multiple pulses of the mantle plume: evidence from Tertiary icelandic lavas. J Petrol 49(7):1365–1396CrossRefGoogle Scholar
  37. Koepke J, Feig ST, Snow J, Freise M (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Mineral Petrol 146(4):414–432CrossRefGoogle Scholar
  38. Kuritani T, Yokoyama T, Kitagawa H, Kobayashi K, Nakamura E (2011) Geochemical evolution of historical lavas from Askja Volcano, Iceland: implications for mechanisms and timescales of magmatic differentiation. Geochim Cosmochim Acta 75:570–587CrossRefGoogle Scholar
  39. Le Bas MJ, Le Maitre RW, Wooley AR (1992) The construction of the total alkali-silica chemical classification of volcanic rocks. Mineral Petrol 46(1):1–22CrossRefGoogle Scholar
  40. Macdonald R, Sparks RSJ, Sigurdsson H, Mattey DP, Mcgarvie DW, Smith RL (1987) The 1875 eruption of Askja volcano, Iceland: combined fractional crystallization and selective contamination in the generation of rhyolitic magma. Mineral Mag 51(2):183–202CrossRefGoogle Scholar
  41. Maclennan J, McKenzie D, Gronvöld K, Slater L (2001) Crustal accretion under northern Iceland. Earth Planet Sci Lett 191(3–4):295–310CrossRefGoogle Scholar
  42. Macpherson CG, Hilton DR, Day JMD, Lowry D, Grönvold K (2005) High-3He/4He depleted mantle and low-∂18O, recycled oceanic lithosphere in the source of central Iceland magmatism. Earth Planet Sci Lett 233:411–427CrossRefGoogle Scholar
  43. Martin E, Sigmarsson O (2007) Crustal thermal state and origin of silicic magma in Iceland: the case of Torfajokull, Ljosufjoll and Snaefellsjokull volcanoes. Contrib Mineral Petrol 153(5):593–605CrossRefGoogle Scholar
  44. Martin E, Sigmarsson O (2010) Thirteen million years of silicic magma production in Iceland: links between petrogenesis and tectonic settings. Lithos 116(1–2):129–144CrossRefGoogle Scholar
  45. Martin E, Martin H, Sigmarsson O (2008) Could Iceland be a modern analogue for the Earth’s early continental crust? Terra Nova 20:463–468CrossRefGoogle Scholar
  46. McBirney AR (1989) The Skaergaard layered series: I Structure and average compositions. J Petrol 30(2):363–397CrossRefGoogle Scholar
  47. Moorbath S, Sigurdsson H, Goodwin R (1968) K-Ar ages of the oldest exposed rocks in Earth Planet. Sci Lett 4(3):197–205Google Scholar
  48. Muehlenbachs K, Anderson AT, Sigavaldason GE (1974) Low-18O basalts from Iceland. Geochim Cosmochim Acta 38:577–588CrossRefGoogle Scholar
  49. Nichols ARL, Carroll MR, Horskuldsson Á (2002) Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts. Earth Planet Sci Lett 202(1):77–87CrossRefGoogle Scholar
  50. Nicholson KN, Condomines M, Fitton JG, Fallick AE, Gronvold K, Rogers G (1991) Geochemical and isotopic evidence for crustal assimilation beneath Krafla Iceland. J Petrol 32(5):1005–1020CrossRefGoogle Scholar
  51. Óskarsson N, Sigvaldason GE, Steinthorsson S (1982) A dynamic model of rift zone petrogenesis and the regional petrology of Iceland. J Petrol 23(1):28–74CrossRefGoogle Scholar
  52. Prestvik T (1980) Petrology of hybrid intermediate and silicic rocks from Öræfajökull, southeast Iceland. Föreningens i Stockholm Förhandlingar 101:299–307CrossRefGoogle Scholar
  53. Prestvik T, Goldberg S, Karlsson HR, Grönvold K (2001) Anomalous strontium and lead isotope signatures in the off-rift Öræfajökull central volcano in south-east Iceland: evidence for enriched endmember(s) of the Iceland mantle plume? Earth Planet Sci Lett 199(1):211–220CrossRefGoogle Scholar
  54. Rollinson H (2009) New models for the genesis of plagiogranites in the Oman ophiolite. Lithos 112(3–4):603–614CrossRefGoogle Scholar
  55. Sæmundsson K (1979) Outline of the geology of Iceland. Jökull 29:7–28Google Scholar
  56. Selbekk RS, Trønnes RG (2007) The 1362 AD Öraefajökull eruption, Iceland: petrology and geochemistry of large-volume homogeneous rhyolite. J Volcanol Geoth Res 160(1–2):42–58CrossRefGoogle Scholar
  57. Sigmarsson O, Hémond C, Condomines M, Fourcade S, Oskarsson N (1991) Origin of silicic magma in Iceland revealed by Th isotopes. J Geophys Res 19(6):621–624Google Scholar
  58. Sigmarsson O, Condomines M, Fourcade S (1992) A detailed Th, Sr and O isotope study of Hekla: differentiation processes in an Icelandic volcano. Contrib Mineral Petrol 112(1):20–34CrossRefGoogle Scholar
  59. Sigmarsson O, Karlsson HR, Larsen G (2000) The 1996 and 1998 subglacial eruptions beneath the Vatnajökull ice sheet in Iceland: contrasting geochemical and geophysical inferences on magma migration. Bull Volcanol 61(7):468–476CrossRefGoogle Scholar
  60. Sigurdsson H, Sparks SJ (1981) Petrology of rhyolitic and mixed magma ejecta from the 1875 eruption of Askja Iceland. J Petrol 22(1):41–84CrossRefGoogle Scholar
  61. Sigvaldasson GE (1969) Chemistry of basalts from Icelandic rift zone. Contrib Mineral Petrol 20:357–370CrossRefGoogle Scholar
  62. Sigvaldasson GE (2002) Volcanic and tectonic processes coinciding with glaciation and crustal rebound: an early Holocene rhyolitic eruption in the Dyngjufjoll volcanic centre and the formation of the Askja caldera, north Iceland. Bull Volcanol 64(3–4):192–205CrossRefGoogle Scholar
  63. Spulber SD, Rutherford MJ (1983) The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J Petrol 24(1):1–25CrossRefGoogle Scholar
  64. Steinthorsson S, Hardarson BS, Ellam RM, Larsen G (2000) Petrochemistry of the Gjálp-1996 subglacial eruption, Vatnajökull SE Iceland. J Volcanol Geoth Res 98(1–4):79–90CrossRefGoogle Scholar
  65. Stevenson JA, Mcgarvie DW, Smellie JL, Gilbert JS (2006) Subglacial and ice-contact volcanism at the Öræfajökull stratovolcano Iceland. Bull Volcanol 68(7):737–752CrossRefGoogle Scholar
  66. Sverrisdottir G (2007) Hybrid magma generation preceding Plinian silicic eruptions at Hekla, Iceland: evidence from mineralogy and chemistry of two zoned deposits. Geol Mag 144(4):643–659CrossRefGoogle Scholar
  67. Tegner C, Cawthorn RG, Kruger FJ (2006) Cyclicity in the main and upper zones of the Bushveld complex, South Africa: crystallization from a zoned magma sheet. J Petrol 47(11):2257–2279CrossRefGoogle Scholar
  68. Thorarinsson S (1958) The Öræfajökull eruption of 1362. Acta Nat Island., Náttúrugripsasn Íslands, Reykjavik. II, 99Google Scholar
  69. Thy P, Beard J, Lofgren G (1990) Experimental constraints on the origin of Icelandic rhyolites. J Geol 98(3):417–421CrossRefGoogle Scholar
  70. Thy P, Lesher CE, Nielsen TFD, Brooks CK (2006) Experimental constraints on the Skaergaard liquid line of descent. Lithos 92:154–180CrossRefGoogle Scholar
  71. Thy P, Lesher CE, Nielsen TFD, Brooks CK (2008) On the Skaergaard intrusion and forward modeling of its liquid line of descent: a reply to “Principles of applied experimental igneous petrology” by Morse, 2008. Lithos 105:395–399 401–411CrossRefGoogle Scholar
  72. Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J Petrol 36(5):1137–1170CrossRefGoogle Scholar
  73. Walker GPL (1958) Geology of the Reyðarfjörðúr area, eastern Iceland. J Geol Soc 114(1–4):367–391Google Scholar
  74. Walker GPL (1963) The Breiðdalur central volcano, eastern Iceland. J Geol Soc 119(1–4):29–63Google Scholar
  75. Walker GPL (1966) Acid volcanic rocks in Iceland. Bull Volcanol 29(1):375–402CrossRefGoogle Scholar
  76. Watkins ND, Walker GPL (1977) Magnetostratigraphy of eastern Iceland. Am J Sci 277(5):513–584CrossRefGoogle Scholar
  77. Wilcox RE (1956) Petrology of Parícutin volcano, Mexico. Geological Survey Bulletin 965-C, pp 281–353Google Scholar
  78. Willbold M, Hegner E, Stracke A, Rocholl A (2009) Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation. Earth Planet Sci Lett 279(1–2):44–52CrossRefGoogle Scholar
  79. Wood DA (1978) Major and trace element variations in the tertiary lavas of eastern Iceland and their significance with respect to the Iceland geochemical anomaly. J Petrol 19(3):393–436CrossRefGoogle Scholar
  80. Wood DA (1979) Dynamic partial melting: its application to the petrogeneses of basalts erupted in Iceland, the Faeroe Islands, the Isle of Skye (Scotland) and the Troodos Massif (Cyprus). Geochim Cosmochim Acta 41:1033–1046Google Scholar
  81. Zellmer GF, Rubin KH, Grönvold K, Jurado-Chichay Z (2008) On the recent bimodal magmatic processes and their rates in the Torfajokull-Veidivotn area Iceland earth planet. Sci Lett 269(3–4):388–398Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gilles Charreteur
    • 1
  • Christian Tegner
    • 1
    Email author
  • Karsten Haase
    • 2
  1. 1.Department of GeoscienceAarhus UniversityAarhus CDenmark
  2. 2.GeoZentrum NordbayernUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations