Contributions to Mineralogy and Petrology

, Volume 166, Issue 3, pp 845–860 | Cite as

H2O–CO2 solubility in mafic alkaline magma: applications to volatile sources and degassing behavior at Erebus volcano, Antarctica

  • Kayla Iacovino
  • Gordon Moore
  • Kurt Roggensack
  • Clive Oppenheimer
  • Philip Kyle
Original Paper


We present new equilibrium mixed-volatile (H2O–CO2) solubility data for a phonotephrite from Erebus volcano, Antarctica. H2O–CO2-saturated experiments were conducted at 400–700 MPa, 1,190 °C, and ~NNO + 1 in non-end-loaded piston cylinders. Equilibrium H2O–CO2 fluid compositions were determined using low-temperature vacuum manometry, and the volatile and major element compositions of the glassy run products were determined by Fourier transform infrared spectroscopy and electron microprobe. Results show that the phonotephrite used in this study will dissolve ~0.8 wt% CO2 at 700 MPa and a fluid composition of \( X_{{{\text{H}}_{ 2} {\text{O}}}} \) ~0.4, in agreement with previous experimental studies on mafic alkaline rocks. Furthermore, the dissolution of CO2 at moderate to high \( X_{{{\text{H}}_{ 2} {\text{O}}}}^{\text{fluid}} \) in our experiments exceeds that predicted using lower-pressure experiments on similar melts from the literature, suggesting a departure from Henrian behavior of volatiles in the melt at pressures above 400 MPa. With these data, we place new constraints on the modeling of Erebus melt inclusion and gas emission data and thus the interpretation of its magma plumbing system and the contributions of primitive magmas to passive and explosive degassing from the Erebus phonolite lava lake.


Degassing Alkaline volcanism Volatile solubility Carbon dioxide H2



This research was supported by the NSF grant EAR-0838563 and EAR-021914 to G.M. and K.R. We also express thanks to the ASU/NASA Space Grant program for supporting K.I. as an undergraduate researcher. Fieldwork on Erebus was supported by grants ANT0838817 and ANT1142083 from the Office of Polar Programs (National Science Foundation). We thank Amber Gullikson and Erika Beam for assistance in performing experiments, Paul Knauth for use of his vacuum lines, Stan Klonowski for manometry measurements, Matthijs van Soest for training on and use of the surface mapping microscope, and Bob Julian and the staff at the Synchrotron Radiation Center at the University of Wisconsin. C.O. thanks the European Research Council for support via the “DEMONS.” We are grateful also to Jackie Dixon, Jacob Lowenstern, Richard Brooker, and an anonymous reviewer for their constructive comments, which helped to refine the arguments presented here.


  1. Behrens H, Jantos N (2001) The effect of anhydrous composition on water solubility in granitic melts. Am Mineral 86:14–20Google Scholar
  2. Behrens H, Ohlhorst S, Holtz F, Campenois M (2004) CO2 solubility in dacitic melts equilibrated with H2O–CO2 fluids: implications for modeling the solubility of CO2 in silicic melts. Geochim Cosmochim Acta 68:4678–4703Google Scholar
  3. Behrens H, Misiti V, Freda C, Vetere F, Botcharnikov RE, Scarlato P (2009) Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 °C and pressure from 50 to 500 MPa. Am Mineral 94:105–120CrossRefGoogle Scholar
  4. Bindschadler R, Vornberger P, Fleming A, Fox A, Mullins J, Binnie D, Paulsen SJ, Granneman B, Gorodetzky D (2008) The landsat image mosaic of Antarctica. Remote Sens Environ 112:4214–4226CrossRefGoogle Scholar
  5. Boichu M, Oppenheimer C, Tsanev V, Kyle PR (2010) High temporal resolution SO2 flux measurements at Erebus volcano. J Volcanol Geoth Res 190:325–336CrossRefGoogle Scholar
  6. Botcharnikov RE, Freise M, Holtz F, Behrens H (2005) Solubility of C-O-H mixtures in natural melts: new experimental data and application range of recent models. Ann Geophys 48:633–646Google Scholar
  7. Botcharnikov RE, Behrens H, Holtz F (2006) Solubility and speciation of C–O–H fluids in andesitic melt at T = 1100–1300 °C and P = 200 and 500 MPa. Chem Geol 229:125–143CrossRefGoogle Scholar
  8. Botcharnikov RE, Holtz F, Behrens H (2007) The effect of CO2 on the solubility of H2O–Cl fluids in andesitic melt. Eur J Mineral 19:671–680CrossRefGoogle Scholar
  9. Brooker RA, Kohn SC, Holloway JR, McMillan PF (2001) Structural controls on the solubility of CO2 in silicate melts Part I: bulk solubility data. Chem Geol 174:225–239CrossRefGoogle Scholar
  10. Burgisser A, Oppenheimer C, Alletti M, Kyle PR, Scaillet B, Carrol M (2012) Backward tracking of gas chemistry measurements at Erebus volcano. Geochem Geophys Geosyst 13:11. doi: 10.1029/2012GC004243 CrossRefGoogle Scholar
  11. Carroll MR, Blank JG (1997) The solubility of H2O in phonolitic melts. Am Mineral 82:549–556Google Scholar
  12. Chen Y, Provost A, Schiano P, Cluzel N (2011) The rate of water loss from olivine-hosted melt inclusions. Contrib Mineral Petrol 162:625–636CrossRefGoogle Scholar
  13. Cocheo PA (1993) The solubility of water in basanitic melts at low pressures, Masters thesis. Arizona State UniversityGoogle Scholar
  14. Dasgupta R (2013) Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geochem 75:183–229. doi: 10.2138/rmg.2013.75.7 CrossRefGoogle Scholar
  15. Dixon JE (1997) Degassing of alkalic basalts. Am Mineral 82:368–378Google Scholar
  16. Dixon JE, Pan V (1995) Determination of the molar absorptivity of dissolved carbonate in basanitic glass. Am Mineral 80:1339–1342Google Scholar
  17. Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36:1607–1631Google Scholar
  18. Eggler DH, Rosenhauer M (1978) Carbon dioxide in silicate melts: II. Solubilities of CO2 and H2O in CaMgSi2O6 (diopside) liquids and vapors at pressures to 40 kb. Am J Sci 278:64–94CrossRefGoogle Scholar
  19. Eschenbacher AJ (1998) Pre-eruptive volatile contents of fractionating, alkaline magma, Mount Erebus, Ross Island, Antarctica, Masters thesis. New Mexico Institute of Mining and Technology. (
  20. Fine G, Stolper E (1986) Dissolved carbon dioxide in basaltic glasses: concentrations and speciation. Earth Planet Sci Lett 76:263–278CrossRefGoogle Scholar
  21. Flowers GC (1979) Correction of Holloway’s (1977) adaptation of the modified Redlich–Kwong equation of state for calculation of the fugacities of molecular species in supercritical fluids of geologic interest. Contrib Mineral Petrol 69:315–318CrossRefGoogle Scholar
  22. Holloway JR (1977) Fugacity and activity of molecular species in supercritical fluids. In: Fraser D (ed) Thermodynamics in geology. Reidel, Boston, MA, pp 161–181CrossRefGoogle Scholar
  23. Ihinger PD, Hervig RL, McMillan PF (1994) Analytical methods for volatiles in glasses. Rev Mineral 30:67–112Google Scholar
  24. Jakobsson S (1997) Solubility of H2O and CO2 in an icelandite at 1400 °C and 10 kilobars. Contrib Mineral Petrol 127:129–135CrossRefGoogle Scholar
  25. Jendrzejewski N, Trull TW, Pineau F, Javoy M (1997) Carbon solubility in Mid-Ocean Ridge basaltic melt at low pressures (250–1950 bar). Chem Geol 138:81–92CrossRefGoogle Scholar
  26. Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92CrossRefGoogle Scholar
  27. Kyle PR (1981) Mineralogy and geochemistry of a basanite to phonolite sequence at Hut Point Peninsula, Antarctica, based on core from Dry Valley Drilling Project drillholes 1, 2 and 3. J Petrol 22:451–500CrossRefGoogle Scholar
  28. Kyle PR, Moore JA, Thirlwall MF (1992) Petrologic evolution of anorthoclase phonolite lavas at Mount Erebus, Ross Island, Antarctica. J Petrol 33:349–375CrossRefGoogle Scholar
  29. Lange RA (1994) The effect of H2O, CO2, and F on the density and viscosity of silicate melts. Rev Mineral 30:331–365Google Scholar
  30. Lange RA, Carmichael ISE (1987) Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2 liquids: new measurements and derived partial molar properties. Geochim Cosmochim Acta 53:2195–2204CrossRefGoogle Scholar
  31. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750CrossRefGoogle Scholar
  32. Lesne P, Scaillet B, Pichavant M, Beny J (2010) The carbon dioxide solubility in alkali basalts: an experimental study. Contrib Mineral Petrol 162:153–168CrossRefGoogle Scholar
  33. Lesne P, Scaillet B, Pichavant M, Iacono-Marziano G, Beny J (2011a) The H2O solubility of alkali basalts: an experimental study. Contrib Mineral Petrol 162:133–151CrossRefGoogle Scholar
  34. Lesne P, Kohn S, Blundy JD, Witham F, Botcharnikov R, Behrens H (2011b) Experimental simulation of closed-system degassing in the system basalt-H2O–CO2–S–Cl. J Petrol 52(9):1737–1762. doi: 0.1093/petrology/egr027 CrossRefGoogle Scholar
  35. Lowenstern JB (2001) Carbon dioxide in magmas and implications for hydrothermal systems. Miner Deposita 36:490–502. doi: 10.1007/s001260100185 CrossRefGoogle Scholar
  36. Moore G (2008) Interpreting H2O and CO2 contents in melt inclusions: constraints from solubility experiments and modeling. Rev Mineral Geochem 69(1):333–362CrossRefGoogle Scholar
  37. Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Am Mineral 83:36–42Google Scholar
  38. Moore G, Roggensack K, Klonowski S (2008) A low-pressure–high-temperature technique for the piston-cylinder. Am Mineral 93:48–52CrossRefGoogle Scholar
  39. Morizet Y, Brooker RA, Kohn SC (2002) CO2 in haplo-phonolite melt: solubility, speciation, and carbonate complexation. Geochim Cosmochim Acta 66(10):1809–1820CrossRefGoogle Scholar
  40. Mysen BO (1988) Structure and properties of silicate melts. Developments in geochemistry, vol 4. Elsevier, AmsterdamGoogle Scholar
  41. Mysen BO (1990) Effect of pressure, temperature, and bulk composition on the structure and species distribution in depolymerized alkali aluminosilicate melts and quenched melts. J Geophys Res B 95:15733–15744CrossRefGoogle Scholar
  42. Mysen BO, Virgo D, Seifert FA (1982) The structure of silicate melts: implications for chemical and physical properties of natural magma. Rev Geophys Space Phys 20:353–383CrossRefGoogle Scholar
  43. Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O–CO2 solution model written in Visual Basic for excel. Comput Geosci 28:597–604CrossRefGoogle Scholar
  44. Ochs FA, Lange RA (1999) The density of hydrous magmatic liquids. Science 283:1314–1317CrossRefGoogle Scholar
  45. Oppenheimer C, Kyle PR (2008) Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions. J Volcanol Geotherm Res 177:743–754CrossRefGoogle Scholar
  46. Oppenheimer C, Lomakina AS, Kyle PR, Kingsbury NG, Boichu M (2009) Pulsatory magma supply to a phonolite lava lake. Earth Planet Sci Lett 284:392–398CrossRefGoogle Scholar
  47. Oppenheimer C, Moretti R, Kyle PR, Eschenbacher AJ, Lowenstern JB, Hervig RL, Dunbar N (2011) Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica. Earth Planet Sci Lett 306:261–271. doi: 10.1016/j.epsl.2011.04.005 CrossRefGoogle Scholar
  48. Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229:78–95CrossRefGoogle Scholar
  49. Pawley AR, Holloway JR, McMillan PF (1992) The effect of oxygen fugacity on the solubility of carbon-oxygen fluids in basaltic melt. Earth Planet Sci Lett 10:213–225CrossRefGoogle Scholar
  50. Portnyagin M, Almeev R, Matveev S, Holtz F (2008) Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet Sci Lett 272:541–552CrossRefGoogle Scholar
  51. Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (l05 pascals) pressure and at higher temperatures. US Geol Surv Bull, Washington, DCGoogle Scholar
  52. Spera FJ, Bergman SC (1980) Carbon dioxide in igneous petrogenesis: I. Contrib Mineral Petrol 74:55–66CrossRefGoogle Scholar
  53. Thibault Y, Holloway JR (1994) Solubility of CO2 in a Ca-rich leucitite: effects of pressure, temperature, and oxygen fugacity. Contrib Mineral Petrol 116:216–224CrossRefGoogle Scholar
  54. USGS and Japan ASTER Program, 2001/2000. ASTER scenes AST_L1A.003:2004567740; AST_L1A.003:2004567742; AST_L1A.003:2005468113; AST_L1A.003:2003371731, 1B, USGS, Sioux Falls, 10/20/2001; 10/20/2001; 09/03/2001; 10/23/2000Google Scholar
  55. Vetere F, Botcharnikov RE, Holtz F, Behrens H, Rosa RD (2011) Solubility of H2O and CO2 in shoshonitic melts at 1250 °C and pressures from 50 to 400 MPa: implications for Campi Flegrei magmatic systems. J Volcanol Geotherm Res 202:251–261. doi: 10.1016/j.jvolgeores.2011.03.002 CrossRefGoogle Scholar
  56. Wallace PJ (2003) From mantle to atmosphere: magma degassing, explosive eruptions, and volcanic volatile budgets. In: De Vivo B, Bodnar RJ (Eds) Melt inclusions in volcanic systems: methods, applications, and problems, vol 5. Elsevier Science, Amsterdam, Developments in Volcanology, pp 105–127Google Scholar
  57. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240CrossRefGoogle Scholar
  58. Witham F, Blundy J, Kohn SC, Lesne P, Dixon J, Churakov SV, Botcharnikov R (2011) SolEx: a model for mixed COHSCl-fluid solubilities and exsolved gas compositions in basalt. Comput Geosci. doi: 10.1016/j.bbr.2011.03.03 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kayla Iacovino
    • 1
    • 3
  • Gordon Moore
    • 2
  • Kurt Roggensack
    • 1
  • Clive Oppenheimer
    • 3
  • Philip Kyle
    • 4
  1. 1.School of Earth and Space ExplorationArizona State UniversityTempeUSA
  2. 2.Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborUSA
  3. 3.Department of GeographyUniversity of CambridgeCambridgeUK
  4. 4.Department of Earth and Environmental ScienceNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations