Contributions to Mineralogy and Petrology

, Volume 166, Issue 1, pp 211–234 | Cite as

TiO2 exsolution from garnet by open-system precipitation: evidence from crystallographic and shape preferred orientation of rutile inclusions

  • Alexander ProyerEmail author
  • Gerlinde Habler
  • Rainer Abart
  • Richard Wirth
  • Kurt Krenn
  • Georg Hoinkes
Original Paper


We investigated rutile needles with a clear shape preferred orientation in garnet from (ultra) high-pressure metapelites from the Kimi Complex of the Greek Rhodope by electron microprobe, electron backscatter diffraction and TEM techniques. A definite though complex crystallographic orientation relationship between the garnet host and rutile was identified in that Rt[001] is either parallel to Grt<111> or describes cones with opening angle 27.6° around Grt<111>. Each Rt[001] small circle representing a cone on the pole figure displays six maxima in the density plots. This evidence together with microchemical observations in TEM, when compared to various possible mechanisms of formation, corroborates a precipitate origin. A review of exchange vectors for Ti substitution in garnet indicates that rutile formation from garnet cannot occur in a closed system. It requires that components are exchanged between the garnet interior and the rock matrix by solid-state diffusion, a process we refer to as “open-system precipitation” (OSP). The kinetically most feasible reaction of this type will dominate the overall process. The perhaps most efficient reaction involves internal oxidation of Fe2+ to Fe3+ and transfer from the dodecahedral to the octahedral site just vacated by \( {\text{Ti}}^{ 4+ }: 6\,{\text{M}}^{ 2+ }_{ 3} {\text{TiAl}}\left[ {{\text{AlSi}}_{ 2} } \right]{\text{O}}_{ 1 2} + 6\,{\text{M}}^{ 2+ }_{ 2, 5} {\text{TiAlSi}}_{ 3} {\text{O}}_{ 1 2} = 10\,{\text{M}}^{ 2+ }_{ 3.0} {\text{Al}}_{ 1. 8} {\text{Fe}}_{0. 2} {\text{Si}}_{ 3} {\text{O}}_{ 1 2} + {\text{M}}^{2+} + 2 {\text{e}}^{-} + 1 2\,{\text{TiO}}_{ 2} . \) OSP is likely to occur at conditions where the transition of natural systems to open-system behaviour becomes apparent, as in the granulite and high-temperature eclogite facies.


Exsolution Rutile needles Open-system precipitation Ultrahigh-pressure Rhodope 



F. Bernhard, Ch. Bauer, H. Tirk and B. Puhr have assisted in data acquisition. We want to thank S. Chakraborty, E. Essene, W. Griffin, H. Marschall, M. Raith, J. Vry and D. Whitney for information about their observations of oriented rutile needles in a variety of rocks. M. Raith also generously supplied samples from Eastern Ghats, India for comparison. This work was supported by the Austrian Science Fund (FWF): P16194-N06, P22749-N21 and I471-N19. The latter is part of the international DMG-FWF funded Research Network FOR741 D-A-CH.


  1. Ague JJ, Eckert JO Jr (2012) Precipitation of rutile and ilmenite needles in garnet: implications for extreme metamorphic conditions in the Acadian Orogen, U.S.A. Am Mineral 79:840–855CrossRefGoogle Scholar
  2. Amli R (1975) Mineralogy and rare earth geochemistry of apatite and xenotime from the Gloserheia Granite < pegmatite, Froland, Southern Norway. Am Mineral 60:607–620Google Scholar
  3. Andreozzi GB, Lucchesi S, Skogby H, Della Giusta A (2001) Compositional dependence of cations distribution in some synthetic (Mg, Zn)(Al, Fe3+)2O4 spinels. Eur J Mineral 13:391–402CrossRefGoogle Scholar
  4. Armbruster T (1981) On the origin of sagenites: structural coherency of rutile with hematite and spinel structure types. N Jb Miner Mh 7:328–334Google Scholar
  5. Bakun-Czubarow N (2004) Majoritic-like garnets from pyrope lherzolites of Sowie Mountains Block in the Sudetes, Central European Variscides. Abstract 32nd international geological congress. Florence, 2004Google Scholar
  6. Banfield JF, Veblen DR (1991) The structure and origino f Fe-bearing platelets in metamorphic rutile. Am Mineral 76:113–127Google Scholar
  7. Bauer C, Rubatto D, Krenn K, Proyer A, Hoinkes G (2007) A zircon study from the Rhodope metamorphic complex, N-Greece: time record of a multistage evolution. Lithos 29:207–228CrossRefGoogle Scholar
  8. Berry AJ, Walker AM, Hermann J, O’Neill HSC, Foran GJ (2007) Titanium substitutions mechanisms in forsterite. Chem Geol 242:176–186CrossRefGoogle Scholar
  9. Brearley AJ, Champness PE (1986) Magnetite exsolution in almandine garnet. Min Mag 50:621–633CrossRefGoogle Scholar
  10. Brunet F, Bonneau V, Irifune T (2006) Complete solid-solution between Na3Al2(PO4)3 and Mg3Al2(SiO4)3 garnets at high pressure. Am Mineral 91:211–215CrossRefGoogle Scholar
  11. Bursill LA, Blanchin MG, Smith DJ (1984) Precipitation phenomena in non-stoichiometric oxides II. 100 Platelet defects in reduced rutiles. Proc R Soc Lond A 391:373–391CrossRefGoogle Scholar
  12. Burton KW (1986) Garnet-quartz intergrowths in graphitic pelites: the role of the fluid phase. Min Mag 50:611–620CrossRefGoogle Scholar
  13. Dachs E (1998) PET: petrological elementary tools for MathematicaTM. Comput Geosci 24/4:219–235Google Scholar
  14. Dachs E (2004) PET; petrological elementary tools for mathematicaTM: an update. Comput Geosci 30/2:173–182Google Scholar
  15. Das K, Tomioka N, Ando JI (2013) On oriented ilmenite needles in garnet porphyroblasts from deep crustal granulites: implications for fluid evolution and cooling history. Lithos 156–159:230–240CrossRefGoogle Scholar
  16. Dawson JB (1980) Kimberlites and their xenoliths. Springer, New YorkCrossRefGoogle Scholar
  17. Dent Glasser LS, Glasser FP, Taylor HFW (1962) Topotactic reactions in inorganic oxy-compoundsGoogle Scholar
  18. Doherty RD (1983) Diffusive phase transformations in the sold state. In: Cahn RW, Haasen P (eds) Physical metallurgy. Elsevier, Amsterdam, pp 933–1030Google Scholar
  19. Draper DS, Xirouchakis D, Agee CB (2003) Trace element partitioning between garnet and chondritic melt from 5 to 9 GPa: implications for the onset of majorite transition in the Martian mantle. Phys Earth Planet Inter 139:149–169CrossRefGoogle Scholar
  20. Enami M, Bolin C, Yoshida T, Kawabe I (1995) A mechanism for Na incorporation in garnet; an example from garnet in orthogneiss from the Su–Lu Terrane, eastern China. Am Mineral 80(5–6):475–482Google Scholar
  21. Enea C (2008) The origin of the garnets from the tonalities, Susita Valley. IGC 2008 AbstractsGoogle Scholar
  22. Engvik AK, Putnis A, Fitzgerald JD, Austrheim H (2008) Albitization of granitic rocks: the mechanism of replacement of oligoclase by albite. Can Miner 46:1401–1415Google Scholar
  23. Feinberg JM, Wenk HR, Renne PR, Scott GR (2004) Epitaxial relationships of clinopyroxene-hosted magnetite determined using electron backscatter diffraction (EBSD) technique. Am Mineral 89:462–466Google Scholar
  24. Figlarz M, Gerand B, Delahaye-Vidal A, Dumont B, Harb F, Coucou A (1990) Topotaxy, nucleation and growth. Solid State Ionics 43:143–170CrossRefGoogle Scholar
  25. Force ER, Richards RP, Scott KM, Valentine PC, Fishman NS (1996) Mineral intergrowths replaced by “elbow-twinned” rutile in altered rocks. Can Mineral 34:605–614Google Scholar
  26. Fung AT, Haggerty SE (1995) Petrography and mineral compositions of eclogites from the Koidu Kimberlite Complex, Sierra Leone. J Geophys Res 100/B10:20451–20473CrossRefGoogle Scholar
  27. Gottstein G (2001) Physikalische Grundlagen der Materialkunde. Springer, BerlinGoogle Scholar
  28. Griffin WL, Jensen BB, Misra SN (1971) Anomalously elongated rutile in eclogite facies pyroxene and garnet. Norsk Geologisk Tidskrift 51:177–185Google Scholar
  29. Guinel MJF, Norton MG (2006) The origin of asterism in almandine-pyrope garnets from Idaho. J Mat Sci 41:719–725CrossRefGoogle Scholar
  30. Haggerty SE, Sautter V (1990) Ultradeep (greater than 300 kilometers) ultramafic upper mantle xenoliths. Science 248:993–996CrossRefGoogle Scholar
  31. Hammer JE, Sharp TG, Wessel P (2010) Heterogenous nucleation and epitaxial crystal growth in magmatic minerals. Geology 38–4:367–370CrossRefGoogle Scholar
  32. Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286Google Scholar
  33. Hermann J, O’Neill HSC, Berry AJ (2005) Titanium solubility in olivine in the system TiO2–MgO–SiO2; no evidence for an ultra-deep origin of Ti-bearing olivine. Contrib Mineral Petrol 148(6):746–760CrossRefGoogle Scholar
  34. Huggins FE, Virgo D, Huckenholtz HG (1977) Titanium-containing silicate garnets. I. The distribution of Al, Fe3+, and Ti4+ between octahedral and tetrahedral sites. Am Mineral 62:475–490Google Scholar
  35. Hwang SL, Shen P, Yui TF, Chu HT (2001) Defect microstructures of minerals as a potential indicator of extremely rapid and episodic exhumation of ultrahigh-pressure metamorphic rock: implication to continental collision orogens. EPSL 192:57–63CrossRefGoogle Scholar
  36. Hwang SL, Yui TF, Chu HT, Shen P, Schertl HP, Zhang RY, Liou JG (2007a) On the origin of oriented rutile needles in garnet from UHP eclogitesJ metam Geol 25:349–362Google Scholar
  37. Hwang SL, Shen P, Yui TF, Chu HT (2007b) TiO2 nanoparticle trails in garnet: implications of inclusion pressure-induced microcracks and spontaneous metamorphic-reaction healing during exhumation. J Matamorph Geol 25:451–460CrossRefGoogle Scholar
  38. Hwang SL, Yui TF, Chu HT, Shen P, Zhang RY, Liou JG (2011) An EAM study of garnet pyroxenite from the Sulu ultrahigh-pressure terrane: formation mechanisms of oriented ilmenite, spinel, magnetite, amphibole and garnet inclusions in clinopyroxene. Contrib Mineral Petrol 161:901–920Google Scholar
  39. Hwang SL, Yui TF, Chu HT, Shen P, Iizuka Y (2012) A TEM study of the oriented orthopyroxene and forsterite inclusions in garnet from Otroy garnet peridotite, WGR, Norway: new insights on crystallographic characteristics and growth energetics of exsolved pyroxene in majoritic garnet. J metam GeolJohnson WC, White CL, Marth PE et al. (1975) Influence of crystallography on aspects of solid–solid nucleation theory. Metallurgical Transactions 6A:911–919Google Scholar
  40. Kawasaki T, Motoyoshi Y (2007) Solubility of TiO2 in garnet and orthopyroxene: Ti thermometer for ultrahigh temperature granulites. U.S. Geological Survey and the National Academies, USGS OF-2007-1047, Short Research Paper 038. doi: 10.3133/of2007-1047.srp038
  41. Kawasaki T, Nakano N, Osani Y (2011) Osumilite and a spinel + quartz association in garnet-sillimanite gneiss from Rundvagshetta, Lutzow-Holm Complex, East Antarctica. Gondwana Res 19(2):430–445CrossRefGoogle Scholar
  42. Krenn K, Bauer Ch, Proyer A, Mposkos E, Hoinkes G (2008) Fluid entrapment and re-equilibration during subduction and exhumation: a case study from the high-grade Nestos shear zone. Central Rhodope Greece Lithos 104:33–53Google Scholar
  43. Krenn K, Bauer C, Proyer A, Klötzli U, Hoinkes G (2010) Tectonometamorphic evolution of the Rhodope orogen. Tectonics 29. doi: 10.1029/2009TC002513
  44. Liati A (2005) Identification of repeated Alpine (ultra) high-pressure metamorphic events by U–Pb SHRIMP geochronology and REE geochemistry of zircon: the Rhodope zone of Northern Greece. Contrib Mineral Petrol 150:608–630CrossRefGoogle Scholar
  45. Liati A, Gebauer D, Wysoczanski R (2002) U-Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece), evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism. Chem Geol 184:281–299Google Scholar
  46. Litvinovsky BA, Steele IM, Wickham SM (2000) Silicic magma formation in overthickened crust: melting of charnockite and leucogranite at 15, 20 and 25 kbar. J Petrol 41:717–737CrossRefGoogle Scholar
  47. McGetchin TR, Silver LT (1970) Compositional relations in minerals from kimberlite and related rocks in the Moses Rock Dike, San Juan County, Utah. Am Mineral 55:1738–1771Google Scholar
  48. Mposkos E, Kostopoulos D (2001) Diamond, former coesite and supersilicic garnet in metasedimetary rocks from the Greek Rhodope: a new ultrahigh-pressure metamorphic province established. Earth Planet Sci Lett 192:497–506CrossRefGoogle Scholar
  49. Nagel TJ, Schmidt S, Janák M, Froitzheim N, Jahn-Awe S, Georgiev N (2011) The exposed base of a collapsing wedge: the nestos shear zone (Rhodope Metamorphic Province, Greece), Tectonics, 30, TC4009. doi: 10.1029/2010TC002815
  50. O’Brien PJ (1999) Asymmetric zoning profiles in garnet from HP-HT granulite and implications for volume diffusion and grain boundary diffusion. Min Mag 63(2):227–238CrossRefGoogle Scholar
  51. Ono S, Yasuda A (1996) Compositional change of majoritic garnet in a MORB composition from 7 to 17 GPa and 1400 to 1600 °C. Phys Earth Planet Int 96:171–179CrossRefGoogle Scholar
  52. Pan Y, Fleet ME, Macrae ND (1993) Oriented monazite inclusions in apatite porphyroblasts from the Hemlo gold deposit, Ontario, Canada. Min Mag 57:697–707CrossRefGoogle Scholar
  53. Parker KA, Stowell HH, Gatewood M (2010) Geochronology and mid- to lower crustal partial melting in a Cretaceous magmatic arc, Fiordland, New Zealand. Abstracts with Programs. Geol Soc Am 42:5Google Scholar
  54. Perchuk A (2008) Unusual inclusions in garnet from the diamond-bearing gneiss of the Erzgebirge, Germany. Geochem Int 46:296–303CrossRefGoogle Scholar
  55. Perraki M, Proyer A, Mposkos E, Kaindl R, Hoinkes G (2006) Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece. Earth Planet Sci Lett 241:672–685CrossRefGoogle Scholar
  56. Powell R, Holland TJB (1994) Optimal geothermometry and geobarometry. Am Min 79:120–133Google Scholar
  57. Proyer A, Krenn K, Hoinkes G (2009) Oriented precipitates of quartz and amphibole in clinopyroxene of metabasites from the Greek Rhodope: a product of open system precipitation during eclogite–granulite–amphibolite transition. J Metam Geol 27:639–654CrossRefGoogle Scholar
  58. Putnis A (2009) Mineral replacement reactions. MSA Rev Mineral Geochem 70:87–124CrossRefGoogle Scholar
  59. Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10:254–269Google Scholar
  60. Ricou LE, Burg JP, Godfriaux I, Ivanov Z (1998) Rhodope and Vardar: the metamorphic olistostromic paired belts related to the Cretaceous subduction under Europe. Geodin Acta 11(6):285–309CrossRefGoogle Scholar
  61. Ringwood AE, Major A (1971) Synthesis of majorite and other high pressure garnets and perovskites. Earth Planet Sci Lett 12:411–418CrossRefGoogle Scholar
  62. Roden MF, Patino-Douce AE, Jagoutz E, Laz′ko EE (2006) High pressure petrogenesis of Mg-rich garnet pyroxenites from Mir kimberlite, Russia. Lithos 90:77–91CrossRefGoogle Scholar
  63. Schmalzried H, Backhaus-Ricoult M (1993) Internal solid state reactions. Progr Solid State Chem 22:1–57CrossRefGoogle Scholar
  64. Schmidt S, Nagel TJ, Froitzheim N (2010) A new occurrence of microdiamond-bearing metamorphic rocks, SW Rhodopes, Greece. Eur J Mineral 22:189–198CrossRefGoogle Scholar
  65. Schwartz KB, Nolet DA, Burns RG (1980) Mössbauer spectroscopy and crystal chemistry of natural Fe-Ti garnets. Am Min 65:142–153Google Scholar
  66. Shau YH, Yang HY, Paecor DR (1991) Oriented titanite and rutile inclusions in sagenitic biotite. Am Min 76:1205–1217Google Scholar
  67. Snoyenbos DR, Williams ML, Hanmer S (1995) Archean high-pressure metamorphism in the western Canadian Shield. Eur J Mineral 7(6):1251–1272Google Scholar
  68. Sobolev NV, Lavrent’yev YG (1971) Isomorphic sodium admixture in garnets formed at high pressures. Contrib Mineral Petrol 31:1–12CrossRefGoogle Scholar
  69. Song S, Zhang L, Niu Y (2004) Ultra-deep origin of garnet peridotite from the North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. Am Mineral 89:1330–1336Google Scholar
  70. Van Roermund HLM, Drury MR (1998) Ultra-high pressure (P < 6 GPa) garnet peridotites in Western Norway: exhumation of mantle rocks from >185 km depth. Terra Nova 10:295–301CrossRefGoogle Scholar
  71. Van Roermund HLM, Drury MR, Barnhoorn A, De Ronde A (2000) Non-silicate inclusions in garnet from an ultra-deep orogenic peridotite. Geological J 35:209–229CrossRefGoogle Scholar
  72. Vrana S (1989) Perpotassic granulites from southern Bohemia. Contrib Mineral Petrol 103:510–522CrossRefGoogle Scholar
  73. Wang L, Essene EJ, Zhang Y (1999) Mineral inclusions in pyrope crystals from Garnet Ridge, Arizona, USA: implications for processes in the upper mantle. Contrib Mineral Petrol 135:164–178CrossRefGoogle Scholar
  74. Whitney DL (1992) High-pressure metamorphism in the Western Cordillera of North America: an example from the Skagit Gneiss, North Cascades. J Metamorph Geol 10:71–85CrossRefGoogle Scholar
  75. Whitney DL (1996) Garnets as open systems during regional metamorphism. Geology 24:147–150CrossRefGoogle Scholar
  76. Whitney DL, Sidman DJ, Goergen ET, Davis PB (2004) Microstructures and metamorphic crystallization. Abstr Progr Geol Soc Am 36:201Google Scholar
  77. Yang J, Liu L (2004) Coupled isomorphic substitution and exsolution of pyroxene, rutile, apatite and quartz in supersilicic garnet. Chin Sci Bull 49(1):70–76Google Scholar
  78. Ye K, Cong B, Ye D (2000) The possible subduction of continental material to depths grater than 200 km. Nature 407:734–736CrossRefGoogle Scholar
  79. Zhang RY, Liou JG (1998) Crustal-derived ultramafic-mafic complex in the Dabie-Sulu UHP terrane, China; petrochemistry and its implication. Abstracts with Programs. Geol Soc Am 30/7:230Google Scholar
  80. Zhang RY, Zhai SM, Fei YW, Liou JG (2003) Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: the significance of exsolved rutile in garnet. Earth Planet Sci Lett 216:591–601CrossRefGoogle Scholar
  81. Zhang JF, Xu HW, Liu Q, Green HW, Dobrzhinetskaya LF (2011) Pyroxene exsolution topotaxy in majoritic garnet from 250 to 300 km depth. J Matamorph Geol 29:741–751CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Proyer
    • 1
    Email author
  • Gerlinde Habler
    • 2
  • Rainer Abart
    • 2
  • Richard Wirth
    • 3
  • Kurt Krenn
    • 1
  • Georg Hoinkes
    • 1
  1. 1.Institute of Earth SciencesUniversity of GrazGrazAustria
  2. 2.Department of Lithospheric ResearchUniversity of ViennaViennaAustria
  3. 3.Geoforschungszentrum Potsdam, Am TelegrafenbergPotsdamGermany

Personalised recommendations