Contributions to Mineralogy and Petrology

, Volume 166, Issue 1, pp 43–63 | Cite as

Textural history of recent basaltic-andesites and plutonic inclusions from Merapi volcano

  • Froukje M. van der Zwan
  • Jane P. Chadwick
  • Valentin R. Troll
Original Paper


Mt. Merapi in Central Java is one of the most active stratovolcanoes on Earth and is underlain by a multistage plumbing system. Crystal size distribution analyses (CSD) were carried out on recent Merapi basaltic-andesites and co-eruptive magmatic and plutonic inclusions to characterise the crystallisation processes that operate during storage and ascent and to obtain information on respective time scales. The basaltic-andesites exhibit log-linear, kinked-upwards CSD curves for plagioclase and clinopyroxene that can be separated into two main textural populations. Large plagioclase phenocrysts (≥1.6 mm) make up one population, but correspond to crystals with variable geochemical composition and reflect a period of crystal growth at deep to mid-crustal levels. This population was subsequently influenced by crystal accumulation and the onset of crustal assimilation, including the incorporation of high-Ca skarn-derived xenocrysts. Textural re-equilibration is required for these crystals to form a single population in CSD. A second episode of crystal growth at shallower levels is represented by chemically homogenous plagioclase crystals <1.6 mm in size. Crustal assimilation is indicated by, for example, oxygen isotopes and based on the CSD data, crystallisation combined with contamination is likely semi-continuous in these upper crustal storage chambers. The CSD data observed in the basaltic-andesite samples are remarkably consistent and require a large-volume steady state magmatic system beneath Merapi in which late textural equilibration plays a significant role. Plagioclase CSDs of co-eruptive magmatic and plutonic inclusions may contain a third crystal population (<1 mm) not found in the lavas. This third population has probably formed from enhanced degassing of portions of basaltic-andesite magma at shallow crustal levels which resulted in increased crystallinity and basaltic-andesite mush inclusions. A suite of coarse plutonic inclusions is also present that reflects crystallisation and accumulation of crystals in the deep Merapi plumbing system, as deduced from CSD patterns and mineral assemblages.


Basaltic-andesite Crystal size distribution Plutonic inclusions Volcanic plumbing system Merapi volcano 



Dr. Lothar Schwarzkopf is thanked for help during sample collection, Peter Nicholls, B.Sc., for help with figure preparation and Laura Wasch, M.Sc., for comments on an earlier version of the manuscript. We are grateful for constructive reviews by Dr. M. Higgins, Dr. R. Gertisser and an anonymous referee that significantly improved the manuscript. FMZ and JPC acknowledge support from the Vrije Universiteit and VRT acknowledges kind support from Vetenskapsrådet (Swedish Science Foundation) and from the Centre of Natural Disaster Science (CNDS) at Uppsala University.

Supplementary material

410_2013_864_MOESM1_ESM.pdf (16 kb)
Supplementary material 1 (PDF 17 kb)
410_2013_864_MOESM2_ESM.pdf (274 kb)
Supplementary material 2 (PDF 274 kb)


  1. Andreastuti SD, Alloway BV, Smith IM (2000) A detailed tephrostratigraphic framework at Merapi Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment. J Volcanol Geotherm Res 100:51–67CrossRefGoogle Scholar
  2. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539CrossRefGoogle Scholar
  3. Bachmann O, Miller CF, de Silva SL (2007) The volcanic–plutonic connection as a stage for understanding crustal magmatism. J Volcanol Geotherm Res 167:1–23CrossRefGoogle Scholar
  4. Blundy JD, Cashman KV (2001) Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986. Contrib Mineral Petrol 140:631–650CrossRefGoogle Scholar
  5. Blundy JD, Cashman KV (2005) Rapid decompression-driven crystallization recorded by melt inclusions from Mount St. Helens volcano. Geology 33:793–796CrossRefGoogle Scholar
  6. Boorman S, Boudreau A, Kruger FJ (2004) The lower zone–critical zone transition of the Bushveld complex: a quantitative textural study. J Petrol 45:1209–1235CrossRefGoogle Scholar
  7. Borisova AY, Martel C, Gouy S, Pratomo I, Sumarti S, Toutain J-P, Bindeman IN, de Parseval P, Metaxian J-P, Surono S (2013) Highly explosive 2010 Merapi eruption: evidence for shallow-level crustal assimilation and hybrid fluid. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2012.11.002 (in press)
  8. Brophy JG (2009) Decompression and H2O exsolution driven crystallization and fractionation: development of a new model for low-pressure fractional crystallization in calc-alkaline magmatic systems. Contrib Mineral Petrol 157:797–811CrossRefGoogle Scholar
  9. Burton MR, Mader HM, Polacci M (2007) The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes. Earth Planet Sci Lett 264:46–60CrossRefGoogle Scholar
  10. Camus G, Gourgaud A, Mossand-Berthommier PC, Vincent PM (2000) Merapi (Central Java, Indonesia): an outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events. J Volcanol Geotherm Res 100:139–163CrossRefGoogle Scholar
  11. Cashman KV (1992) Groundmass crystallisation of Mount St. Helens dacite, 1980–1986: a tool for interpreting shallow magmatic processes. Contrib Mineral Petrol 109:431–449CrossRefGoogle Scholar
  12. Cashman KV (1993) Relationship between plagioclase crystallisation and cooling rate in basaltic melts. Contrib Mineral Petrol 113:126–142CrossRefGoogle Scholar
  13. Cashman KV, Blundy JD (2000) Degassing and Crystallization of Ascending Andesite and Dacite. Philos Trans Math Phys Eng Sci 358:1487–1513CrossRefGoogle Scholar
  14. Cashman KV, Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation II. Makaopuhi lava lake. Contrib Mineral Petrol 99:292–305CrossRefGoogle Scholar
  15. Chadwick JP (2008) Crustal Processes in Volcanic systems: case studies from Northern Ireland, New Zealand and Indonesia. Dissertation, University of DublinGoogle Scholar
  16. Chadwick JP, Troll VR, Ginibre C, Morgan D, Gertisser R, Waight TE, Davidson JP (2007) Carbonate assimilation at Merapi volcano, Java Indonesia: insights from crystal isotope stratigraphy. J Petrol 48:1793–1812CrossRefGoogle Scholar
  17. Chadwick JP, Troll VR, Waight TE, van der Zwan FM, Schwarzkopf LM (2013) Petrology and geochemistry of igneous inclusions in recent Merapi deposits: a window into the deep plumbing system. Contrib Mineral Petrol 165:259–282CrossRefGoogle Scholar
  18. Charbonnier SJ, Gertisser R (2008) Field observations and surface characteristics of pristine block-and-ash flow deposits from the 2006 eruption of Merapi Volcano, Java, Indonesia. J Volcanol Geotherm Res 177:971–982CrossRefGoogle Scholar
  19. Costa F, Andreastuti S, Bouvet de Maisonneuve C, Pallister JS (2013) Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2012.12.025 (in press)
  20. Curray JR, Shor GG, Raitt RW, Henry M (1977) Seismic refraction and reflection studies of crustal structure of the Eastern Sunda and Western Banda arcs. J Geophys Res 82:2479–2489CrossRefGoogle Scholar
  21. Davidson JP, Turner S, Handley H, McPherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790CrossRefGoogle Scholar
  22. Deegan FM, Troll VR, Freda C, Misiti V, Chadwick JP, McLeod CL, Davidson JP (2010) Magma–carbonate interaction processes and associated CO2 release at Merapi Volcano, Indonesia: insights from experimental petrology. J Petrol 51:1027–1051CrossRefGoogle Scholar
  23. Donoghue E, Troll VR, Schwarzkopf LM, Clayton G, Goodhue R (2009) Organic block coatings in block-and-ash flow deposits at Merapi Volcano, central Java. Geol Mag 146:113–120CrossRefGoogle Scholar
  24. Dungan MA, Davidson JP (2004) Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: an example from the Chilean Andes. Geology 32:773–776CrossRefGoogle Scholar
  25. Gertisser R (2001) Gunung Merapi (Java, Indonesien):Eruptionsgeschichte und magmatische Evolution eines Hochrisiko-Vulkans. Dissertation, Universität FreiburgGoogle Scholar
  26. Gertisser R, Keller J (2003a) Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc Magma Genesis. J Petrol 44:457–489CrossRefGoogle Scholar
  27. Gertisser R, Keller J (2003b) Temporal variations in magma composition at Merapi Volcano (Central Java, Indonesia): magmatic cycles during the past 2000 years of explosive activity. J Volcanol Geotherm Res 123:1–23CrossRefGoogle Scholar
  28. Gertisser R, Charbonnier SJ, Troll VR, Keller J, Preece K, Chadwick JP, Barclay J, Herd RA (2011) Merapi (Java, Indonesia): anatomy of a killer volcano. Geol Today 27:57–62CrossRefGoogle Scholar
  29. Gertisser R, Charbonnier SJ, Keller J, Quidelleur X (2012) The geological evolution of Merapi volcano, Central Java, Indonesia. Bull Volcanol 74:1213–1233CrossRefGoogle Scholar
  30. Hamilton W (1979) Tectonics of the Indonesian region 1979. US Geol Surv Profess Paper 1078:1–345Google Scholar
  31. Hammer JE, Cashman KV, Voight B (2000) Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. J Volcanol Geotherm Res 100:165–192CrossRefGoogle Scholar
  32. Higgins MD (1994) Determination of crystal morphology and size from bulk measurements on thin sections: numerical modelling. Am Mineral 79:113–119Google Scholar
  33. Higgins MD (1996a) Magma dynamics beneath Kameni volcano, Greece, as revealed by crystal size and shape measurement. J Volcanol Geotherm Res 70:37–48CrossRefGoogle Scholar
  34. Higgins MD (1996b) Crystal size distribution and other quantitative textural measurements in lavas and tuffs form Egmont volcano (Mt. Taranaki), New Zealand. Bull Volcanol 58:194–204CrossRefGoogle Scholar
  35. Higgins MD (1999) Origin of megacrysts in granitoids by textural coarsening: a crystal size distribution (CSD) study of microcline in the Cathedral Peak Granodiorite, Sierra Nevada, California. In: Fernandez C, Castro A (eds) Understanding granites: integrating modern and classical techniques. Geol Soc Lond Special Publ 158:207–219Google Scholar
  36. Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85:1105–1116Google Scholar
  37. Higgins MD (2002) A crystal size-distribution study of the Kiglapait layered mafic intrusion, Labrador, Canada: evidence for textural coarsening. Contrib Mineral Petrol 144:314–330CrossRefGoogle Scholar
  38. Higgins MD (2006a) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. Higgins MD (2006b) Use of appropriate diagrams to determine if crystal size distributions (CSD) are dominantly semi-logarithmic, lognormal or fractal (scale invariant). J Volcanol Geotherm Res 154:8–16CrossRefGoogle Scholar
  40. Higgins MD (2011) Textural coarsening in igneous rocks. Int Geol Rev 53:354–376CrossRefGoogle Scholar
  41. Higgins MD, Roberge J (2003) Crystal size distribution (CSD) of plagioclase and amphibole from Soufriere Hills volcano, Montserrat: evidence for dynamic crystallisation/textural coarsening cycles. J Petrol 44:1401–1411CrossRefGoogle Scholar
  42. Holness MB, Anderson AT, Martin VM, MacLennan J, Passmore E, Schwindinger K (2007) Textures in partially solidified crystalline nodules: a window into the pore structure of slowly cooled mafic intrusions. J Petrol 48:1243–1264CrossRefGoogle Scholar
  43. Iacono Marziano G, Gaillard F, Pichavant M (2008) Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes. Contrib Mineral Petrol 155:719–738CrossRefGoogle Scholar
  44. Innocenti S, del Marmol MA, Voight B, Andreastuti S, Furman T (2013) Textural and mineral chemistry constraints on evolution of Merapi volcano, Indonesia. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2015.01.006 (in press)
  45. Jerram DA, Martin VM (2008) Understanding crystal populations and their significance through the magma plumbing system. Geol Soc Lond Spec Publ 304:133–148CrossRefGoogle Scholar
  46. Jerram DA, Cheadle MJ, Hunter RH, Elliott MT (1996) The spatial distribution of grains and crystals in rocks. Contrib Mineral Petrol 125:60–74CrossRefGoogle Scholar
  47. Jerram DA, Cheadle MC, Philpotts AR (2003) Quantifying the building blocks of igneous rocks: are clustered crystal frameworks the foundation? J Petrol 44:2033–2051CrossRefGoogle Scholar
  48. Kelfoun K, Legros F, Gourgaud A (2000) A statistical study of trees damaged by the 22 November 1994 eruption of Merapi volcano (Java, Indonesia): relationships between ash-cloud surges and block-and-ash flows. J Volcanol Geotherm Res 100:379–393CrossRefGoogle Scholar
  49. Koulakov I, Bohm M, Asch G, Luehr B-G, Manzanares A, Brotopuspito KS, Fauzi N, Purbawinata MA, Puspito NT, Ratdomopurbo A, Kopp H, Rabbel W, Shevkunova E (2007) P- and S-velocity structure of the crust and the upper mantle beneath Central Java from local tomography inversion. J Geophys Res 112:B08310. doi: 10.1029/2006JB004712 CrossRefGoogle Scholar
  50. Mangan MT (1990) Crystal size distribution systematics and the determination of magma storage times: the 1959 eruption of Kilauea volcano, Hawaii. J Volcanol Geotherm Res 44:295–302CrossRefGoogle Scholar
  51. Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I. Theory. Contrib Mineral Petrol 99:277–291CrossRefGoogle Scholar
  52. Marsh BD (1996) Solidification fronts and magmatic evolution. Mineral Mag 60:5–40CrossRefGoogle Scholar
  53. Marsh BD (1998) On the interpretation of crystal size distributions in magmatic systems. J Petrol 39:553–600CrossRefGoogle Scholar
  54. Martin D (1989) A stirring tale of crystals and currents A stirring tale of crystals and currents: fingers and fountains of salt in the seas have given geologists a new perspective: fluid dynamics is the vital ingredient in the recipe to stir magma and crystallise rocks. New Sci 124:35–41Google Scholar
  55. McBirney AR, Murase T (1984) Rheological properties of magmas. Ann Rev Earth Planet Sci 12:337–357CrossRefGoogle Scholar
  56. Morgan DJ, Jerram DA (2006) On estimating crystal shape for crystal size distribution analysis. J Volcanol Geotherm Res 154:1–7CrossRefGoogle Scholar
  57. Morgan DJ, Jerram DA, Chertkoff DG, Davidson JP, Pearson DG, Kronz A, Nowell GM (2007) Combining CSD and isotopic microanalysis: Magma supply and mixing processes at Stromboli Volcano, Aeolian Islands, Italy. Earth Planet Sci Lett 260:419–431CrossRefGoogle Scholar
  58. Newhall CG, Bronto S, Alloway B, Banks NG, Bahar I, del Marmol MA, Hadisantono RD, Holcomb RT, McGeehin J, Miksic JN, Rubin M, Sayudi SD, Sukhyar R, Andreastuti S, Tilling RI, Torley R, Trimble D, Wirakusumah AD (2000) 10,000 Years of explosive eruptions of Merapi Volcano, Central Java: archeological and modern implications. J Volcanol Geotherm Res 100:9–50CrossRefGoogle Scholar
  59. O’Driscoll B, Stevenson CTE, Troll VR (2008) Mineral lamination development in layered gabbros of the British Palaeogene Igneous Province: a combined anisotropy of magnetic susceptibility, quantitative textural and mineral chemistry study. J Petrol 49:1187–1221CrossRefGoogle Scholar
  60. Peters STM, Chadwick JP, Troll VR (2011) Amphibole antecrysts in deposits of Merapi volcano, Indonesia: a plutonic phase in extrusive magmas. Goldschmidt supplement. Mineral Mag 75:1627Google Scholar
  61. Randolf AD, Larson MA (1971) Theory of particulate processes. Academic Press, New YorkGoogle Scholar
  62. Ratdomopurbo A, Poupinet G (2000) An overview of the seismicity of Merapi volcano (Java, Indonesia), 1983–1994. J Volcanol Geotherm Res 100:193–214CrossRefGoogle Scholar
  63. Reubi O, Blundy J (2008) Assimilation of plutonic roots, formation of high-K ‘exotic’ melt inclusions and genesis of andesitic magmas at Volcán de Colima, Mexico. J Petrol 49:2221–2243CrossRefGoogle Scholar
  64. Rutherford MJ, Devine JD (2003) Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2002 Soufrière Hills magma. J Petrol 44:1433–1453CrossRefGoogle Scholar
  65. Sahagian DL, Proussevitch AA (1998) 3D particle size distributions from 2D observations: stereology for natural application. J Volcanol Geotherm Res 84:173–196CrossRefGoogle Scholar
  66. Saltikov SA (1967) The determination of the size distribution of particles in an opaque material from a measurement of the size distribution of their sections. In: Elias H (ed) Proceedings of the second international congress for stereology. Springer, Berlin, pp 163–173Google Scholar
  67. Schwarzkopf LM, Schmincke H-U, Troll VR (2001) Pseudotachylite on impact marks of block surfaces in block-and ash flows at Merapi volcano, Central Java, Indonesia. Int J Earth Sci 90:769–775CrossRefGoogle Scholar
  68. Schwarzkopf LM, Schmincke H-U, Cronin SJ (2005) A conceptual model for block-and-ash flow basal avalanche transport and deposition, based on deposit architecture of 1998 and 1994 Merapi flows. J Volcanol Geotherm Res 139:117–134CrossRefGoogle Scholar
  69. Smyth HR, Hall R, Hamilton J, Kinny P (2005) East Java: Cenozoic basins, volcanoes and ancient basement. In: Proceedings, Indonesian petroleum association. Thirtieth annual convention & exhibition, pp 251–266Google Scholar
  70. Sottili G, Taddeucci J, Palladino DM, Gaeta M, Scarlato P, Ventura G (2009) Sub-surface dynamics and eruptive styles of maars in the Colli Albani Volcanic District, Central Italy. J Volcanol Geotherm Res 180:189–202CrossRefGoogle Scholar
  71. Stevenson RJ, Dingwell DB, Webb SL, Sharp TG (1996) Viscosity of microlite-bearing rhyolitic obsidians: an experimental study. Bull Volcanol 58:298–309CrossRefGoogle Scholar
  72. Surono S, Jousset P, Pallister J, Boichu M, Buongiorno MF, Budisantoso A, Costa F, Andreastuti S, Prata F, Schneider D, Clarisse L, Humaida H, Sumariti S, Bignami C, Griswold J, Carn S, Oppenheimer C, Lavigne F (2012) The 2010 explosive eruption of Java’s Merapi volcano—a ‘100-year’ event. J Volcanol Geotherm Res 241–242:121–135CrossRefGoogle Scholar
  73. Troll VR, Hilton DR, Jolis EM, Chadwick JP, Blythe LS, Deegan FM, Schwarzkopf LM, Zimmer M (2012) Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia. Geophys Res Lett 39:L11302. doi: 10.1029/2012GL051307 CrossRefGoogle Scholar
  74. Troll VR, Deegan FM, Jolis EM, Harris C, Chadwick JP, Gertisser R, Schwarzkopf LM, Borisova AY, Bindeman IN, Sumarti S, Preece K (2013) Magmatic differentiation processes at Merapi Volcano: inclusion petrology and oxygen isotopes. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2012.11.001 (in press)
  75. van Bemelen RW (1949) The geology of Indonesia, 1A, general geology. Government Printing Office, The HagueGoogle Scholar
  76. Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Vis Geosci 5:1–23CrossRefGoogle Scholar
  77. Voight B, Sukyar R, Wirakusumah AD (2000a) Introduction to the special issue on Merapi Volcano. J Volcanol Geotherm Res 100:1–8CrossRefGoogle Scholar
  78. Voight B, Constantine EK, Siswowidjoyo S, Torley R (2000b) Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100:69–138CrossRefGoogle Scholar
  79. Wagner D, Koulakov I, Rabbel W, Luehr B-G, Wittwer A, Kopp H, Bohm M, Asch G, MERAMEX Scientists (2007) Joint inversion of active and passive seismic data in Central Java. Geophys J Int 170:923–932CrossRefGoogle Scholar
  80. Wilson M (1993) Magmatic differentiation. Geol Soc Lond 150:611–624CrossRefGoogle Scholar
  81. Witter JB, Kressi VC, Newhall CG (2005) Volcán Popocatépetl, Mexico. Petrology, magma mixing, and immediate sources of volatiles for the 1994–present eruption. J Petrol 46:2337–2366CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Froukje M. van der Zwan
    • 1
    • 3
  • Jane P. Chadwick
    • 1
    • 4
  • Valentin R. Troll
    • 2
  1. 1.Department of PetrologyVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Department of Earth Sciences, CEMPEGUppsala UniversitetUppsalaSweden
  3. 3.Geomar Helmholtz Centre for Ocean Research KielKielGermany
  4. 4.Science GalleryTrinity College DublinDublinIreland

Personalised recommendations