Advertisement

Contributions to Mineralogy and Petrology

, Volume 165, Issue 4, pp 757–779 | Cite as

The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy)

  • Tanya A. Ewing
  • Jörg Hermann
  • Daniela Rubatto
Original Paper

Abstract

This study investigates the behaviour of the Zr-in-rutile and Ti-in-zircon thermometers in granulite facies metapelites from the Ivrea-Verbano Zone lower crustal section. U–Pb ages of zircon constrain the timing of regional amphibolite–granulite facies metamorphism to 316 ± 3 Ma and record zircon recrystallisation and resetting of U–Pb ages at 276 ± 4 Ma and 258 ± 3 Ma. Zr-in-rutile thermometry records peak contact metamorphic temperatures related to intrusion of mafic magmatic rocks and gives peak temperatures between 900–930 °C and 1,000–1,020 °C that are consistent with the geological settings of the samples. Ti-in-zircon temperatures of 700–800 °C and 810–870 °C record growth or re-equilibration of zircon after cooling from peak temperatures. Ti-in-quartz thermometry for one sample records both peak and retrograde temperatures. Some rutiles in all samples record resetting of Zr-in-rutile temperatures at ~750–800 °C. Electron microprobe profiles across individual rutiles demonstrate that Zr expulsion occurred by recrystallisation rather than by diffusive exchange. Exsolution of small needles of baddelyite or zircon from rutile is an important method of Zr redistribution, but results in no net Zr loss from the grain. The demonstration that Zr-in-rutile thermometry can robustly record peak temperatures that are not recorded by any other thermometer emphasises the relevance of this technique to investigating the evolution of high-grade metamorphic terranes, such as those that characterise the lower crust.

Keywords

Zr in rutile Ti in zircon Thermometry Diffusion Granulite facies Ivrea-Verbano Zone U–Pb geochronology 

Notes

Acknowledgments

We thank C. Allen, P. Holden, and R. Rapp for assistance with analytical work and constructive discussions, and the ANU Centre for Advanced Microscopy for access to their SEM and technical support. M. Beltrando is thanked for assistance in the field. E. Kooijman, J. Baldwin, and an anonymous reviewer are thanked for their constructive reviews, which improved the manuscript. J. Hoefs is thanked for editorial handling. This work was financially supported by Australian Research Council grant DP0556700 and the Research School of Earth Sciences. T. Ewing was supported by APA, ANU, and Jaeger scholarships at RSES.

Supplementary material

410_2012_834_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1908 kb)

References

  1. Aulbach S, O’Reilly SY, Griffin WL, Pearson NJ (2008) Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites. Nat Geosci 1:468–472CrossRefGoogle Scholar
  2. Baldwin JA, Brown M (2008) Age and duration of ultrahigh-temperature metamorphism in the Anápolis–Itauçu Complex, Southern Brasília Belt, central Brazil—constraints from U-Pb geochronology, mineral rare earth element chemistry and trace-element thermometry. J Metamorph Geol 26:213–233CrossRefGoogle Scholar
  3. Baldwin JA, Brown M, Schmitz MD (2007) First application of titanium-in-zircon thermometry to ultrahigh-temperature metamorphism. Geology 35(4):295–298CrossRefGoogle Scholar
  4. Barboza SA, Bergantz GW (2000) Metamorphism and anatexis in the mafic complex contact aureole, Ivrea zone, northern Italy. J Petrol 41(8):1307–1327CrossRefGoogle Scholar
  5. Barboza SA, Bergantz GW, Brown M (1999) Regional granulite facies metamorphism in the Ivrea zone: is the Mafic Complex the smoking gun or a red herring? Geology 27(5):447–450CrossRefGoogle Scholar
  6. Bertolani M (1954) Contributo allo studio petrografico della cosiddetta “formazione dioritico-kinzigitica”; Ricerche in Val Sabbiola (Valsesia). Rendiconti della Società Mineralogica Italiana 10:92–207Google Scholar
  7. Bingen B, Austrheim H, Whitehouse M (2001) Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of western Norway and implications for zircon geochronology. J Petrol 42(2):355–375CrossRefGoogle Scholar
  8. Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170CrossRefGoogle Scholar
  9. Boriani AC, Villa IM (1997) Geochronology of regional metamorphism in the Ivrea-Verbano Zone and Serie dei Laghi, Italian Alps. Schweiz Mineral Petrogr Mitt 77(3):381–401Google Scholar
  10. Boriani A, Burlini L, Sacchi R (1990) The Cossato-Mergozzo-Brissago Line and the Pogallo Line (Southern Alps, Northern Italy) and their relationships with the late-Hercynian magmatic and metamorphic events. Tectonophysics 182(1–2):91–102CrossRefGoogle Scholar
  11. Cherniak DJ, Watson EB (2007) Ti diffusion in zircon. Chem Geol 242(3–4):473–483Google Scholar
  12. Cherniak DJ, Manchester J, Watson EB (2007a) Zr and Hf diffusion in rutile. Earth Planet Sci Lett 261(1–2):267–279CrossRefGoogle Scholar
  13. Cherniak DJ, Watson EB, Wark DA (2007b) Ti diffusion in quartz. Chem Geol 236(1–2):65–74CrossRefGoogle Scholar
  14. Choukroun M, O’Reilly SY, Griffin WL, Pearson NJ, Dawson JB (2005) Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle. Geology 33(1):45–48CrossRefGoogle Scholar
  15. Clark C, Collins AS, Santosh M, Taylor R, Wade BP (2009) The P–T–t architecture of a Gondwanan suture: REE, U–Pb and Ti-in-zircon thermometric constraints from the Palghat Cauvery shear system, South India. Precambrian Res 174(1–2):129–144CrossRefGoogle Scholar
  16. Corfu F, Muir TL (1989) The Hemlo Heron Bay greenstone-belt and Hemlo Au-Mo deposit, Superior Province, Ontario, Canada. 2. Timing of metamorphism, alteration and mineralization from titanite, rutile and monazite U–Pb geochronology. Chem Geol 79(3):201–223Google Scholar
  17. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon, volume 53 of reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington, DC, pp 469–500Google Scholar
  18. De Laeter JR, Bohlke JK, De Bievre P, Hidaka H, Peiser HS, Rosman KJR, Taylor PDP (2003) Atomic weights of the elements: review 2000—(IUPAC technical report). Pure Appl Chem 75(6):683–800CrossRefGoogle Scholar
  19. Demarchi G, Quick J, Sinigoi S, Mayer A (1998) Pressure gradient and original orientation of a lower-crustal intrusion in the Ivrea-Verbano Zone, northern Italy. J Geol 106(5):609–621CrossRefGoogle Scholar
  20. Eggins SM, Kinsley LPJ, Shelley JMG (1998) Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS. Appl Surf Sci 129:278–286CrossRefGoogle Scholar
  21. Ewing TA (2011) Hf isotope analysis and U–Pb geochronology of rutile: technique development and application to a lower crustal section (Ivrea-Verbano Zone, Italy). Unpublished PhD thesis. Australian National University, 385 ppGoogle Scholar
  22. Ewing TA, Rubatto D, Eggins SM, Hermann J (2011) In situ measurement of hafnium isotopes in rutile by LA–MC-ICPMS: protocol and applications. Chem Geol 281(1–2):72–82CrossRefGoogle Scholar
  23. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154(4):429–437CrossRefGoogle Scholar
  24. Grieco G, Ferrario A, Von Quadt A, Koeppel V, Mathez EA (2001) The zircon-bearing chromitites of the phlogopite peridotite of Finero (Ivrea Zone, Southern Alps): evidence and geochronology of a metasomatized mantle slab. J Petrol 42(1):89–101CrossRefGoogle Scholar
  25. Handy MR (1987) The structure, age and kinematics of the Pogallo fault zone—Southern Alps, northwestern Italy. Eclogae Geol Helv 80(3):593–632Google Scholar
  26. Handy MR, Franz L, Heller F, Janott B, Zurbriggen R (1999) Multistage accretion and exhumation of the continental crust (Ivrea crustal section, Italy and Switzerland). Tectonics 18(6):1154–1177CrossRefGoogle Scholar
  27. Harley SL (2008) Refining the P–T records of UHT crustal metamorphism. J Metamorph Geol 26(2):125–154CrossRefGoogle Scholar
  28. Harlov DE, Wirth R (2000) K-feldspar-quartz and K-feldspar-plagioclase phase boundary interactions in garnet-orthopyroxene gneiss’s from the Val Strona di Omegna, Ivrea-Verbano Zone, northern Italy. Contrib Mineral Petrol 140(2):148–162CrossRefGoogle Scholar
  29. Henk A, Franz L, Teufel S, Oncken O (1997) Magmatic underplating, extension, and crustal reequilibration: insights from a cross-section through the Ivrea Zone and Strona-Ceneri Zone, northern Italy. J Geol 105(3):367–377CrossRefGoogle Scholar
  30. Huang R, Audétat A (2012) The titanium-in-quartz (TitaniQ) thermobarometer: a critical examination and re-calibration. Geochim Cosmochim Acta 84:75–89CrossRefGoogle Scholar
  31. Jiao S, Guo J, Mao Q, Zhao R (2011) Application of Zr-in-rutile thermometry: a case study from ultrahigh-temperature granulites of the Khondalite belt, North China Craton. Contrib Mineral Petrol 162(2):379–393CrossRefGoogle Scholar
  32. Keller NS, Arculus RJ, Hermann J, Richards S (2008) Submarine back-arc lava with arc signature: Fonualei Spreading Center, northeast Lau Basin, Tonga. J Geophys Res Solid Earth 113:B08S07Google Scholar
  33. Kooijman E, Mezger K, Berndt J (2010) Constraints on the U–Pb systematics of metamorphic rutile from in situ LA-ICP-MS analysis. Earth Planet Sci Lett 293(3–4):321–330CrossRefGoogle Scholar
  34. Kooijman E, Smit MA, Mezger K, Berndt J (2012) Trace element systematics in granulite facies rutile: implications for Zr geothermometry and provenance studies. J Metamorph Geol 30(4):397–412CrossRefGoogle Scholar
  35. Kotková J, Harley SL (2010) Anatexis during high-pressure crustal metamorphism: evidence from Garnet–Whole-rock REE Relationships and Zircon–Rutile Ti–Zr Thermometry in Leucogranulites from the Bohemian Massif. J Petrol 51(10):1967–2001CrossRefGoogle Scholar
  36. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68(1–2):277–279Google Scholar
  37. Liu S, Li J, Santosh M (2010) First application of the revised Ti-in-zircon geothermometer to Paleoproterozoic ultrahigh-temperature granulites of Tuguiwula, Inner Mongolia, North China Craton. Contrib Mineral Petrol 159(2):225–235CrossRefGoogle Scholar
  38. Lu MH, Hofmann AW, Mazzucchelli M, Rivalenti G (1997) The mafic-ultramafic complex near Finero (Ivrea-Verbano Zone), II. Geochronology and isotope geochemistry. Chem Geol 140(3–4):223–235CrossRefGoogle Scholar
  39. Ludwig KR (2001) SQUID 1.02—a user’s manual. Berkeley Geochronology Center Special Publication No. 2Google Scholar
  40. Ludwig KR (2003) User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 4Google Scholar
  41. Luvizotto GL, Zack T (2009) Nb and Zr behavior in rutile during high-grade metamorphism and retrogression: an example from the Ivrea-Verbano Zone. Chem Geol 261(3–4):303–317CrossRefGoogle Scholar
  42. Luvizotto GL, Zack T, Meyer HP, Ludwig T, Triebold S, Kronz A, Münker C, Stockli DF, Prowatke S, Klemme S, Jacob DE, von Eynatten H (2009) Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem Geol 261(3–4):346–369CrossRefGoogle Scholar
  43. Mayer A, Mezger K, Sinigoi S (2000) New Sm–Nd ages for the Ivrea-Verbano Zone, Sesia and Sessera valleys (Northern-Italy). J Geodyn 30(1–2):147–166CrossRefGoogle Scholar
  44. Mazzucchelli M, Rivalenti G, Vannucci R, Bottazzi P, Ottolini L, Hofmann AW, Parenti M (1992) Primary positive Eu anomaly in clinopyroxenes of low-crust gabbroic rocks. Geochim Cosmochim Acta 56(6):2363–2370CrossRefGoogle Scholar
  45. Mazzucchelli M, Zanetti A, Rivalenti G, Vannucci R, Correia CT, Gaeta Tassinari CC (2010) Age and geochemistry of mantle peridotites and diorite dykes from the Baldissero body: insights into the Paleozoic-Mesozoic evolution of the Southern Alps. Lithos 119(3–4):485–500CrossRefGoogle Scholar
  46. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3–4):223–253CrossRefGoogle Scholar
  47. Meyer M, John T, Brandt S, Klemd R (2011) Trace element composition of rutile and the application of Zr-in-rutile thermometry to UHT metamorphism (Epupa Complex, NW Namibia). Lithos 126(3–4):388–401CrossRefGoogle Scholar
  48. Mezger K, Hanson GN, Bohlen SR (1989) High-precision U–Pb ages of metamorphic rutile—application to the cooling history of high-grade terranes. Earth Planet Sci Lett 96(1–2):106–118CrossRefGoogle Scholar
  49. Morishita T, Hattori KH, Terada K, Matsumoto T, Yamamoto K, Takebe M, Ishida Y, Tamura A, Arai S (2008) Geochemistry of apatite-rich layers in the Finero phlogopite-peridotite massif (Italian Western Alps) and ion microprobe dating of apatite. Chem Geol 251(1–4):99–111CrossRefGoogle Scholar
  50. Mulch A, Cosca MA, Handy MR (2002a) In-situ UV-laser 40Ar/39Ar geochronology of a micaceous mylonite: an example of defect-enhanced argon loss. Contrib Mineral Petrol 142(6):738–752CrossRefGoogle Scholar
  51. Mulch A, Rosenau M, Dorr W, Handy MR (2002b) The age and structure of dikes along the tectonic contact of the Ivrea-Verbano and Strona-Ceneri Zones (southern Alps, Northern Italy, Switzerland). Schweiz Mineral Petrogr Mitt 82(1):55–76Google Scholar
  52. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl J Geostand Geoanal 21(1):115–144CrossRefGoogle Scholar
  53. Peressini G, Quick JE, Sinigoi S, Hofmann AW, Fanning M (2007) Duration of a large Mafic intrusion and heat transfer in the lower crust: a SHRIMP U–Pb zircon study in the Ivrea-Verbano Zone (Western Alps, Italy). J Petrol 48(6):1185–1218CrossRefGoogle Scholar
  54. Quick JE, Sinigoi S, Mayer A (1995) Emplacement of mantle peridotite in the lower continental crust, Ivrea-Verbano Zone, northwest Italy. Geology 23(8):739–742CrossRefGoogle Scholar
  55. Quick JE, Sinigoi S, Snoke AW, Kalakay TJ, Mayer A, Peressini G (2003) Geologic Map of the Southern Ivrea-Verbano Zone, Northwestern Italy. Geologic Investigations Series Map I-2776 and booklet (22 p). US Geological Survey, U.S. Government Printing OfficeGoogle Scholar
  56. Redler C, Johnson TE, White RW, Kunz BE (2012) Phase equilibrium constraints on a deep crustal metamorphic field gradient: metapelitic rocks from the Ivrea Zone (NW Italy). J Metamorph Geol 30(3):235–254CrossRefGoogle Scholar
  57. Rivalenti G, Garuti G, Rossi A (1975) The origin of the Ivrea-Verbano basic formation (western Italian Alps); whole rock geochemistry. Bollettino della Società Geologica Italiana 94:1149–1186Google Scholar
  58. Roberts MP, Finger F (1997) Do U–Pb zircon ages from granulites reflect peak metamorphic conditions? Geology 25(4):319–322CrossRefGoogle Scholar
  59. Schaltegger U, Fanning CM, Gunther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134(2–3):186–201CrossRefGoogle Scholar
  60. Schaltegger U, Antognini M, Girlanda F, Wiechert U, Müntener O (2008) Alkaline mantle melts in the southern Alpine lower crust mark the initiation of late Triassic rifting. Swiss Geoscience meeting 2008, LuganoGoogle Scholar
  61. Schaltegger U, Müntener O, Ulianov A, Ovtcharova M, Peytcheva I, Antognini M, Girlanda F (2011) Alkaline melts pinpoint late Triassic thinning of the Southern Alpine lithosphere (Ivrea Zone, Italy). Mineral Mag 75(3):1809Google Scholar
  62. Schmid SM, Zingg A, Handy M (1987) The kinematics of movements along the Insubric Line and the emplacement of the Ivrea Zone. Tectonophysics 135(1–3):47–66CrossRefGoogle Scholar
  63. Schmitz MD, Bowring SA (2003) Constraints on the thermal evolution of continental lithosphere from U-Pb accessory mineral thermochronometry of lower crustal xenoliths, southern Africa. Contrib Mineral Petrol 144(5):592–618CrossRefGoogle Scholar
  64. Schnetger B (1994) Partial melting during the evolution of the amphibolite-facies to granulite-facies gneisses of the Ivrea Zone, northern Italy. Chem Geol 113(1–2):71–101CrossRefGoogle Scholar
  65. Sinha AK, Wayne DM, Hewitt DA (1992) The hydrothermal stability of zircon—preliminary experimental and isotopic studies. Geochim Cosmochim Acta 56(9):3551–3560CrossRefGoogle Scholar
  66. Sinigoi S, Antonini P, Demarchi G, Longinell A, Mazzucchelli M, Negrini L, Rivalenti G (1991) Intractions of mantle and crustal magmas in the southern part of the Ivrea Zone (Italy). Contrib Mineral Petrol 108(4):385–395CrossRefGoogle Scholar
  67. Sinigoi S, Quick JE, Clemens-Knott D, Mayer A, Demarchi G, Mazzucchelli M, Negrini L, Rivalenti G (1994) Chemical evolution of a large mafic intrusion in the lower crust, Ivrea-Verbano Zone, northern Italy. J Geophys Res Solid Earth 99(11):21575–21590CrossRefGoogle Scholar
  68. Sinigoi S, Quick JE, Mayer A, Demarchi G (1995) Density-controlled assimilation of underplated crust, Ivrea-Verbano Zone, Italy. Earth Planet Sci Lett 129(1–4):183–191CrossRefGoogle Scholar
  69. Sinigoi S, Quick JE, Mayer A, Budahn J (1996) Influence of stretching and density contrasts on the chemical evolution of continental magmas: an example from the Ivrea-Verbano zone. Contrib Mineral Petrol 123(3):238–250CrossRefGoogle Scholar
  70. Sinigoi S, Quick JE, Demarchi G, Klötzli U (2011) The role of crustal fertility in the generation of large silicic magmatic systems triggered by intrusion of mantle magma in the deep crust. Contrib Mineral Petrol 162:691–707CrossRefGoogle Scholar
  71. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  72. Stähle V, Frenzel G, Kober B, Michard A, Puchelt H, Schneider W (1990) Zircon syenite pegmatites in the Finero peridotite (Ivrea Zone): evidence for a syenite from a mantle source. Earth Planet Sci Lett 101(2–4):196–205CrossRefGoogle Scholar
  73. Tera F, Wasserburg J (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14(3):281–304Google Scholar
  74. Thomas JB, Watson EB, Spear FS, Shemella PT, Nayak SK, Lanzirotti A (2010) TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib Mineral Petrol 160(5):743–759CrossRefGoogle Scholar
  75. Tomkins HS, Powell R, Ellis DJ (2007) The pressure dependence of the zirconium-in-rutile thermometer. J Metamorph Geol 25(6):703–713CrossRefGoogle Scholar
  76. Triebold S, von Eynatten H, Luvizotto GL, Zack T (2007) Deducing source rock lithology from detrital rutile geochemistry: an example from the Erzgebirge, Germany. Chem Geol 244(3–4):421–436CrossRefGoogle Scholar
  77. Vavra G, Schaltegger U (1999) Post-granulite facies monazite growth and rejuvenation during Permian to Lower Jurassic thermal and fluid events in the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134(4):405–414CrossRefGoogle Scholar
  78. Vavra G, Gebauer D, Schmid R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contrib Mineral Petrol 122(4):337–358CrossRefGoogle Scholar
  79. Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134(4):380–404CrossRefGoogle Scholar
  80. Voshage H, Hofmann AW, Mazzucchelli M, Rivalenti G, Sinigoi S, Raczek I, Demarchi G (1990) Isotopic evidence from the Ivrea Zone for a hybrid lower crust formed by magmatic underplating. Nature 347(6295):731–736CrossRefGoogle Scholar
  81. Vry JK, Baker JA (2006) LA–MC-ICPMS Pb–Pb dating of rutile from slowly cooled granulites: confirmation of the high closure temperature for Pb diffusion in rutile. Geochim Cosmochim Acta 70(7):1807–1820CrossRefGoogle Scholar
  82. Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Mineral Petrol 152(6):743–754CrossRefGoogle Scholar
  83. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64(2):295–304CrossRefGoogle Scholar
  84. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151(4):413–433CrossRefGoogle Scholar
  85. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185–187CrossRefGoogle Scholar
  86. Williams IS (1998) U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks III WC, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Reviews in economic geology, vol 7. pp 1–35Google Scholar
  87. Zack T, Moraes R, Kronz A (2004a) Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib Mineral Petrol 148(4):471–488CrossRefGoogle Scholar
  88. Zack T, von Eynatten H, Kronz A (2004b) Rutile geochemistry and its potential use in quantitative provenance studies. Sediment Geol 171(1–4):37–58CrossRefGoogle Scholar
  89. Zack T, Stockli DF, Luvizotto GL, Barth MG, Belousova E, Wolfe MR, Hinton RW (2011) In situ U–Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contrib Mineral Petrol 162:515–530CrossRefGoogle Scholar
  90. Zingg A (1980) Regional Metamorphism in the Ivrea Zone (Southern Alps, N-Italy): field and microscopic investigations. Schweiz Mineral Petrogr Mitt 60:153–179Google Scholar
  91. Zingg A, Handy MR, Hunziker JC, Schmid SM (1990) Tectonometamorphic history of the Ivrea Zone and its relationship to the crustal evolution of the Southern Alps. Tectonophysics 182(1–2):169–192CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tanya A. Ewing
    • 1
  • Jörg Hermann
    • 1
  • Daniela Rubatto
    • 1
  1. 1.Research School of Earth SciencesANUCanberraAustralia

Personalised recommendations