Contributions to Mineralogy and Petrology

, Volume 165, Issue 4, pp 641–662

Origin of the Tongbai-Dabie-Sulu Neoproterozoic low-δ18O igneous province, east-central China

  • Bin Fu
  • Noriko T. Kita
  • Simon A. Wilde
  • Xiaochun Liu
  • John Cliff
  • Alan Greig
Original Paper


Zircons from 71 diverse rocks from the Qinling-Tongbai-Dabie-Sulu orogenic belt in east-central China and, for comparison, eight from adjoining areas in the South China and North China blocks, have been analyzed for in situ 18O/16O ratio and/or U–Pb age to further constrain the spatial distribution and genesis of Neoproterozoic low-δ18O magmas, that is, δ18O(zircon) ≤4 ‰ VSMOW. In many metaigneous rock samples from Tongbai-Dabie-Sulu, including high-pressure and ultrahigh-pressure eclogites and associated granitic orthogneisses, average δ18O values for Neoproterozoic “igneous” zircon cores (i.e., 800–600 Ma) vary from −0.9 to 6.9 ‰, and from −9.9 to 6.8 ‰ for Triassic metamorphic rims (i.e., 245–200 Ma). The former extend to values lower than zircons in primitive magmas from the Earth’s mantle (ca. 5–6 ‰). The average Δ18O (metamorphic zircon − “igneous” zircon) values vary from −11.6 to 0.9 ‰. The large volume of Neoproterozoic low-δ18O igneous protoliths at Tongbai-Dabie-Sulu is matched only by the felsic volcanic rocks of the Snake River Plain hotspot track, which terminates at the Yellowstone Plateau. Hence, the low-δ18O values at Tongbai-Dabie-Sulu are proposed to result from shallow subcaldera processes by comparison with Yellowstone, where repeated caldera-forming magmatism and hydrothermal alteration created similar low-δ18O magmas. However, the possibility of involvement of meltwaters from local continental glaciations, rather than global Neoproterozoic glaciations, cannot be precluded. Our data indicate that Neoproterozoic low-δ18O magmas that are either subduction- or rift-related are present locally along the western margin of the South China Block (e.g., Baoxing Complex). It appears that Neoproterozoic 18O-depletion events in the South China Block as the result of hydrothermal alteration and magmatism affected a much larger area than was previously recognized.


Zircon Oxygen isotopes Ultrahigh-pressure metamorphism Qinling-Tongbai-Dabie-Sulu orogenic belt South China Block 

Supplementary material

410_2012_828_MOESM1_ESM.xls (1.8 mb)
Supplementary material 1 (XLS 1807 kb)


  1. Ayers JC, Dunkle S, Gao S, Miller CF (2002) Constraints on timing of peak and retrograde metamorphism in the Dabie Shan ultrahigh-pressure metamorphic belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chem Geol 186:315–331CrossRefGoogle Scholar
  2. Baker J, Matthews A, Mattey D, Rowley D, Xue F (1997) Fluid-rock interactions during ultra-high pressure metamorphism, Dabie Shan, China. Geochim Cosmochim Acta 61:1685–1696CrossRefGoogle Scholar
  3. BGMRSP (Bureau of Geology and Mineral Resources of Sichuan Province), (1991) Regional geology of Sichuan Province, People’s Republic of China Ministry of Geology and Mineral Resources, Beijing. Geol Mem Ser 1(23):1–730 (in Chinese with English abstract)Google Scholar
  4. Bindeman I (2011) When do we need pan-global freeze to explain 18O-depleted zircons and rocks? Geology 39:799–800CrossRefGoogle Scholar
  5. Bindeman IN, Valley JW (2001) Low-δ 18O rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. J Petrol 42:1491–1517CrossRefGoogle Scholar
  6. Bindeman IN, Fu B, Kita NT, Valley JW (2008a) Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons. J Petrol 49:163–193CrossRefGoogle Scholar
  7. Bindeman I, Gurenko A, Sigmarsson O, Chaussidon M (2008b) Oxygen isotope heterogeneity and disequilibria of olivine crystals in large volume Holocene basalts from Iceland: evidence for magmatic digestion and erosion of Pleistocene hyaloclastites. Geochim Cosmochim Acta 72:4397–4420CrossRefGoogle Scholar
  8. Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by monitoring of a trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140CrossRefGoogle Scholar
  9. Boroughs S, Wolff J, Bonnichsen B, Godchaux M, Larson P (2005) Large-volume, low-δ 18O rhyolites of the central Snake River Plain, Idaho, USA. Geology 33:821–824CrossRefGoogle Scholar
  10. Boroughs S, Wolff JA, Ellis BS, Bonnichsen B, Larson P (2012) Evaluation of models for the origin of Miocene low-δ 18O rhyolites of the Yellowstone/Columbia River Large Igneous Province. Earth Planet Sci Lett 313–314:45–55CrossRefGoogle Scholar
  11. Bowman JR, Moser DE, Valley JW, Wooden JL, Kita NT, Mazdab FK (2011) Zircon U-Pb isotope, δ 18O and trace element response to 80 m.y. of high temperature metamorphism in the lower crust: sluggish diffusion and new records of Archean craton formation. Am J Sci 311:719–772CrossRefGoogle Scholar
  12. Burchfiel BC, Chen ZL, Liu YP, Royden LH (1995) Tectonics of the Longmen Shan and adjacent regions, central China. Int Geol Rev 37:661–735CrossRefGoogle Scholar
  13. Cavosie AJ, Valley JW, Wilde SA, EIMF (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet Sci Lett 235:663–681CrossRefGoogle Scholar
  14. Cavosie AJ, Kita NT, Valley JW (2009) Magmatic zircons from the Mid-Atlantic Ridge: primitive oxygen isotope signature. Am Mineral 94:926–934CrossRefGoogle Scholar
  15. Chen DG, Deloule E, Cheng H, Xia QK, Wu YB (2003) Preliminary study of microscale zircon oxygen isotopes for Dabie-Sulu metamorphic rocks: ion probe in situ analyses. Chinese Sci Bull 48:1670–1678CrossRefGoogle Scholar
  16. Chen DG, Deloule E, Ni T (2006) Metamorphic zircon from Xindian eclogite, Dabie Terrain: U-Pb age and oxygen isotope composition. Sci China (Ser D—Earth Sci) 49: 68–76Google Scholar
  17. Chen RX, Zheng YF, Gong B, Zhao ZF, Gao TS, Chen B, Wu YB (2007) Oxygen isotope geochemistry of ultrahigh-pres sure metamorphic rocks from 200–4000 m core samples of the Chinese Continental Scientific Drilling. Chem Geol 242:51–75CrossRefGoogle Scholar
  18. Chen RX, Zheng YF, Xie LW (2010) Metamorphic growth and recrystallization of zircon: distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in zircons from eclogite-facies rocks in the Sulu orogen. Lithos 114:132–154CrossRefGoogle Scholar
  19. Chen YX, Zheng YF, Chen RX, Zhang SB, Li QL, Dai MN, Chen L (2011) Metamorphic growth and recrystallization of zircons in extremely 18O-depleted rocks during eclogite-facies metamorphism: evidence from U-Pb ages, trace elements, and O–Hf isotopes. Geochim Cosmochim Acta 75:4877–4898CrossRefGoogle Scholar
  20. Cheng H, King RL, Nakamura E, Vervoort JD, Zheng YF, Ota T, Wu YB, Kobayashi K, Zhou ZY (2009) Transitional time of oceanic to continental subduction in the Dabie orogen: constraints from U-Pb, Lu-Hf, Sm-Nd and Ar-Ar multichronometric dating. Lithos 110:327–342CrossRefGoogle Scholar
  21. CIGMR (Chengdu Institute of Geology and Mineral Resources), (2004) Geological map of Tibetan Plateau and Its Vicinity. Chengdu Map Press, Chengdu (in Chinese)Google Scholar
  22. Clayton RN, O’Neil JR, Mayeda TK (1972) Oxygen isotope exchange between quartz and water. J Geophys Res 77:3057–3067CrossRefGoogle Scholar
  23. Cole DR, Chakraborty S (2001) Rates and mechanisms of isotopic exchange. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Mineralogical Society of America/Geochemical Society, Washington, DC. Rev Mineral Geochem 43:83–223Google Scholar
  24. Cole DR, Larson PB, Riciputi LR, Mora CI (2004) Oxygen isotope zoning profiles in hydrothermally altered feldspars: estimating the duration of water-rock interaction. Geology 32:29–32CrossRefGoogle Scholar
  25. Cui JJ, Liu XC, Dong SW, Hu JM (2012) U-Pb and 40Ar/39Ar geochronology of the Tongbai complex, central China: implications for Cretaceous exhumation and lateral extrusion of the Tongbai–Dabie HP/UHP terrane. J Asian Earth Sci 47:155–170CrossRefGoogle Scholar
  26. Dai LQ, Zhao ZF, Zheng YF, Li QL, Yang YH, Dai MN (2011) Zircon Hf-O isotope evidence for crust-mantle interaction during continental deep subduction. Earth Planet Sci Lett 308:229–244CrossRefGoogle Scholar
  27. Davydov VI, Crowley JL, Schmitz MD, Poletaev VI (2010) High-precision U-Pb zircon age calibration of the global Carboniferous time scale and Milankovitch band cyclicity in the Donets Basin, eastern Ukraine. Geochem Geophys Geosyst 11: Q0AA04. doi:10.1029/2009GC002736
  28. Dong YP, Liu XM, Santosh M, Zhang XN, Chen Q, Yang C, Yang Z (2011) Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: constrains from zircon U-Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif. Precambrian Res 189:66–90CrossRefGoogle Scholar
  29. Dong YP, Liu XM, Santosh M, Chen Q, Zhang XN, Li W, He DF, Zhang GW (2012) Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China: constraints from zircon U-Pb geochronology and geochemistry. Precambrian Res 196–197:247–274CrossRefGoogle Scholar
  30. Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Mineralogical Society of America/Geochemical Society, Washington, DC. Rev Mineral Geochem 43:319–364Google Scholar
  31. Fu B, Zheng YF, Wang ZR, Xiao YL, Gong B, Li SG (1999) Oxygen and hydrogen isotope geochemistry of gneisses associated with ultrahigh pressure eclogites at Shuanghe in the Dabie Mountains. Contrib Mineral Petrol 134:52–66CrossRefGoogle Scholar
  32. Fu B, Zheng YF, Touret JLR (2002) Petrological, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China). Chem Geol 187:107–128CrossRefGoogle Scholar
  33. Fu B, Kita NT, Valley JW (2006) Low-δ 18O magmas in the Dabie-Sulu UHP metamorphic terrains (China). Geochim Cosmochim Acta 70(18S): A186 (abstr)Google Scholar
  34. Fu B, Paul B, Cliff J, Bröcker M, Bulle F (2012) O-Hf isotope constraints on the origin of zircon in high-pressure mélange blocks and associated matrix rocks from Tinos and Syros, Greece. Eur J Mineral 24:277–287CrossRefGoogle Scholar
  35. Gao S, Qiu YM, Ling WL, McNaughton NJ, Zhang BR, Zhang G, Zhang Z, Zhong Z, Suo ST (2002) SHRIMP single zircon U-Pb geochronology of eclogites from Yingshan and Xiongdian. Earth Sci 27:558–564 (in Chinese with English abstract)Google Scholar
  36. Gregory RT, Taylor HP Jr (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: evidence for δ 18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755CrossRefGoogle Scholar
  37. Grimes CB, Ushikubo T, John BE, Valley JW (2011) Uniformly mantle-like δ 18O in zircons from oceanic plagiogranites and gabbros. Contrib Mineral Petrol 161:13–33CrossRefGoogle Scholar
  38. Harrison TM, Schmitt AK, McCulloch MT, Lovera OM (2008) Early (≥ 4.5 Ga) formation of terrestrial crust: Lu-Hf, δ 18O, and Ti thermometry results for Hadean zircons. Earth Planet Sci Lett 268:476–486CrossRefGoogle Scholar
  39. Hellstrom J, Paton C, Woodhead J, Hergt J (2008) Iolite: software for spatially resolved LA-(QUAD and MC) ICPMS analysis. Mineralogical association of Canada Short Course series 40. Mineralogical Association of Canada, Vancouver, pp 343–348Google Scholar
  40. Hildreth W, Halliday AN, Christiansen RL (1991) Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone Plateau volcanic field. J Petrol 32:63–138CrossRefGoogle Scholar
  41. Hoefs J (2004) Stable isotope geochemistry, 5th edn. Springer, BerlinCrossRefGoogle Scholar
  42. Hu J, Liu XC, Qu W, Cui JJ (2012) Zircon U-Pb ages of Paleoproterozoic metabasites from the Tongbai Orogen and their geological significance. Acta Geosci Sin 33:305–315 (in Chinese with English abstract)Google Scholar
  43. Huang J, Zheng YF, Zhao ZF, Wu YB, Zhou HB, Liu XM (2006) Melting of subducted continent: element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen. Chem Geol 229:227–256CrossRefGoogle Scholar
  44. Ickert RB, Hiess J, Williams IS, Holden P, Ireland TR, Lanc P, Schram N, Foster JJ, Clement SW (2008) Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chem Geol 257:114–128CrossRefGoogle Scholar
  45. Jahn BM, Wu FY, Lo CH, Tsai CH (1999) Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chem Geol 157:119–146CrossRefGoogle Scholar
  46. Jahn BM, Liu X, Yui TF, Morin N, Bouhnik-Le Coz M (2005) High-pressure/ultrahigh-pressure eclogites from the Hong’an Block, East-Central China: geochemical characterization, isotope disequilibrium and geochronological controversy. Contrib Mineral Petrol 149:499–526CrossRefGoogle Scholar
  47. Jeon H, Williams IS, Chappell BW (2012) Magma to mud to magma: rapid crustal recycling by Permian granite magmatism near the eastern Gondwana margin. Earth Planet Sci Lett 319–320:104–117CrossRefGoogle Scholar
  48. Jian P, Liu DY, Yang WR, Williams IS (2000) Petrographic and SHRIMP studies of zircons from the Caledonian Xiongdian eclogite, northwestern Dabie Mountains. Acta Geol Sin 74:766–773Google Scholar
  49. Jian P, Kröner A, Zhou GZ (2012) SHRIMP zircon U-Pb ages and REE partition for high-grade metamorphic rocks in the North Dabie complex: insight into crustal evolution with respect to Triassic UHP metamorphism in east-central China. Chem Geol 328:49–69CrossRefGoogle Scholar
  50. Kelly J, Fu B, Kita NT, Valley JW (2007) Optically continuous silcrete quartz cements of the St. Peter Sandstone: high precision oxygen isotope analysis by ion microprobe. Geochim Cosmochim Acta 71:3812–3832CrossRefGoogle Scholar
  51. Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315:980–983CrossRefGoogle Scholar
  52. Pidgeon RT, Furfaro D, Kennedy, AK, Nemchin AA, van Bronswjk W (1994) Calibration of zircon standards for the Curtin SHRIMP II. United States Geol Surv Circ 1107: 251 (abstr)Google Scholar
  53. Kita NT, Ushikubo T, Fu B, Valley JW (2009) High precision SIMS oxygen isotope analyses and the effect of sample topography. Chem Geol 264:43–57CrossRefGoogle Scholar
  54. Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic Magma systems, crustal recycling, and alteration in the Central Sierra Nevada Batholith: the oxygen isotope record. J Petrol 49:1397–1426CrossRefGoogle Scholar
  55. Lancaster PJ, Fu B, Page FZ, Kita NT, Bickford ME, Hill BM, McLelland JM, Valley JW (2009) Genesis of metapelitic migmatites in the Adirondack Mts. New York. J Metamorphic Geol 27:41–54CrossRefGoogle Scholar
  56. Leeman WP, Annen C, Dufek J (2008) Snake River Plain—Yellowstone silicic volcanism: implications for magma genesis and magma fluxes. In: Annen C, Zellmer GF (eds) Dynamics of crustal magma transfer, storage and differentiation. Geological Society, London. Spec Publ 304:235–259Google Scholar
  57. Li XP, Zheng YF, Wu YB, Chen FK, Gong B, Li YL (2004) Low-T eclogite in the Dabie terrane of China: petrological and isotopic constraints on fluid activity and radiometric dating. Contrib Mineral Petrol 148:443–470CrossRefGoogle Scholar
  58. Liu FL, Liou JG (2011) Zircon as the best mineral for P-T–time history of UHP metamorphism: a review on mineral inclusions and U–Pb SHRIMP ages of zircons from the Dabie–Sulu UHP rocks. J Asian Earth Sci 40:1–39CrossRefGoogle Scholar
  59. Liu FL, Xu ZQ, Liou JG, Katayama I, Masago H, Maruyama S, Yang JS (2002) Ultrahigh-pressure mineral inclusions in zircons from gneissic core samples of the Chinese Continental Scientific Drilling Site in eastern China. Eur J Mineral 14:499–512CrossRefGoogle Scholar
  60. Liu XC, Jahn BM, Liu DY, Dong SW, Li SZ (2004) SHRIMP U-Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong’an Block), China, and its tectonic implications. Tectonophysics 394:171–192CrossRefGoogle Scholar
  61. Liu DY, Jian P, Kröner A, Xu ST (2006a) Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth Planet Sci Lett 250:650–666CrossRefGoogle Scholar
  62. Liu FL, Gerdes A, Liou JG, Xue HM, Liang FH (2006b) SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. J Metamorphic Geol 24:569–589CrossRefGoogle Scholar
  63. Liu YC, Li SG, Xu ST (2007) Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high T/P metamorphic zone, central China: implications for decoupling within subducted continental crust. Lithos 96:170–185CrossRefGoogle Scholar
  64. Liu XC, Jahn BM, Dong SW, Lou YX, Cui JJ (2008) High-pressure metamorphic rocks from Tongbaishan, central China: U-Pb and 40Ar/39Ar age constraints on the provenance of protoliths and timing of metamorphism. Lithos 105:301–318CrossRefGoogle Scholar
  65. Liu XC, Jahn BM, Cui JJ, Li SZ, Wu YB, Li XH (2010a) Triassic retrograded eclogites and associated gneisses enclosed in Early Cretaceous gneissic granites from the Tongbai Complex, central China: constraints on the architecture of the HP/UHP Tongbai-Dabie-Sulu collision zone. Lithos 119:211–237CrossRefGoogle Scholar
  66. Liu FL, Robinson PT, Gerdes A, Xue HM, Liu PH, Liou JG (2010b) Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China: constraints on the timing and nature of partial melting. Lithos 117:247–268CrossRefGoogle Scholar
  67. Liu XC, Wu YB, Gao S, Wang J, Peng M, Gong HJ, Liu YS, Yuan HL (2011) Zircon U-Pb and Hf evidence for coupled subduction of oceanic and continental crust during the Carboniferous in the Huwan shear zone, western Dabie orogen, central China. J Metamorphic Geol 29:233–249CrossRefGoogle Scholar
  68. Liu FL, Robinson PT, Liu PH (2012) Multiple partial melting events in the Sulu UHP terrane: zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. J Metamorphic Geol 30:887–906CrossRefGoogle Scholar
  69. Ludwig KR (2001a) User’s manual for Isoplot/Ex rev. 2.49: a geochronological toolkit for microsoft excel. Berkeley Geochronological Center special publication no. 1aGoogle Scholar
  70. Ludwig KR (2001b) SQUID 1.02, A user’s manual. Berkeley Geochronological Center special publication no. 2Google Scholar
  71. Martin L, Duchêne S, Deloule E, Vanderhaeghe O (2008) Mobility of trace elements and oxygen in zircon during metamorphism: consequences for geochemical tracing. Earth Planet Sci Lett 267:161–174CrossRefGoogle Scholar
  72. Mattinson JM (2005) Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220:47–66CrossRefGoogle Scholar
  73. Monani S, Valley JW (2001) Oxygen isotope ratios of zircon: magma genesis of low δ 18O granites from the British Tertiary Igneous Province, western Scotland. Earth Planet Sci Lett 184:377–392CrossRefGoogle Scholar
  74. Niedermeier DRD, Putnis A, Geisler T, Golla-Schindler U, Putnis CV (2009) The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions. Contrib Mineral Petrol 157:65–76CrossRefGoogle Scholar
  75. Okay AI, Sengör AMC (1992) Evidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China. Geology 20:411–414CrossRefGoogle Scholar
  76. O’Neil JR, Taylor HP Jr (1967) The oxygen isotope and cation exchange chemistry of feldspars. Am Mineral 52:1414–1437Google Scholar
  77. Page FZ, Ushikubo T, Kita NT, Riciputi LR, Valley JW (2007) High-precision oxygen isotope analysis of picogram samples reveals 2 μm gradients and slow diffusion in zircon. Am Mineral 92:1772–1775CrossRefGoogle Scholar
  78. Page FZ, Kita NT, Valley JW (2010) Ion microprobe analysis of oxygen isotopes in garnets of complex chemistry. Chem Geol 270:9–19CrossRefGoogle Scholar
  79. Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst 11: Q0AA06. doi:10.1029/2009GC002618
  80. Peters TJ, Ayers JC, Gao S, Liu XM (2012) The origin and response of zircon in eclogite to metamorphism during the multi-stage evolution of the Huwan Shear Zone, China: insights from Lu–Hf and U–Pb isotopic and trace element geochemistry. Gondwana Res. doi:10.1016/ (in press)
  81. Roger F, Malavieille J, Leloup PH, Calassou S, Xu Z (2004) Timing of granite emplacement and cooling in the Songpan-Garzê Fold Belt (eastern Tibetan Plateau) with tectonic implications. J Asian Earth Sci 22:465–481CrossRefGoogle Scholar
  82. Rumble D, Yui TF (1998) The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochim Cosmochim Acta 62:3307–3321CrossRefGoogle Scholar
  83. Rumble D, Giorgis D, Ireland T, Zhang ZM, Xu HF, Yui TF, Yang JS, Xu ZQ, Liou JG (2002) Low δ 18O zircons, U-Pb dating, and the age of the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochim Cosmochim Acta 66:2299–2306CrossRefGoogle Scholar
  84. Russell AK, Kitajima K, Strickland A, Medaris LG Jr., Schulze DJ, Valley JW (2012) Eclogite-facies fluid infiltration: constraints from δ 18O zoning in garnet. Contrib Mineral Petrol. doi:10.1007/s00410-012-0794-9 (in press)
  85. Savov IP, Leeman WP, Lee CTA, Shirey SB (2009) Boron isotopic variations in NW USA rhyolites: Yellowstone, Snake River Plain, Eastern Oregon. J Volcan Geotherm Res 188:162–172CrossRefGoogle Scholar
  86. Sheng YM, Zheng YF, Chen RX, Li QL, Dai MN (2012) Fluid action on zircon growth and recrystallization during quartz veining within UHP eclogite: insights from U-Pb ages, O–Hf isotopes and trace elements. Lithos 136–139:126–144CrossRefGoogle Scholar
  87. Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN, Whitehouse MJ (2008) Plešovice zircon: a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249:1–35CrossRefGoogle Scholar
  88. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Let 26:207–221CrossRefGoogle Scholar
  89. Stuart FM, Ellam RM, Harrop PJ, Fitton JG, Bell BR (2000) Constraints on mantle plumes from the helium isotopic composition of basalts from the British Tertiary Igneous Province. Earth Planet Sci Lett 177:273–285CrossRefGoogle Scholar
  90. Sun WD, Williams IS, Li SG (2002) Carboniferous and Triassic eclogites in the western Dabie Mountains, east-central China: evidence for protracted convergence of the North and South China Blocks. J Metamorphic Geol 20:873–886CrossRefGoogle Scholar
  91. Sun M, Chen NS, Zhao GC, Wilde SA, Ye K, Guo JH, Chen Y, Yuan C (2008) U-Pb zircon and Sm-Nd isotopic study of the Huangtuling granulite, Dabie-Sulu belt, China: implication for the Paleoproterozoic tectonic history of the Yangtze craton. Am J Sci 308:469–483CrossRefGoogle Scholar
  92. Tang J, Zheng YF, Wu YB, Gong B, Liu XM (2007) Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: constraints on its tectonic affinity in the Sulu orogen. Precambrian Res 152:48–82CrossRefGoogle Scholar
  93. Tang J, Zheng YF, Gong B, Wu YB, Gao TS, Yuan HL, Wu FY (2008a) Extreme oxygen isotope signature of meteoric water in magmatic zircon from metagranite in the Sulu Orogen, China: implications for Neoproterozoic rift magmatism. Geochim Cosmochim Acta 72:3139–3169CrossRefGoogle Scholar
  94. Tang J, Zheng YF, Wu YB, Gong B, Zha XP, Liu XM (2008b) Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Res 161:389–418CrossRefGoogle Scholar
  95. Taylor HP Jr (1986) Igneous rocks: II. isotopic case studies of circumpacific magmatism. In: Valley JW, Taylor HP Jr, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Mineralogical Society of America, Washington, DC. Rev Mineral 16:273–317Google Scholar
  96. Thirlwall MF, Gee MAM, Lowry D, Mattey DP, Murton BJ, Taylor RN (2006) Low δ 18O in the Icelandic mantle and its origins: evidence from Reykjanes Ridge and Icelandic lavas. Geochim Cosmochim Acta 70:993–1019CrossRefGoogle Scholar
  97. Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB, Young ED (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem Geophys Geosyst 8:Q06014. doi:10.1029/2006GC001449 CrossRefGoogle Scholar
  98. Trail D, Bindeman IN, Watson EB, Schmitt AK (2009) Experimental calibration of oxygen isotope fractionation between quartz and zircon. Geochim Cosmochim Acta 73:7110–7126CrossRefGoogle Scholar
  99. Valley JW (2001) Stable isotope thermometry at high temperatures. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Mineralogical Society of America/Geochemical Society, Washington, DC. Rev Mineral Geochem 43:365–413Google Scholar
  100. Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Mineralogical Society of America/Geochemical Society, Washington, DC. Rev Mineral Geochem 53:343–385Google Scholar
  101. Valley JW, Chiarenzelli JR, McLelland JM (1994) Oxygen isotope geochemistry of zircon. Earth Planet Sci Lett 126:187–206CrossRefGoogle Scholar
  102. Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231CrossRefGoogle Scholar
  103. Valley JW, Bindeman IN, Peck WH (2003) Empirical calibration of oxygen isotope fractionation in zircon. Geochim Cosmochim Acta 67:3257–3266CrossRefGoogle Scholar
  104. Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561–580CrossRefGoogle Scholar
  105. Vielzeuf D, Champenois M, Valley JW, Brunet F, Devidal JL (2005) SIMS analysis of oxygen isotopes: matrix effects in Fe-Mg-Ca garnets. Chem Geol 223:208–226CrossRefGoogle Scholar
  106. Wallis S, Tsuboi M, Suzuki K, Fanning M, Jiang LL, Tanaka T (2005) Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology 33:129–132CrossRefGoogle Scholar
  107. Wang XC, Li ZX, Li XH, Li QL, Tang GQ, Zhang QR, Liu Y (2011a) Nonglacial origin for low-δ 18O Neoproterozoic magmas in the South China Block: evidence from new in-situ oxygen isotope analysis using SIMS. Geology 39:735–738CrossRefGoogle Scholar
  108. Wang H, Wu YB, Gao S, Zhang HF, Liu XC, Gong HJ, Peng M, Wang J, Yuan HL (2011b) Silurian granulite-facies metamorphism, and coeval magmatism and crustal growth in the Tongbai orogen, central China. Lithos 125:249–271CrossRefGoogle Scholar
  109. Wang XC, Li XH, Li ZX, Li QL, Tang GQ, Gap YY, Zhang QR, Liu Y (2011c) Episodic Precambrian crust growth: evidence from U-Pb ages and Hf-O isotopes of zircon in the Nanhua Basin, central South China. Precambrian Res. doi:10.1016/j.precamres.2011.06.001 (in press)
  110. Watson EB, Cherniak DJ (1997) Oxygen diffusion in zircon. Earth Planet Sci Lett 148:527–544CrossRefGoogle Scholar
  111. Watts KE, Bindeman IN, Schmitt AK (2011) Large-volume rhyolite genesis in caldera complexes of the Snake River Plain: insights from the Kilgore Tuff of the Heise Volcanic Field, Idaho, with comparison to Yellowstone and Bruneau–Jarbidge rhyolites. J Petrol 52:857–890CrossRefGoogle Scholar
  112. Watts KE, Bindeman IN, Schmitt AK (2012) Crystal scale anatomy of a dying supervolcano: an isotope and geochronology study of individual phenocrysts from voluminous rhyolites of the Yellowstone caldera. Contrib Mineral Petrol 164:45–67CrossRefGoogle Scholar
  113. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newslett 19:1–23CrossRefGoogle Scholar
  114. Williams IS (1998) U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks III WC, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Society of Economic Geologists, Littleton. Rev Econom Geol 7:1–35Google Scholar
  115. Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R (2004) Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem Geol 209:121–135CrossRefGoogle Scholar
  116. Woodhead J, Hellstrom J, Hergt J, Greig A, Maas R (2007) Isotopic and elemental imaging of geological materials by laser ablation Inductively Coupled Plasma mass spectrometry. J Geostand Geoanal Res 31:331–343Google Scholar
  117. Wu YB, Zheng YF, Zhao ZF, Gong B, Liu XM, Wu FY (2006) U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochim Cosmochim Acta 70:3743–3761CrossRefGoogle Scholar
  118. Wu YB, Zheng YF, Tang J, Gong B, Zhao ZF, Liu XM (2007) Zircon U-Pb dating of water–rock interaction during Neoproterozoic rift magmatism in South China. Chem Geol 246:65–86CrossRefGoogle Scholar
  119. Wu YB, Gao S, Zhang HF, Yang SH, Jiao WF, Liu YS, Yuan HL (2008a) Timing of UHP metamorphism in the Hong’an area, western Dabie Mountains, China: evidence from zircon U-Pb age, trace element and Hf isotope composition. Contrib Mineral Petrol 155:123–133CrossRefGoogle Scholar
  120. Wu YB, Zheng YF, Gao S, Jiao WF, Liu YS (2008b) Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos 101:308–322CrossRefGoogle Scholar
  121. Wu YB, Hanchar JM, Gao S, Sylvester PJ, Tubrett M, Qiu HN, Wijbrans JR, Brower FM, Yang SH, Yang QJ, Liu YS, Yuan HL (2009) Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China. Earth Planet Sci Lett 277:345–354CrossRefGoogle Scholar
  122. Xia QK, Deloule E, Wu YB, Chen DG, Cheng H (2002) Oxygen isotopic compositions of zircons from pyroxenite of Daoshichong, Dabieshan: implications for crust-mantle interaction. Chinese Sci Bull 47:1466–1469CrossRefGoogle Scholar
  123. Xia QX, Zheng YF, Zhou LG (2008) Dehydration and melting during continental collision; constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie Orogen. Chem Geol 247:36–65CrossRefGoogle Scholar
  124. Xia QX, Zheng YF, Yuan HL, Wu FY (2009) Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranite in the Dabie orogen, China. Lithos 112:477–496CrossRefGoogle Scholar
  125. Xia QX, Zheng YF, Hu ZC (2010) Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen: implications for action of supercritical fluid during continental subduction-zone metamorphism. Lithos 114:385–412CrossRefGoogle Scholar
  126. Xiao YL, Hoefs J, van den Kerkhof AM, Li SG (2001) Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan, China. J Metamorphic Geol 19:3–19CrossRefGoogle Scholar
  127. Xiao YL, Hoefs J, van den Kerkhof AM, Simon K, Fiebig J, Zheng YF (2002) Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: constraints from mineral chemistry, fluid inclusions and stable isotopes. J Petrol 43:1505–1527CrossRefGoogle Scholar
  128. Xiao YL, Zhang ZM, Hoefs J, van den Kerkhof A (2006) Ultrahigh pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project; II, Oxygen isotope and fluid inclusion distributions through vertical sections. Contrib Mineral Petrol 152:443–458CrossRefGoogle Scholar
  129. Xie Z, Zheng YF, Zhao ZF, Wu YB, Wang ZR, Chen JF, Liu XM, Wu FY (2006) Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen. Chem Geol 231:214–235CrossRefGoogle Scholar
  130. Yan DP, Zhou MF, Wei GQ, Gao JF, Liu SF, Xu P, Shi XY (2008) The Pengguan tectonic dome of Longmen Mountains, Sichuan Province: Mesozoic denudation of a Neoproterozoic magmatic arc-basin system. Sci China (Series D, Earth Sci) 51:1545–1559Google Scholar
  131. Ye K, Yao YP, Katayama I, Cong BL, Wang QC, Maruyama S (2000) Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: new implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos 52:157–164CrossRefGoogle Scholar
  132. Yui TF, Rumble D III, Lo CH (1995) Unusually low δ 18O ultra-high-pressure metamorphic rocks from the Su-Lu Terrain, eastern China. Geochim Cosmochim Acta 59:2859–2864CrossRefGoogle Scholar
  133. Zhang SB, Zheng YF, Zhao ZF, Wu YB, Yuan HL, Wu FY (2008) Neoproterozoic anatexis of Archean lithosphere: geochemical evidence from felsic to mafic intrusives at Xiaofeng in the Yangtze George, South China. Precambrian Res 163:210–238CrossRefGoogle Scholar
  134. Zhang SB, Zheng YF, Zhao ZF, Wu YB, Yuan HL, Wu FY (2009) Origin of TTG-like rocks from anatexis of ancient lower crust: geochemical evidence from Neoproterozoic granitoids in South China. Lithos 113:347–368CrossRefGoogle Scholar
  135. Zhao ZF, Zheng YF (2002) Calculation of oxygen isotope fractionation in magmatic rocks. Chem Geol 193:59–80CrossRefGoogle Scholar
  136. Zhao ZF, Zheng YF, Wei CS, Wu YB (2004) Zircon isotope evidence for recycling of subducted continental crust in post-collisional granitoids from the Dabie terrane in China. Geophys Res Lett 31: L22602 1–4Google Scholar
  137. Zhao ZF, Zheng YF, Wei CS, Wu YB, Chen FK, Jahn BM (2005) Zircon U-Pb age, element and C-O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos 83:1–28CrossRefGoogle Scholar
  138. Zhao ZF, Zheng YF, Wei CS, Wu YB (2007) Post-collisional granitoids from the Dabie orogen in China: zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos 93:248–272CrossRefGoogle Scholar
  139. Zhao ZF, Zheng YF, Zhang J, Dai LQ, Li QL, Liu XM (2012) Syn-exhumation magmatism during continental collision: evidence from alkaline intrusives of Triassic age in the Sulu orogen. Chem Geol 328:70–88CrossRefGoogle Scholar
  140. Zheng YF (1993a) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta 57:1079–1091CrossRefGoogle Scholar
  141. Zheng YF (1993b) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett 120:247–263CrossRefGoogle Scholar
  142. Zheng YF, Fu B, Gong B, Li S (1996) Extreme 18O depletion in eclogite from the Su-Lu terrane in East China. Eur J Mineral 8:317–323Google Scholar
  143. Zheng YF, Fu B, Gong B, Xiao YL, Wei CS, Li SG (1998a) Oxygen isotope constraints on fluid flow during eclogitization in the Sulu terrane. Prog Nat Sci 8:98–105Google Scholar
  144. Zheng YF, Fu B, Li YL, Xiao YL, Li SG (1998b) Oxygen and hydrogen isotope geochemistry of ultrahigh pressure eclogites from the Dabie Mountains and the Sulu terrane. Earth Planet Sci Lett 155:113–129CrossRefGoogle Scholar
  145. Zheng YF, Fu B, Xiao YL, Li YL, Gong B (1999) Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre- and post-UHP metamorphism in the Dabie Mountains. Lithos 46:677–693CrossRefGoogle Scholar
  146. Zheng YF, Fu B, Gong B, Li L (2003) Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth–Sci Rev 62: 105–161Google Scholar
  147. Zheng YF, Wu YB, Chen FK, Gong B, Li L, Zhao ZF (2004) Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim Cosmochim Acta 68:4145–4165CrossRefGoogle Scholar
  148. Zheng YF, Wu YB, Gong B, Chen RX, Tang J, Zhao ZF (2007a) Tectonic driving of Neoproterozoic glaciations: evidence from extreme oxygen isotope signature of meteoric water in granite. Earth Planet Sci Lett 256:196–210CrossRefGoogle Scholar
  149. Zheng YF, Zhang SB, Zhao ZF, Wu YB, Li XH, Li ZX, Wu FY (2007b) Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos 96:127–150CrossRefGoogle Scholar
  150. Zheng YF, Gong B, Zhao ZF, Wu YB, Chen FK (2008) Zircon U-Pb age and O isotope evidence for Neoproterozoic low-δ 18O magmatism during supercontinental rifting in South China: implications for the snowball Earth event. Am J Sci 308:484–516CrossRefGoogle Scholar
  151. Zheng YF, Chen RX, Zhao ZF (2009) Chemical geodynamics of continental subduction-zone metamorphism: insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics 475:327–358CrossRefGoogle Scholar
  152. Zhou MF, Yan DP, Kennedy AK, Li YQ, Ding J (2002) SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci Lett 196:51–67CrossRefGoogle Scholar
  153. Zhou MF, Yan DP, Wang CL, Qi L, Kennedy AK (2006) Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth Planet Sci Lett 248:286–300CrossRefGoogle Scholar
  154. Zhou JB, Wilde SA, Zhao GC, Zheng CQ, Jin W, Zhang XZ, Cheng H (2008) SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications. Precambrian Res 160:323–340CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bin Fu
    • 1
  • Noriko T. Kita
    • 2
  • Simon A. Wilde
    • 3
  • Xiaochun Liu
    • 4
  • John Cliff
    • 5
  • Alan Greig
    • 1
  1. 1.School of Earth SciencesThe University of MelbourneParkvilleAustralia
  2. 2.WiscSIMS, Department of GeoscienceUniversity of WisconsinMadisonUSA
  3. 3.Department of Applied GeologyCurtin UniversityPerthAustralia
  4. 4.Institute of GeomechanicsChinese Academy of Geological SciencesBeijingPeople’s Republic of China
  5. 5.Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaCrawleyAustralia

Personalised recommendations