Contributions to Mineralogy and Petrology

, Volume 165, Issue 3, pp 601–622 | Cite as

Formation of U-depleted rhyolite from a basanite at El Hierro, Canary Islands

  • Olgeir Sigmarsson
  • Didier Laporte
  • Marion Carpentier
  • Bertrand Devouard
  • Jean-Luc Devidal
  • Joan Marti
Original Paper


Phonolite and trachyte are the felsic magmas of the alkaline magma suites, which characterize the Canary Islands. The October 2011 submarine eruption off El Hierro, the westernmost island, nevertheless, produced a small volume of rhyolitic magma. The rhyolite occurred as highly vesicular, white coloured pumices enveloped in and mingled with darker coloured basanitic pumice. The basanitic pumice is relatively crystal poor with a few euhedral olivines (mostly Fo77–79), clinopyroxenes and Fe-rich spinels, whereas very rare olivine of same composition is found together with equally rare Fe-sulphide and FeTi-rich oxides in the rhyolite. The Fe–Mg exchange equilibrium in the oxides permits to calculate an equilibrium temperature of 970–890 °C for the rhyolite, in agreement with quartz-melt equilibrium at ca. 930 °C. A striking mineralogical feature of the rhyolite is the presence of rounded to contorted grains of milky quartz, which are xenocrysts incorporated and partly dissolved into the magma. Analyses of residual volatile concentrations in the glasses show that the rhyolite melt was highly degassed, whereas the basanitic glass still has important halogen concentrations. Trace element patterns of the mafic glasses and their elevated incompatible element concentrations are typical of the western Canary Island basanites. In contrast, the trace element composition of the rhyolite shows surprisingly low concentrations for all elements except the most incompatible ones (e.g. Rb, Ba, K and Th). All other measured LILE, HFSE and REE have significantly lower concentration than the basanitic counterpart that can be explained by fractionation of accessory phases (1 % apatite, 1 % sphene and 0.1 % zircon). Surprisingly, low U concentration is presumably related to elevated oxygen fugacity in the rhyolite, causing U to be in a hexavalent state, and fluxing of F-rich gas leading to volatilization of UF6, known to emanate at low temperature. The results suggest that a gas-rich basanitic melt remobilized a small volume of stagnant rhyolitic melt formed by incorporation of approximately 10 % quartz-rich sediment into a late differentiate of trachytic composition. Sediments at the interface of an old oceanic crust adjacent to a continental shield and younger volcanic island are likely to act as magma traps were sediment assimilation may alter the mantle-derived magma composition. Quartz assimilation thus explains the production of rhyolite magma in a volcanic island characterized by an alkaline magma series from primitive basanites to trachytes.


El Hierro Quartz Magma series Oxygen fugacity Accessory phases U volatilization 



Carmen López and the IGN group are thanked for providing the samples for this study. We are grateful to the efficient analytical assistance from Chantal Bosq, Hanika Rizo, Nicolas Cluzel, Mahmed Benbakkar, Jean-Luc Piro and Philippe Teluk. Constructive comments by Fidel Costa and an anonymous reviewer significantly improved the paper. Analytical costs were covered by financial support from the Agence Nationale de la Recherche (DEGAZMAG project, contract no. ANR 2011 Blanc SIMI 5-6 003). This is the Laboratory of Excellence “ClerVolc” contribution number 45.

Supplementary material

410_2012_826_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1591 kb)
410_2012_826_MOESM2_ESM.xls (54 kb)
Supplementary material 2 (XLS 53 kb)


  1. Abouchami W, Galer SJG, Koschinsky A (1999) Pb and Nd isotopes in NE Atlantic Fe–Mn crusts: proxies for trace metal paleosources and paleocean circulation. Geochim Cosmochim Acta 63:1489–1505CrossRefGoogle Scholar
  2. Aléon J, Chaussidon M, Marty B, Schutz L, Jaenicke R (2002) Oxygen isotopes in single micrometer-sized quartz grains: tracing the source of Saharan dust over long-distance atmospheric transport. Geochim Cosmochim Acta 66:3351–3365CrossRefGoogle Scholar
  3. Anderson AT (1976) Magma mixing: petrological process and volcanological tool. J Volcanol Geotherm Res 1:3–33CrossRefGoogle Scholar
  4. Anderson AT, Swihart GH, Artioli G, Geiger CA (1984) Segregation vesicles, gas filter- pressing, and igneous differentiation. J Geol 92:55–72CrossRefGoogle Scholar
  5. Aparicio A, Bustillo MA, Garcia R, Araña V (2006) Metasedimentary xenoliths in the lavas of the Timanfaya eruption (1,730–1,736, Lanzarote, Canary Islands): metamorphism and contamination processes. Geol Mag 143:181–193CrossRefGoogle Scholar
  6. Araña V, Bustillo MA (1992) Volcanological concerns of the silicieous metasedimentary xenoliths included in historic lava flows of Lanzarote (Canary Islands). Acta Vulcanol 2:1–6Google Scholar
  7. Araña V, Ibarrola E (1973) Rhyolitic pumice in the basaltic pyroclasts from the 1971 eruption of Teneguía volcano, Canary Islands. Lithos 6:273–278CrossRefGoogle Scholar
  8. Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between Fe–Ti oxides. Am Min 73:57–61Google Scholar
  9. Balcone-Boissard H, Villemant B, Boudon G (2010) Behavior of halogens during the degassing of felsic magma. Geochem Geophys Geosyst. doi: 10.1029/2010GC003028 Google Scholar
  10. Bali E, Audétat A, Keppler H (2011) The mobility of U and Th in subduction zone fluids: an indicator of oxygen fugacity and fluid salinity. Contrib Mineral Petrol 161:597–613CrossRefGoogle Scholar
  11. Bindeman IN (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Min Geochem 69:445–478CrossRefGoogle Scholar
  12. Blundy J, Cashman K (2001) Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986. Contrib Min Petrol 140:631–650CrossRefGoogle Scholar
  13. Bowen NL (1956) The evolution of the igneous rocks. Dover Publications, New YorkGoogle Scholar
  14. Brickwedde FG, Hoge HJ, Scott RB (1948) The low temperature heat capacities, enthalpies, and entropies of UF4 and UF6. J Chem Phys 16:429–436CrossRefGoogle Scholar
  15. Bryan SE (2006) Petrology and geochemistry of the quaternary caldera-forming, phonolitic Granadilla eruption, Tenerife (Canary Islands). J Pet 47:1557–1589CrossRefGoogle Scholar
  16. Bryan SE, Marti J, Leosson M (2002) Petrology and geochemistry of the Bandas del Sur Formation, Las Canadas Edifice, Tenerife (Canary Islands). J Pet 43:1815–1846CrossRefGoogle Scholar
  17. Bustillo MA, Nishimura A, Araña V, Hattori I (1994) Paleocene radiolarians from xenoliths hosted in Holocene lavas of Lanzarote (Canary Islands). Geobios 27:181–188CrossRefGoogle Scholar
  18. Cabane H, Laporte D, Provost A (2001) Experimental investigation of the kinetics of Ostwald ripening of quartz in silicic melts. Contrib Min Petrol 142:361–373CrossRefGoogle Scholar
  19. Cabane H, Laporte D, Provost A (2005) An experimental study of Ostwald ripening of olivine and plagioclase in silicate melts: implications for the growth and size of crystals in magmas. Contrib Min Petrol 150:37–53CrossRefGoogle Scholar
  20. Carracedo J-C, Rodríguez Badiola E, Guillou H, De La Nuez J, Perez Torrado FJ (2001) Geology and volcanology of La Palma and El Hierro (Canary Islands). Estudios Geologicos 57:175–273CrossRefGoogle Scholar
  21. Carracedo J-C, Perez Torrado FJ, Rodríguez-Gonzalez A, Fernandez-Turiel J-L, Troll VR, Klügel A, Wiesmaier S (2012) The ongoing volcanic eruption of El Hierro, Canary Islands. EOS 93:89–90CrossRefGoogle Scholar
  22. Cashman KV, Mangan MT (1994) Physical aspects of magmatic degassing II. Constraints on vesiculation processes from textural studies of eruptive products. Rev Min Geochem 30:447–478Google Scholar
  23. Chapman SL, Syers JK, Jackson ML (1969) Quantitative determination of quartz in soils, sediments and rocks by pyrosulfate fusion and hydrofluorosilicic acid treatment. Soil Sci 107:348–355CrossRefGoogle Scholar
  24. Chauvel C, Bureau S, Poggi C (2011) Comprehensive chemical and isotopic analyses of basalt and sediment reference materials. Geostand Geoanalyt Res 35:125–143CrossRefGoogle Scholar
  25. Chen C-Y, Frey FA (1983) Origin of Hawaiian tholeiite and alkalic basalt. Nature 302:785–789CrossRefGoogle Scholar
  26. Cluzel N, Laporte D, Provost A, Kannewischer I (2008) Kinetics of heterogeneous bubble nucleation in rhyolitic melts: implications for the number density of bubbles in volcanic conduits and for pumice textures. Contrib Min Petrol 156:745–763CrossRefGoogle Scholar
  27. Cole JM, Goldstein SL, deMenocal PB, Hemming SR, Grousset FE (2009) Contrasting compositions of Saharan dust in the eastern Atlantic Ocean during the last deglaciation and African Humid Period. Earth Planet Sci Lett 278:257–266CrossRefGoogle Scholar
  28. Colombini LL, Miller CF, Gualda GAR, Wooden JL, Miller JS (2011) Sphene and zircon in the Highland range volcanic sequence (Miocene, southern Nevada, USA: elemental partitioning, phase relations, and influence on evolution of silicic magma. Min Petrol 102:29–50CrossRefGoogle Scholar
  29. Condomines M, Gauthier P-J, Sigmarsson O (2003) Timescales of magma chamber processes and dating of young volcanic rocks. Rev Min Geochem 52:125–174CrossRefGoogle Scholar
  30. Costa F, Dohmen R, Chakraborty S (2008) Time scales of magmatic processes from modeling the zoning patterns of crystals. Rev Min Geochem 69:545–594CrossRefGoogle Scholar
  31. Criado C, Dorta P (2003) An unusual “blood rain” over the Canary Islands (Spain). The storm of January 1999. J Arid Environ 55:765–783CrossRefGoogle Scholar
  32. David K, Frank M, O’Nions RK, Belshaw NS, Arden JW (2001) The Hf isotope composition of global seawater and the evolution of Hf isotopes in the deep Pacific Ocean from Fe-Mn crusts. Chem Geol 178:23–42CrossRefGoogle Scholar
  33. Day JMD, Pearson DG, Macpherson CG, Lowry D, Carracedo JC (2010) Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochim Cosmochim Acta 74:6565–6589CrossRefGoogle Scholar
  34. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Min Mag 51:431–435CrossRefGoogle Scholar
  35. Farges F, Ponader CW, Calas G, Brown GE Jr (1992) Structural environments of incompatible elements in silicate glass/melt systems: II. UIV, UV, and UVI. Geochim Cosmochim Acta 56:4205–4220CrossRefGoogle Scholar
  36. Faure F, Trolliard G, Nicollet C, Montel J-M (2003) A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib Min Petrol 145:251–263CrossRefGoogle Scholar
  37. Freundt A, Schmincke H-U (1995) Petrogenesis of rhyolite-trachyte-basalt composite ignimbrite P1, Gran Canaria, Canary Islands. J Geophys Res 100:455–474CrossRefGoogle Scholar
  38. Georgiopoulou A, Wynn RB, Masson DG, Frenz M (2009) Linked turbidite-debrite resulting from recent Sahara Slide headwall reactivation. Mar Pet Geol 26:2021–2031CrossRefGoogle Scholar
  39. Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe–Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039CrossRefGoogle Scholar
  40. Glazner AF, Coleman DS, Bartley JM (2008) The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology 36:183–186CrossRefGoogle Scholar
  41. Goldstrand PM (1998) Provenance and sedimentologic variations of turbidite and slump deposits at sites 955 and 956. In: Weaver PPE, et al. (Eds) Proceedings of the Ocean drilling program, scientific results, Vol 157, pp 343–360Google Scholar
  42. Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Min Petrol 15:103–190CrossRefGoogle Scholar
  43. Gutzmer J, Pack A, Lüders V, Wilkinson JJ, Beukes NJ, van Niekerk HS (2001) Formation of jasper and andradite during low-temperature hydrothermal seafloor metamorphism, Ongeluk formation, South Africa. Contrib Min Petrol 142:27–42CrossRefGoogle Scholar
  44. Hammer JE, Cashman KV, Hoblitt RP, Newman S (1999) Degassing and microlite crystallization during pre-climactic events of the 1991 eruption of Mt. Pinatubo, Philippines. Bull Volcanol 60:355–380CrossRefGoogle Scholar
  45. Hansteen TH, Troll VR (2003) Oxygen isotope composition of xenoliths from the oceanic crust and volcanic edifice beneath Gran Canaria (Canary Islands): consequences for crustal contamination of ascending magmas. Chem Geol 193:181–193CrossRefGoogle Scholar
  46. Herzig PM, Becker KP, Stoffers P, Bäcker H, Blum N (1988) Hydrothermal silica chimney fields in the Galapagos Spreading Center at 86 W. Earth Planet Sci Lett 89:261–272CrossRefGoogle Scholar
  47. Hirschmann MM, Kosigo T, Baker MB, Stolper EM (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31:481–484CrossRefGoogle Scholar
  48. Hoernle K (1998) Geochemistry of Jurassic Oceanic Crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation. J Pet 39:859–880CrossRefGoogle Scholar
  49. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314CrossRefGoogle Scholar
  50. Holtz F, Pichavant M, Barbey P, Johannes W (1992) Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar. Amer Min 77:1223–1241Google Scholar
  51. Jansa L, Gardner JV, Dean WE (1977) Mesozoic sequence of the Central North Atlantic. In: Lancelot Y et al (eds) Initial reports of the deep sea drilling project, 41. US Government Printing Office, Washington, pp 991–1010Google Scholar
  52. Jeandel C, Arsouze T, Lacan F, Téchiné P, Dutay JC (2007) Isotopic Nd compositions and concentrations of the lithogenic inputs into the ocean: a compilation, with an emphasis on the margins. Chem Geol 239:156–164CrossRefGoogle Scholar
  53. Jutzeler A, Schmincke H-U, Sumita M (2010) The incrementally zoned Miocene Ayagaures ignimbrite (Gran Canaria, Canary Islands). J Volcanol Geotherm Res 196:1–19CrossRefGoogle Scholar
  54. Kennedy GC, Wasserburg GJ, Heard HC, Newton RC (1962) The upper three-phase region in the system SiO2-H2O. Am J Sci 260:501–521CrossRefGoogle Scholar
  55. Klügel A (1998) Reactions between mantle xenoliths and host magma beneath La Palma (Canary Islands): constraints on magma ascent rates and crustal reservoirs. Contrib Min Petrol 131:237–257CrossRefGoogle Scholar
  56. Krastel S, Schmincke H-U (2002) Crustal structure of northern Gran Canaria, Canary Islands, deduced from active seismic tomography. J Volcanol Geotherm Res 115:153–177CrossRefGoogle Scholar
  57. Kuo L-C, Kirkpatrick RJ (1985) Kinetics of crystal dissolution in the system diopside-forsterite-silica. Am J Sci 285:51–90CrossRefGoogle Scholar
  58. Lancelot Y, Seibold E et al (1977) Initial reports of the Deep Sea Drilling Project, 41. US Government Printing Office, WashingtonGoogle Scholar
  59. Lancelot Y, Winterer EL et al (1980) Initial reports of the Deep Sea Drilling Project, 50. US Government Printing Office, WashingtonCrossRefGoogle Scholar
  60. Laporte D (1994) Wetting behavior of partial melts during crustal anatexis: the distribution of hydrous silicic melts in polycrystalline aggregates of quartz. Contrib Min Petrol 116:486–499CrossRefGoogle Scholar
  61. Manning DAC (1981) The effect of fluorine on liquidus phase relationships in the system Qz–Ab–Or with excess water at I kbar. Contrib Min Petrol 76:206–215CrossRefGoogle Scholar
  62. Marks MAW, Coulson IM, Schilling J, Jacob DE, Schmitt AK, Gregor Markl G (2008) The effect of titanite and other HFSE-rich mineral (Ti-bearing andradite, zircon, eudialyte) fractionation on the geochemical evolution of silicate melts. Chem Geol 257:153–172CrossRefGoogle Scholar
  63. Marsh B, Teplow W, Reagan M, Sims K (2008) Puna Dacite: likely temperature, viscosity, origin, size, and parent body nature. EOS V 23A:2130Google Scholar
  64. Martin E, Sigmarsson O (2007a) Geographical variations of silicic magma origin in Iceland: the case of Torfajökull, Ljósufjöll and Snæfellsjökull volcanoes. Contrib Min Petrol 153:593–605CrossRefGoogle Scholar
  65. Martin E, Sigmarsson O (2007b) Low-pressure differentiation of tholeiitic lavas as recorded in segregation veins from Reykjanes (Iceland), Lanzarote (Canary Islands) and Masaya (Nicaragua). Contrib Min Petrol 154:559–573CrossRefGoogle Scholar
  66. Meyer I, Davies GR, Stuut J-BW (2011) Grain size control on Sr–Nd isotope provenance studies and impact on paleoclimate reconstructions: an example from deep-sea sediments offshore NW Africa. Geochem Geophys Geosyst. doi: 10.1029/2010GC003355 Google Scholar
  67. Monroe EA (1964) Electron optical observation of fine-grained silica minerals. Am Min 49:339–347Google Scholar
  68. Nekvasil H (1988) Calculated effect of anorthite component on the crystallization paths of H2O-undersaturated haplogranitic melts. Am Min 73:966–981Google Scholar
  69. Ostrovsky IA (1966) PT-diagram of the system SiO2-H2O. Geol J 5:127–134CrossRefGoogle Scholar
  70. Parat F, Holtz F, Klügel A (2011) S-rich apatite-hosted glass inclusion in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas. Contrib Min Petrol 162:463–478CrossRefGoogle Scholar
  71. Pellicer MJ (1979) Geochemical study of volcanism on Hierro, Canary Islands. Estud Geologicos 35:15–29Google Scholar
  72. Pichavant M (1987) Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar. Amer Min 72:1056–1070Google Scholar
  73. Pin C, Zalduegui JFS (1997) Sequential separation of light rare-earth element, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chim Acta 339:79–89CrossRefGoogle Scholar
  74. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394CrossRefGoogle Scholar
  75. Price I, Lane M (1980) Provenance of the Jurassic-Cretaceous flysch, Deep Sea Drilling Project Sites 370 and 416. In: Lancelot Y (ed) Initial reports of the Deep Sea Drilling Project, 50. US Government Printing Office, Washington, pp 751–757Google Scholar
  76. Prowatke S, Klemme S (2006a) Trace element partitioning between apatite and silicate melts. Geochim Cosmochim Acta 70:4513–4527CrossRefGoogle Scholar
  77. Prowatke S, Klemme S (2006b) Rare earth element partitioning between titanite and silicate melts: Henry’s law revisited. Geochim Cosmochim Acta 70:4997–5012CrossRefGoogle Scholar
  78. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Min Geochem 69:61–120CrossRefGoogle Scholar
  79. Reynolds BC, Frank M, O’Nions RK (1999) Nd- and Pb-isotope time series from Atlantic ferromanganese crusts: implications for changes in provenance and paleocirculation over the last 8 Myr. Earth Planet Sci Lett 173:381–396CrossRefGoogle Scholar
  80. Rickli J, Frank M, Baker AR, Aciego S, de Souza G, Georg RB, Halliday AN (2010) Hafnium and neodymium isotopes in surface waters of the eastern Atlantic Ocean: implications for sources and inputs of trace metals to the ocean. Geochim Cosmochim Acta 74:540–557CrossRefGoogle Scholar
  81. Sanchez Guzman J, Abad J (1986) Sondeo geotérmico Lanzarote-1, significado geológico y geotérmico. Anales de física, Serie B: Aplicaciones, métodos e instrumentos 82:102–109Google Scholar
  82. Sano Y, Terada K, Fukuoka T (2002) High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem Geol 184:217–230CrossRefGoogle Scholar
  83. Schmidt M, Botz R, Rickert D, Bohrmann G, Hall SR, Mann S (2001) Oxygen isotopes of marine diatoms and relations to opal-A maturation. Geochim Cosmochim Acta 65:201–211CrossRefGoogle Scholar
  84. Schmincke HU, Weaver PPE, Firth JV et al. (1995) Proceedings of the Ocean drilling program, initial reports, 157. Ocean Drilling Program, College StationGoogle Scholar
  85. Shaw CSJ (2004) Mechanisms and rates of quartz dissolution in melts in the CMAS (CaO–MgO–Al2O3–SiO2) system. Contrib Min Petrol 148:180–200CrossRefGoogle Scholar
  86. Sigmarsson O, Condomines M, Ibarrola E (1992) 238U–230Th radioactive disequilibria in historic lavas from the Canary Islands and genetic implications. J Volcanol Geotherm Res 54:145–156CrossRefGoogle Scholar
  87. Sigmarsson O, Carn S, Carracedo JC (1998) Systematics of U-series nuclides in primitive lavas from the 1,730–1,736 eruption on Lanzarote, Canary Island, and implications for the role of garnet pyroxenites during oceanic basalt formation. Earth Planet Sci Lett 162:137–151CrossRefGoogle Scholar
  88. Sigmarsson O, Thordarson Th, Jakobsson SP (2009) Segregations in Surtsey lavas (Iceland) reveal extreme magma differentiation during late stage flow emplacement. In: Thordarson Th et al (eds) Studies in volcanology: the legacy of George walker. Special Publications of IAVCEI, Geological Society, London, pp 85–104Google Scholar
  89. Sigmarsson O, Vlastelic I, Andreasen R, Bindeman I, Devidal J-L, Moune S, Keiding JK, Larsen G, Höskuldsson A, Thordarson Th (2011) Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption. Solid Earth 2:271–281CrossRefGoogle Scholar
  90. Simm RW, Weaver PPE, Kidd RB, Jones EJW (1991) Late quaternary mass movement on the lower continental rise and abyssal plain off Western Sahara. Sedimentology 38:27–40CrossRefGoogle Scholar
  91. Sisson TW, Bacon CR (1999) Gas-driven filter pressing in magmas. Geology 27:613–616CrossRefGoogle Scholar
  92. Stewart PB (1957) The system CaAl2Si2O8-SiO2-H2O. Carnegie Inst Washington Year Book 56, p 214Google Scholar
  93. Stroncik NA, Klügel A, Hansteen TH (2009) The magmatic plumbing system beneath El Hierro (Canary Islands): constraints from phenocrysts and naturally quenched basaltic glasses. Contrib Min Petrol 157:593–607CrossRefGoogle Scholar
  94. Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, TKunimaru T (2000) JNdi-1: a neodymiuim isotopic reference in consistency with Lajjola neodymium. Chem Geol 168:279–281CrossRefGoogle Scholar
  95. Troll VR, Schmincke H-U (2002) Magma mixing and crustal recycling recorded in ternary feldspar from compositionally zoned peralkaline ignimbrite “A”, Gran Canaria, Canary Islands. J Pet 43:243–270CrossRefGoogle Scholar
  96. Troll VR, Klügel A, Longpré M-A, Burchardt S, Deegan FM, Carracedo JC, Wiesmaier S, Kueppers U, Dahren B, Blythe LS, Hansteen TH, Freda C, Budd DA, Jolis EM, Jonsson E, Meade FC, Harris C, Berg SE, Mancini L, Polacci M, Pedroza K (2012) Floating stones off El Hierro, Canary Islands, Spain): xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption. Solid Earth 3:97–110CrossRefGoogle Scholar
  97. Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol Soc Am Mem 74:1–145Google Scholar
  98. Vlastélic I, Staudacher T, Bachelèry P, Télouk P, Neuville D, Benbakkar M (2011) Lithium isotope fractionation during magma degassing: constraints from silicic differentiates and natural gas condensates from Piton de la Fournaise volcano (Réunion Island). Chem Geol 284:26–34Google Scholar
  99. Webster JD, Tappen CM, Mandeville CW (2009) Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid. II: Felsic silicate systems at 200 MPa. Geochim Cosmochim Acta 73:559–581CrossRefGoogle Scholar
  100. Zhang Y, Walker D, Lesher CE (1989) Diffusive crystal dissolution. Contrib Min Petrol 102:492–513CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olgeir Sigmarsson
    • 1
    • 2
  • Didier Laporte
    • 1
  • Marion Carpentier
    • 1
  • Bertrand Devouard
    • 1
  • Jean-Luc Devidal
    • 1
  • Joan Marti
    • 3
  1. 1.Laboratoire Magmas et VolcansCNRS-Université Blaise Pascal-IRDClemont-FerrandFrance
  2. 2.NordVulk, Institute of Earth SciencesUniversity of IcelandReykjavíkIceland
  3. 3.Institute of Earth Sciences ‘Jaume Almera’ CSICBarcelonaSpain

Personalised recommendations