Contributions to Mineralogy and Petrology

, Volume 165, Issue 3, pp 495–505 | Cite as

The effect of aluminum and water on the development of deformation fabrics of orthopyroxene

  • M. A. G. M. Manthilake
  • N. Miyajima
  • F. Heidelbach
  • V. Soustelle
  • D. J. Frost
Original Paper

Abstract

The effect of alumina and water solubility on the development of fabric in orthopyroxene in response to simple shear deformation has been investigated at a pressure of 1.5 GPa and a temperature of 1,100 °C using the D-DIA apparatus. The microstructure observations at these conditions indicate that dislocation glide is the dominant deformation mechanism. In MgSiO3 enstatite and hydrous aluminous enstatite, partial dislocations bounding the stacking faults in [001] glide parallel to the (100) (or) the (100) [001] slip system. Electron backscattered diffraction analysis of anhydrous aluminous enstatite, however, indicates operation of the (010) [001] slip system, and microstructure analysis indicates dislocation movement involving [001] on both (100) and {210} planes. The strong covalent bonding induced by the occupation of M1 and T2 sites by Al could have restricted the glide on (100), activating slip on {210}. The resulting seismic anisotropies (~2 %) in orthopyroxene are weaker compared to olivine (~9.5 %), and reduced anisotropy can be expected if orthopyroxene coexists with olivine. Weak anisotropy observed in stable cratonic regions can be explained by the relatively high abundance of orthopyroxene in these rocks.

Keywords

Aluminous enstatite Deformation Dislocation glide Seismic anisotropy VPSC modeling J index 

Supplementary material

410_2012_819_MOESM1_ESM.pdf (245 kb)
Supplementary material 1 (PDF 245 kb)

References

  1. Amiguet E, Cordier P, Raterron P (2010) Deformation of diopside single crystals at mantle pressure. TEM characterization of dislocation microstructures. Eur J Minerl 22:181–187CrossRefGoogle Scholar
  2. Arai S, Abe N (1995) Reaction of orthopyroxene in peridotite xenoliths with alkali basalt melts and its implication for genesis of alpine-type chromitite. Am Miner 80:1041–1047Google Scholar
  3. Baptiste V, Tommasi A, Demouchy S (2012) Deformation and hydration of the lithospheric mantle beneath the Kaapvaal craton. SA Litho’s. doi:10.1016/j.lithos.2012.05.001 Google Scholar
  4. Bascou J, Barruol G, Vauches A, Mainprice D, Egydio-Silva M (2001) EBSD-measured lattice-preferred orientations and seismic properties of eclogites. Tectonophysics 342:61–80CrossRefGoogle Scholar
  5. Bascou J, Tommasi A, Mainprice D (2002) Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites. J Struct Geol 24:1357–1368CrossRefGoogle Scholar
  6. Bell DR, Ihinger PD, Rossman GR (1995) Quantitative analysis of trace OH in garnet and pyroxenes. Am Miner 80:465–474Google Scholar
  7. Ben Ismail W, Mainprice D (1998) An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296:145–158CrossRefGoogle Scholar
  8. Blackman DK, Wenk HR, Kendall JM (2002) Seismic anisotropy of the upper mantle: 1. Factors that affect mineral texture and effective elastic properties. Geochem Geophys Geosyst 3:8601. doi: 10.1029/2001GC000247
  9. Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26CrossRefGoogle Scholar
  10. Bunge HJ (1982) Texture analysis in materials sciences. Butterworths, London, p 593Google Scholar
  11. Carter NL, Baker DW, George RP Jr (1972) Seismic anisotropy, flow, and constitution of the upper mantle. In: Heard HC, Borg IY, Carter NL, Raleyigh CB (eds) Flow and fracture of rocks. Am Geophys Union, Washington, DC, pp 167–190CrossRefGoogle Scholar
  12. Chai M, Brown JM, Slutsky LJ (1997) The elastic constants of an aluminous orthopyroxene to 12.5 GPa. J Geophys Res 102:14779–14785CrossRefGoogle Scholar
  13. Coe RS, Kirby SH (1975) The orthoenstatite to clinoenstatite transformation by shearing and reversion by annealing: mechanism and potential applications. Contrib Minel Petrol 52:29–55CrossRefGoogle Scholar
  14. Couvy H, Frost DJ, Heidelbach F, Krisztián N, Ungár T, Mackwell S, Cordier P (2004) Shear deformation experiments of forsterite at 11 GPa-1,400°C in the multianvil apparatus. Eur J Mineral 16:877–889CrossRefGoogle Scholar
  15. Dick HJB, Fisher RL (1984) Mineralogic studies of the residues of mantle melting: Abyssal and Alpine-type peridotites. In: Kornprobst J (ed) Kimberlites. II. The mantle and crust-mantle relationships. Proceedings of the third international kimberlite conference, Elsevier, New York, pp 295–308Google Scholar
  16. Falus G, Tommasi A, Ingrin J, Szabo C (2008) Deformation and seismic anisotropy of the lithospheric mantle in the southeastern carpathians inferred from the study of mantle xenoliths. Earth Planet Sci Lett 272:50–64CrossRefGoogle Scholar
  17. Fouch MJ, Rondenay S (2006) Seismic anisotropy beneath stable continental interiors. Phys Earth Planet Int 158:292–320CrossRefGoogle Scholar
  18. Franz L, Becker KP, Kramer W, Herzig M (2002) Metasomatic mantle xenoliths from the bismarck microplate (Papua New Guinea)—thermal evolution, geochemistry and extent of slab-induced metasomatism. J Petrol 43:315–343CrossRefGoogle Scholar
  19. Gasparik T (2003) Phase diagram for geoscientists. Springer, Germany, p 146Google Scholar
  20. Godard G, Van Roermund HLM (1995) Deformation-induced clinopyroxene from eclogites. J Struct Geol 17:1425–1443CrossRefGoogle Scholar
  21. Ionov DA (2010) Petrology of mantle wedge lithosphere: New data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Aamchatka. J Petrol 51:327–361CrossRefGoogle Scholar
  22. Jackson JM, Sinogeikin SV, Bass JD (1999) Elasticity of MgSiO3 orthoenstatite. Am Mineral 84:677–680Google Scholar
  23. Jung H, Karato S (2001) Water-induced fabric transitions in olivine. Science 293:1460–1462CrossRefGoogle Scholar
  24. Jung H, Katayama I, Jiang Z, Hiraga T, Karato S (2006) Effects of water and stress on the lattice preferred orientation in olivine. Tectonophysics 42:1–22CrossRefGoogle Scholar
  25. Kaminski É, Ribe NM (2001) A kinematic model for recrystallization and texture development in olivine polycrystals. Earth Planet Sci Lett 189:253–267CrossRefGoogle Scholar
  26. Karato SI (1995) Effects of water on seismic wave velocities in the upper mantle. Proc Jpn Acad 71:61–66CrossRefGoogle Scholar
  27. Katayama I, Karato SI (2006) Effects of temperature on the B- to C-type fabric transition in olivine. Phys Earth Planet Int 157:33–45CrossRefGoogle Scholar
  28. Katayama I, Jung H, Karato SI (2004) New type of olivine fabric from deformation experiments at modest water content and low stress. Geology 32:1045–1048CrossRefGoogle Scholar
  29. Katayama I, Michibayashi K, Terao R, Ando JI, Komiya T (2011) Water content of the mantle xenoliths from Kimberley and implications for explaining textural variations in cratonic roots. Geol J 46:173–182CrossRefGoogle Scholar
  30. Kohlstedt DL, Vander Sande JB (1973) Transmission electron microscopy investigations of the defect microstructure of four natural orthopyroxenes. Contrib Mineral Petrol 42:169–180CrossRefGoogle Scholar
  31. Kopylova MG, Russell JK, Cookenboo H (1999) Petrology of peridotite and pyroxenite xenoliths from the Jericho Kimberlite: implications for the thermal state of the mantle beneath the Slave Craton, Northern Canada. J Petrol 40:79–104CrossRefGoogle Scholar
  32. Lane DL, Ganguly J (1980) AlrO, solubility in orthopyroxene in the system MgO-A1rOr-SiOr: a re-evaluation, and mantle geotherm. J Geophys Res 85:6963–6972CrossRefGoogle Scholar
  33. Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconion alloys. Acta Metall Mater 41:2611–2624CrossRefGoogle Scholar
  34. Mackwell SJ (1991) High temperature rheology of enstatite: implications for creep in the mantle. Geophys Res Lett 18:2027–2030CrossRefGoogle Scholar
  35. Mainprice D (1990) A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput Geosci 16:385–393CrossRefGoogle Scholar
  36. Mainprice D, Silver PG (1993) Interpretation of SKS-waves using samples from the subcontinental lithosphere. Phys Earth Planet Int 78:257–280CrossRefGoogle Scholar
  37. Mainprice D, Barroul G, Ben Ismail W (2000) The seismic anisotropy of the Earth’s mantle: from single crystal to polycrystals. In: Karato SI, Forte A, Liebermann RC, Masters G, Stixrude L (eds) Earth’s deep interior. Am Geophys Union, Washington, DC, pp 237–264Google Scholar
  38. Mauler A, Bystricky M, Kunze K, Mackwell S (2000) Microstructure and lattice preferred orientations in experimentally deformed clinopyroxene aggregates. J Struct Geol 22:1633–1648CrossRefGoogle Scholar
  39. Mauler A, Godard G, Kunze K (2001) Crystallographic fabrics of omphacite, rutile and quartz in vendee eclogites (Armorican Massif, France). Consequences for deformation mechanisms and regimes. Tectonophysics 342:81–112CrossRefGoogle Scholar
  40. Mierdel K, Keppler H, Smyth JR, Langenhorst F (2007) Water solubility in aluminous orthopyroxene and the origin of earth’s asthenosphere. Science 315:364–368CrossRefGoogle Scholar
  41. Miyajima N, Walte N (2009) Burgers vector determination in deformed perovskite and post-perovskite of CalrO3 using thickness fringes in weak-beam dark-field images. Ultramicroscopy 109:683–692CrossRefGoogle Scholar
  42. Nazé L, Doukhan N, Doukhan JC, Latrous K (1987) A TEM study of lattice defects in naturally and experimentally deformed orthopyroxenes. Bull Mineral 110:497–512Google Scholar
  43. Ohuchi T, Karato SI, Fujino K (2010) Strength of single-crystal orthopyroxene under lithospheric conditions. Contrib Mineral Petrol 161:961–975CrossRefGoogle Scholar
  44. Perkins D, Anthony EY (2011) The evolution of spinel lherzolite xenoliths and the nature of the mantle at kilbourne hole, New Mexico. Contrib Mineral Petrol 162:1139–1157CrossRefGoogle Scholar
  45. Rauch M, Keppler H (2002) Water solubility in orthopyroxene. Contrib Mineral Petrol 143:525–536CrossRefGoogle Scholar
  46. Ringwood AE (1975) Composition and petrology of the earth’s mantle. McGraw-Hill, New York, p 618Google Scholar
  47. Ross JV, Nielsen KC (1978) High-temperature flow of wet polycrystalline enstatite. Tectonophysics 44:233–261CrossRefGoogle Scholar
  48. Sanchez-Valle C, Wang J, Stalder R (2012) Elasticity of hydrous alumina-bearing orthopyroxene (submitted)Google Scholar
  49. Satsukawa T, Michibayashi K, Anthony EY, Stern RJ, Gao SS, Liu KH (2011) Seismic anisotropy of the uppermost mantle beneath the rio grande rift: Evidence from kilbourne hole peridotite xenoliths, New Mexico. Earth and Planet Sci Let 311:172–181CrossRefGoogle Scholar
  50. Skemer P, Katayama I, Karato S (2006) Deformation fabrics of a peridotite from Cima di Gagnone, central Alps, Switzerland: Evidence of deformation under water-rich condition at lower temperatures. Contrib Mineral Petrol 152:43–51CrossRefGoogle Scholar
  51. Skogby H (2006) Water in natural mantle minerals I. Pyroxenes. In: Keppler H, Smith JR (eds) Water in nominally anhydrous minerals. 62:155-167Google Scholar
  52. Smyth JR, Mierdel K, Keppler H, Langenhorst F, Dubrovinsky L, Nestola F (2007) Crystal chemistry of hydration in aluminous orthopyroxene. Am Miner 92:973–976CrossRefGoogle Scholar
  53. Soustelle V, Tommasi A, Bodinier JL, Garrido CJ, Vauchez A (2009) Deformation and reactive melt transport in the mantle lithosphere above a large-scale partial melting domain: the ronda peridotite massif, S Spain. J Petrol 50:1235–1266CrossRefGoogle Scholar
  54. Soustelle V, Tommasi A, Demouchy S, Ionov DA (2010) Deformation and fluid-rock interaction in the supra-subduction mantle: Microstructures and water contents in peridotite xenoliths from the Avacha volcano, Kamchatka. J Petrol 51:363–394CrossRefGoogle Scholar
  55. Takeda H (1972) Crystallographic studies of coexisting aluminan orthopyroxene and augite of high pressure origin. J Geophys Res 77:5798–5811CrossRefGoogle Scholar
  56. Van Duysen JC, Doukhan N, Doukhan JC (1985) Transmission electron microscope study of dislocations in orthopyroxene (Mg Fe)2Si2O6. Phys Chem Miner 12:39–44Google Scholar
  57. Wang Y, Durham WB, Getting IC, Weidner DJ (2003) The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Rev Sci Instrum 74:3002–3011CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. A. G. M. Manthilake
    • 1
    • 2
  • N. Miyajima
    • 1
  • F. Heidelbach
    • 1
  • V. Soustelle
    • 1
  • D. J. Frost
    • 1
  1. 1.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  2. 2.Laboratoire Magmas et VolcansUniversité Blaise PascalClermont-FerrandFrance

Personalised recommendations