Contributions to Mineralogy and Petrology

, Volume 165, Issue 2, pp 327–347 | Cite as

Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland

  • R. A. Zierenberg
  • P. Schiffman
  • G. H. Barfod
  • C. E. Lesher
  • N. E. Marks
  • J. B. Lowenstern
  • A. K. Mortensen
  • E. C. Pope
  • D. K. Bird
  • M. H. Reed
  • G. Ó. Friðleifsson
  • W. A. Elders
Original Paper


The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and −118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of the felsite, accompanied locally by partial assimilation. The interstitial melt in the felsite has similar normalized SiO2 content as the rhyolite melt but is distinguished by higher K2O and lower CaO and plots near the minimum melt composition in the granite system. Augite in the partially melted felsite has re-equilibrated to more calcic metamorphic compositions. Rare quenched glass fragments containing glomeroporphyritic crystals derived from the felsite show textural evidence for resorption of alkali feldspar and quartz. The glass in these fragments is enriched in SiO2 relative to the rhyolite melt or the interstitial felsite melt, consistent with the textural evidence for quartz dissolution. The quenching of these melts by drilling fluids at in situ conditions preserves details of the melt–wall rock interaction that would not be readily observed in rocks that had completely crystallized. However, these processes may be recognizable by a combination of textural analysis and in situ analytical techniques that document compositional heterogeneity due to partial melting and local assimilation.


Krafla Iceland Geothermal Rhyolite Basalt partial melting Stable isotope Strontium isotope 



This research would not have been possible without the generous cooperation of Landsvirkjun and the IDDP consortium. The work was supported by NSF grants EAR 0507518 and EAR 0506882. Reviews by Bruce Marsh, Christy Till and anonymous reviewers improved the manuscript.


  1. Anderson DL, Lindsley DH, Davidson PM (1993) QUILF: a Pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350CrossRefGoogle Scholar
  2. Ármannsson H (2010) IDDP: the chemistry of the Krafla geothermal system in relation to the IDDP well. In: Proceedings of the world geothermal congress 2010. Bali, Indonesia, 25–29 April, paper 3906, pp 1–5Google Scholar
  3. Ármannsson H, Guðmundsson A, Steingrímsson BS (1987) Exploration and development of the Krafla geothermal area. Jökull Icel J Earth Sci 37:13–30Google Scholar
  4. Ármannsson H, Benjamínsson J, Jefferies AWA (1989) Gas changes in the Krafla geothermal system, Iceland. Chem Geol 76:175–196CrossRefGoogle Scholar
  5. Arnórsson S, Axelsson G, Sæmundsson K (2008) Geothermal systems in Iceland. Jökull Icel J Earth Sci 58:269–302Google Scholar
  6. Bindeman IN, Valley JN (2001) Low-δ18O Rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. J Petrol 42:1491–1517CrossRefGoogle Scholar
  7. Böðvarsson GS, Pruess K, Steffánson V, Elíasson ET (1984) The Krafla geothermal field, Iceland. 2. The natural state of the system. Water Resour Res 20:1545–1559CrossRefGoogle Scholar
  8. Brophy JG (2009) La-SiO2 and Yb-SiO2 systmenatics in mid-ocean ridge magmas: implications for the origin of oceanic plagiogranite. Contrib Mineral Petrol 158:99–111CrossRefGoogle Scholar
  9. Claiborne LL, Miller CF, Wooden JL (2010) Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib Mineral Petrol 160:511–531CrossRefGoogle Scholar
  10. Condomines M, Grönvold K, Hooker P, Muehlenbachs K, O’Nions RK, Oskarsson N, Oxburgh R (1983) Helium, oxygen, strontium and neodymium isotopic relationships in Icelandic volcanics. Earth Planet Sci Lett 66:125–136CrossRefGoogle Scholar
  11. Eiler JM (2001) Oxygen isotope variation of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364CrossRefGoogle Scholar
  12. Einarsson P (1978) S-wave shadows in the Krafla caldera in NE Iceland, evidence for a magma chamber in the crust. Bull Volcanol 41:187–195CrossRefGoogle Scholar
  13. Einarsson K, Pálsson B, Gudmundsson Á, Hólmgeirsson S, Ingason K, Matthíasson J, Hauksson T, Ármannsson H (2010) Acid wells in the Krafla geothermal field. In: Proceedings of the world geothermal congress 2010. Bali, Indonesia, 25–29 April 2010, paper 2731, pp 1–6Google Scholar
  14. Elders WA, Friðleifsson GÓ (2010) The science program of the Iceland deep drilling project (IDDP): a study of supercritical geothermal resources. In: Proceedings of the world geothermal congress. Bali Indonesia, 25–29 April 2010, pp 1–9Google Scholar
  15. Elders WA, Friðleifsson GÓ, Zierenberg RA, Pope EC, Mortensen AK, Gudmundsson A, Lowenstern JB, Marks NE, Owens L, Bird DK, Reed M, Olsen NJ, Schiffman PA (2011) Origin of a rhyolite that intruded a geothermal well while drilling in a basaltic volcano, at Krafla, Iceland. Geology 39:231–234CrossRefGoogle Scholar
  16. France L, Koepke J, Ildefonse B, Cichy SB, Deschamps F (2010) Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contrib Mineral Petrol 160:683–704CrossRefGoogle Scholar
  17. Friðleifsson GÓ, Elders WA (2005) The Iceland deep drilling project: a search for deep unconventional geothermal resources: Geotherm 34:269–285Google Scholar
  18. Friðleifsson GÓ, Albertsson A, Elders WA (2010) Iceland deep drilling project (IDDP)—10 years later—still an opportunity of international collaboration. In: Proceedings of the world geothermal congress. Bali Indonesia, 25–29 April 2010, pp 1–5Google Scholar
  19. Gautason B, Árnadóttir S, Mortensen AK, Egilson Þ, Guðfinnsson GH, Sigurgeirsson MÁ, Jónsson RB, Tryggvason H, Gunnarsson HS, Sveinbjörnsson S, Þorsteinsson E, Ingimarsdóttir A, Massiot C (2010) Krafla—IDDP-1. Drilling completion and geology report for drilling stage 4. Íslenskar orku-rannsóknir, ÍSOR-2010/116. Unnið fyrir Landsvirkjun, LV-2010/131Google Scholar
  20. Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890Google Scholar
  21. Guðmundsson Á (1983) The geology of the Krafla Suðurhlíðar field, in ravens congregation on the status of the Krafla geothermal power station, 2–3 March 1983, Krafla power station, Akureyri, Iceland, pp 77–85 (in Icelandic)Google Scholar
  22. Guðmundsson Á, Steingrímsson B, Ármannsson H, Thórhallsson S (2008) An estimate of the state of well KJ-36, Krafla at the beginning of the year 2008. ÍSOR Memo, pp 1–3Google Scholar
  23. Gunnarsson B, Marsh BD, Taylor HP Jr (1998) Generation of Icelandic rhyolites: silicic lavas from the Torfajökull central volcano. J Volc Ceotherm Res 83:1–45CrossRefGoogle Scholar
  24. Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Cont Mineral Petrol 120:95–114CrossRefGoogle Scholar
  25. Hattori K, Muehlenbachs K (1982) Oxygen isotope ratios of the Icelandic crust. J Geophys Res 87:6559–6565CrossRefGoogle Scholar
  26. Hémond C, Arndt NT, Lichtenstein U, Hofmann AW, Oskarsson N, Steinthorsson S (1993) The heterogeneous Iceland plume: Nd-Sr-O isotopes and trace element constraints. J Geophys Res 98:15833–15850CrossRefGoogle Scholar
  27. Hólmgeirsson S, Guðmundsson Á, Pálsson B, Bóasson HA, Ingason K, Þórhallsson S (2010) Drilling operations of he first Iceland deep drilling well (IDDP). In: Proceedings of the world geothermal congress. Bali Indonesia, 25–29 April 2010, pp 1–10Google Scholar
  28. Ihinger PD, Zhang Y, Stolper EM (1999) The speciation of dissolved water in rhyolitic melt. Geochimic Cosmochim Acta 63:3567–3578CrossRefGoogle Scholar
  29. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards Geoanalytical Res 35:397–429CrossRefGoogle Scholar
  30. Jónasson K (1994) Rhyolite volcanism in the Krafla central volcano, Northeast Iceland. Bull Volcanol 56:516–528CrossRefGoogle Scholar
  31. Jónasson K (2007) Silicic volcanism in Iceland: composition and distribution within the active volcanic zones. J Geodynam 43:101–117CrossRefGoogle Scholar
  32. Kristmannsdóttir H (1978) Alteration of bedrock in the Krafla geothermal system. Report no. OS/JHD-7854, Orkustofun, Reykjavik, pp 1–29 (in Icelandic)Google Scholar
  33. Lange RA, Frey HM, Hector J (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am Mineral 94:494–506CrossRefGoogle Scholar
  34. Lowenstern JB, Clynne MA, Bullen TD (1997) Comagmatic A-type granophyre and rhyolite from the Alid volcanic center, Eritrea, northeast Africa. J Petrol 38:1707–1721CrossRefGoogle Scholar
  35. Luth WC, Jahns RH, Tuttle OF (1964) The granite system at pressures of 4–10 kilobars. J Geophys Res 69:759–773CrossRefGoogle Scholar
  36. Marks N, Schiffman P, Zierenberg RA, Franzson H, Friðleifsson GÓ (2009) Hydrothermal alteration in the Reykjanes geothermal system: insights from Iceland deep drilling program well RN-17. J Volcanol Geotherm Res 189:172–190CrossRefGoogle Scholar
  37. Moorbath S, Walker GPL (1965) Strontium isotope investigation of igneous rocks from Iceland. Nature 207:837–840CrossRefGoogle Scholar
  38. Mortensen AK, Grönvold K, Gudmundsson Á, Steingrímsson BS, Egilson Þ (2010) Quenched silicic glass from well K-39 in Krafla, North-Eastern Iceland. In: Proceedings of the world geothermal congress 2010, Bali, Indonesia, 25–29 April 2010, Paper 1284, pp 1–6Google Scholar
  39. Muehlenbachs K, Anderson AT Jr, Sigvaldason GE (1974) Low-O18 basalts from Iceland. Geochim Cosmochim Acta 38:577–588CrossRefGoogle Scholar
  40. Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in visual basic for excel. Comput Geosci 28:597–604CrossRefGoogle Scholar
  41. Nicholson H, Condomines M, Fitton GJ, Fallick AE, Grönvold K (1991) Assimilation beneath Krafla, Iceland. J Petrol 32:1005–1020CrossRefGoogle Scholar
  42. Pope EC, Bird DK, Arnórsson S, Fridriksson Þ, Elders WA, Friðleifsson GÓ (2009) The Iceland deep drilling project: stable isotope constraints of fluid source and evolution in Icelandic geothermal systems. Trans Geotherm Resour Counc 33:411–416Google Scholar
  43. Pope EC, Bird DK, Arnórsson S (in review) Evolution of low-18O Icelandic crust: perspectives from the IDDP-1 rhyolite melt. Geochim Cosmochim ActaGoogle Scholar
  44. Rose-Koga EF, Sigmarsson O (2008) B-O-Th isotope systematics in Icelandic tephra. Chem Geol 255:454–462CrossRefGoogle Scholar
  45. Sæmundsson K (1978) Fissure swarms and central volcanoes of the neovolcanic zones of Iceland. Geol J Spec Issue 10:415–432Google Scholar
  46. Sæmundsson K (1991) Geology of the Krafla system. In: Gardarsson A, Einarsson Á (eds) Náttúra Mývatns Hid Íslenska Náttúrufraedifélag, Raykjavík, pp 25–95 (in Icelandic)Google Scholar
  47. Sæmundsson K (2008) Geological map of Krafla, 1: 25,000. Prepared for the national power company (Landsvikjun) and the Iceland GeoSurvey (ISOR), ReykjavikGoogle Scholar
  48. Schiffman P, Zierenberg RA, Friðleifsson GÓ, Elders WA (in review) High temperature metamorphism in the conductive boundary layer adjacent to a rhyolite intrusion in the Krafla geothermal system. GethermicsGoogle Scholar
  49. Sigmarsson O, Hémond C, Condomines M, Fourcade S, Oskarsson N (1991) Origin of silicic magma in Iceland revealed by Th isotopes. Geology 19:621–624CrossRefGoogle Scholar
  50. Sigmarsson O, Condomines M, Fourcade S (1992) Mantle and crustal contribution in the genesis of Recent basalts from off-rift zones in Iceland. Constraints from Th, Sr, and O isotopes. Earth Planet Sci Lett 110:149–162CrossRefGoogle Scholar
  51. Skovgaard AC, Storey M, Baker J, Blusztajn J, Hart SR (2001) Osmium-oxygen isotopic evidence for a recycled and strongly depleted component in the Iceland mantle plume. Earth Planet Sci Lett 194:259–275CrossRefGoogle Scholar
  52. Spulber SD, Rutherford MJ (1983) The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J Petrol 24:1–25CrossRefGoogle Scholar
  53. Stefánsson V (1980) Investigation on the Krafla high temperature geothermal field. Náttúrufræðingurinn 50:333–359 (In Icelandic, English summary)Google Scholar
  54. Stefánsson V (1981) The Krafla geothermal field, Northeast Iceland, chapter 10. In: Rybach L, Muffler LJP (eds) Geothermal systems: principles and case histories. John Wiley and Son Ltd, New York, pp 273–294Google Scholar
  55. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of ocean basalts: implications for mantle compositions and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc London Spec Pub 42:313–345Google Scholar
  56. Sveinbjörnsdóttir AE, Coleman ML, Yardley BWD (1986) Origin and history of hydrothermal fluids of the Reykjanes and Krafla geothermal fields, Iceland: a stable isotope study. Contrib Mineral Petrol 94:99–109CrossRefGoogle Scholar
  57. Teplow W, Marsh B, Hulen J, Spielman P, Kaleeikinin M, Fitch D, Rickard W (2009) Dacite Melt at the Puna geothermal venture well field, big Island of Hawaii. Geotherm Resour Counc Trans 33:989–994Google Scholar
  58. Thirlwall MF, Gee MAM, Lowry D, Mattey DP, Murton BJ, Taylor RN (2006) Low δ18O in the Icelandic mantle and its origins: evidence from Reykjanes Ridge and Icelandic lavas. Geochim Cosmochim Acta 70:993–1019CrossRefGoogle Scholar
  59. Thy P, Beard JS, Lofgren GE (1990) Experimental constraints on the origin of Icelandic rhyolites. J Geol 98:417–421CrossRefGoogle Scholar
  60. Tuttle OF, Bowen NL (1958) Origin of granite in light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol Soc Am Mem 74:1–153Google Scholar
  61. Walker BA Jr, Miller CF, Claiborne LL, Wooden JL, Miller JS (2007) Geology and geochronology of the Spirit Mountain batholith, southern Nevada: implications for timescales and physical processes of batholith construction. J Volcanol Geothermal Res 167:239–262CrossRefGoogle Scholar
  62. Winter JD (2001) An introduction to igneous and metamorphic petrology. Prentice-Hall Inc, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • R. A. Zierenberg
    • 1
  • P. Schiffman
    • 1
  • G. H. Barfod
    • 1
  • C. E. Lesher
    • 1
  • N. E. Marks
    • 1
    • 2
  • J. B. Lowenstern
    • 3
  • A. K. Mortensen
    • 4
  • E. C. Pope
    • 5
    • 6
  • D. K. Bird
    • 5
  • M. H. Reed
    • 7
  • G. Ó. Friðleifsson
    • 8
  • W. A. Elders
    • 9
  1. 1.Department of GeologyUniversity of California-DavisDavisUSA
  2. 2.Lawrence Livermore National LabsLivermoreUSA
  3. 3.U.S. Geological SurveyMenlo ParkUSA
  4. 4.Iceland GeoSurvey (ISOR)RekjavikIceland
  5. 5.Department of Geological and Environmental SciencesStanford UniversityStanfordUSA
  6. 6.Natural History Museum of DenmarkCopenhagen UniversityKøbenhavn KDenmark
  7. 7.Department of Geological Sciences1272 University of OregonEugeneUSA
  8. 8.HS Orka hfReykjanesbærIceland
  9. 9.Department of Earth SciencesUniversity of California-RiversideRiversideUSA

Personalised recommendations