Contributions to Mineralogy and Petrology

, Volume 164, Issue 5, pp 821–837

Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman

Original Paper

Abstract

Tectonically exposed mantle peridotite in the Oman Ophiolite is variably serpentinized and carbonated. Networks of young carbonate veins are prevalent in highly serpentinized peridotite, particularly near low-temperature alkaline springs emanating from the peridotite. An unusual feature in some samples is the coexistence of serpentine and quartz, which is not commonly observed in serpentinites. This assemblage is unstable with respect to serpentine + talc or talc + quartz under most conditions. Serpentine in the carbonated serpentinites in this study is more iron rich than in most serpentinites reported in previous studies, and samples with co-existing quartz contain the most iron-rich serpentines. Calculations of thermodynamic equilibria in the MgO–SiO2–H2O–CO2 system suggest that serpentine + quartz may be a stable assemblage at low temperatures (e.g., <~15–50 °C) and is stabilized to higher temperatures by preferential cation substitutions in serpentine over talc. Based on these calculations, serpentine + quartz assemblages could result from serpentinization at near-surface temperatures. Clumped isotope thermometry of carbonate veins yields temperatures within error of the observed temperatures in Oman groundwater for all samples analyzed, while the δ18O of water calculated to be in equilibrium with carbonate precipitated at those temperatures is within error of the observed isotopic composition of Oman groundwater for the majority of samples analyzed. As groundwater geochemistry suggests that carbonate precipitation and serpentinization occur concomitantly, this indicates that both hydration and carbonation of peridotite are able to produce extensive alteration at the relatively low temperatures of the near-surface weathering environment.

Keywords

Serpentinization Carbonation Alteration Peridotite Oman Ophiolite Clumped isotopes 

Supplementary material

410_2012_775_MOESM1_ESM.pdf (67 kb)
Online Resource 1 Electron microprobe calibration setup for serpentine analysis Supplementary material 1 (PDF 66 kb)
410_2012_775_MOESM2_ESM.xlsx (186 kb)
Online Resource 2 All electron microprobe analyses of serpentine in our Oman serpentinites and antigorite standard BM66586. Analyses have been corrected based on repeat analyses of the antigorite standard, as in Online Resource 1. Points close to the edge of serpentine grains that appear to include mixed analyses with Fe-oxides or carbonates, points with totals <73 %, and points with >0.3 Al atoms per formula unit (most likely chlorite) have been excluded Supplementary material 2 (XLSX 185 kb)

References

  1. Bach W, Klein F (2009) The petrology of seafloor rodingites: insights from geochemical reaction path modeling. Lithos 112:103–117CrossRefGoogle Scholar
  2. Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15 degrees N (ODP Leg 209, Site 1274). Geophys Res Lett 33(13). doi:10.1029/2006GL025681
  3. Barnes I, O’Neil JR (1969) Relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, western United States. GSA Bull 80(10):1947–1960CrossRefGoogle Scholar
  4. Barnes I, O’Neil JR, Trescases JJ (1978) Present day serpentinization in New-Caledonia, Oman and Yugoslavia. Geochim Cosmochim Acta 42(1):144–145CrossRefGoogle Scholar
  5. Barnes JD, Paulick H, Sharp ZD, Bach W, Beaudoin G (2009) Stable isotope (delta(18)O, delta D, delta(37)Cl) evidence for multiple fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209). Lithos 110(1–4):83–94. doi:10.1016/j.lithos.2008.12.004 CrossRefGoogle Scholar
  6. Beinlich A, Austrheim H, Glodny J, Erambert M, Andersen TB (2010) CO2 sequestration and extreme Mg depletion in serpentinized peridotite clasts from the Devonian Solund basin, SW-Norway. Geochim Cosmochim Acta 74(24):6935–6964. doi:10.1016/j.gca.2010.07.027 CrossRefGoogle Scholar
  7. Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. J Petrol 29(2):445–522Google Scholar
  8. Bonifacie M, Ferry JM, Horita J, Vasconcelos C, Passey BH, Eiler JM (2011) Calibration and applications of the dolomite clumped isotope thermometer to high temperatures. Earth Planet Sci Lett 75(3):551Google Scholar
  9. Boschi C, Dini A, Dallai L, Ruggieri G, Gianelli G (2009) Enhanced CO2-mineral sequestration by cyclic hydraulic fracturing and Si-rich fluid infiltration into serpentinites at Malentrata (Tuscany, Italy). Chem Geol 265:209–226CrossRefGoogle Scholar
  10. Boudier F, Baronnet A, Mainprice D (2010) Serpentine mineral replacements of natural olivine and their seismic implications: Oceanic lizardite versus subduction-related antigorite. J Petrol 51:495–512CrossRefGoogle Scholar
  11. Bristow TF, Bonifacie M, Derkowski A, Eiler JM, Grotzinger JP (2011) A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature 474(7349):68–92. doi:10.1038/nature10096 CrossRefGoogle Scholar
  12. Bruni J, Canepa M, Chiodini G, Cioni R, Cipolli F, Longinelli A, Marini L, Ottonello G, Zuccolini MV (2002) Irreversible water-rock mass transfer accompanying the generation of the neutral, Mg–HCO3 and high-pH, Ca–OH spring waters of the Genova province, Italy. Appl Geochem 17(4):455–474CrossRefGoogle Scholar
  13. Chacko T, Deines P (2008) Theoretical calculation of oxygen isotope fractionation factors in carbonate systems. Geochim Cosmochim Acta 72:3642–3660CrossRefGoogle Scholar
  14. Chizmeshya AVG, McKelvy MJ, Squires K, Carpenter RW, Béarat H (2007) DOE final report 924162: a novel approach to mineral carbonation: enhancing carbonation while avoiding mineral pretreatment process cost 29 pages plus appendices. Arizona State University, TempeCrossRefGoogle Scholar
  15. Clark ID, Fontes JC (1990) Paleoclimatic reconstruction in northern Oman based on carbonates from hyperalkaline groundwaters. Quat Res 33(3):320–336CrossRefGoogle Scholar
  16. Clark ID, Fontes JC, Fritz P (1992) Stable isotope disequilibria in travertine from high pH waters: laboratory investigations and field observations from Oman. Geochim Cosmochim Acta 56(5):2041–2050CrossRefGoogle Scholar
  17. Das Sharma S, Patil DJ, Gopalan K (2002) Temperature dependence of oxygen isotope fractionation of CO2 from magnesite–phosphoric acid reaction. Geochim Cosmochim Acta 66:589–593CrossRefGoogle Scholar
  18. Dewandel B, Lachassagne P, Boudier F, Al-Hattali S, Ladouche B, Pinault JL, Al-Suleimani Z (2005) A conceptual hydrogeological model of ophiolite hard-rock aquifers in Oman based on a multiscale and a multidisciplinary approach. Hydrogeol J 13(5–6):708–726CrossRefGoogle Scholar
  19. Downs R (2006) The RRUFF project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. In: Program and abstracts of the 19th general meeting of the International Mineralogical Association, Kobe, Japan, 2006Google Scholar
  20. Duan ZH, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2,000 bar. Chem Geol 193(3–4):257–271CrossRefGoogle Scholar
  21. Eckstrand OR (1975) Dumont serpentinite—model for control of nickeliferous opaque mineral assemblages by alteration reactions in ultramafic rocks. Econ Geol 70(1):183–201CrossRefGoogle Scholar
  22. Eiler J (2007) “Clumped-isotope” geochemistry: the study of naturally occurring, multiply-substituted isotopologues. Earth Planet Sci Lett 262:309–327CrossRefGoogle Scholar
  23. Emmanuel S, Berkowitz B (2006) Suppression and stimulation of seafloor hydrothermal convection by exothermic mineral hydration. Earth Planet Sci Lett 243(3–4):657–668CrossRefGoogle Scholar
  24. Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46(6):479–506CrossRefGoogle Scholar
  25. Evans BW (2008) Control of the products of serpentinization by the Fe2+ Mg−1 exchange potential of olivine and orthopyroxene. J Petrol 49:1873–1887CrossRefGoogle Scholar
  26. Evans BW (2010) Lizardite versus antigorite serpentinite: magnetite, hydrogen, and life (?). Geology 38(10):879–882. doi:10.1130/g31158.1 CrossRefGoogle Scholar
  27. Evans BW, Guggenheim S (1988) Talc, pyrophyllite, and related minerals. In: Bailey SW (ed) Hydrous phyllosilicates (exclusive of micas). Reviews in mineralogy, vol 19. Mineralogical Society of America, Washington, DC, pp 225–294Google Scholar
  28. Evans BW, Kuehner SM, Chopelas A (2009) Magnetite-free, yellow lizardite serpentinization of olivine websterite, Canyon Mountain complex, NE Oregon. Am Miner 94(11–12):1731–1734. doi:10.2138/am.2009.3301 CrossRefGoogle Scholar
  29. Frost BR (1985) On the stability of sulfides, oxides, and native metals in serpentinite. J Petrol 26(1):31–63Google Scholar
  30. Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48:1351–1368CrossRefGoogle Scholar
  31. Früh-Green GL, Plas A, Lécuyer C (1996) Petrologic and stable isotope constraints on hydrothermal alteration and serpentinization of the EPR shallow mantle at Hess Deep (Site 895). In: Proceedings of the ODP, science results, vol 147. Ocean Drilling Program, College Station, TX. doi:10.2973/odp.proc.sr.147.016.1996
  32. Früh-Green GL, Connolly JAD, Plas A, Kelly DS, Groberty B (2004) Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. In: Wilcock WD, Kelley DS, DeLong E, Cary C (eds) The subseafloor biosphere at mid-ocean ridges, vol 144. AGU Geophysical Monograph, Washington, DC, pp 119–136CrossRefGoogle Scholar
  33. Fyfe WS (1974) Heats of chemical reactions and submarine heat production. Geophys J R Astron Soc 37(1):213–215CrossRefGoogle Scholar
  34. Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble EA, Schrag D, Eiler JM (2006) 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456CrossRefGoogle Scholar
  35. Gottschalk M (1997) Internally consistent thermodynamic data for rock-forming minerals in the system SiO2–TiO2–Al2O3–Fe2O3–CaO–MgO–FeO–K2O–Na2O–H2O–CO2. Eur J Miner 9:175–223Google Scholar
  36. Guo W (2008) Carbonate clumped isotope thermometry: application to carbonaceous chondrites and effects of kinetic isotope fractionation. California Institute of Technology, PasadenaGoogle Scholar
  37. Guo WF, Mosenfelder JL, Goddard WA, Eiler JM (2009) Isotopic fractionations associated with phosphoric acid digestion of carbonate minerals: insights from first-principles theoretical modeling and clumped isotope measurements. Geochim Cosmochim Acta 73(24):7203–7225. doi:10.1016/j.gca.2009.05.071 CrossRefGoogle Scholar
  38. Hanghoj K, Kelemen PB, Hassler D, Godard M (2010) Composition and genesis of depleted mantle peridotites from the Wadi Tayin Massif, Oman Ophiolite; major and trace element geochemistry, and Os isotope and PGE systematics. J Petrol 51(1–2):201–227. doi:10.1093/petrology/egp077 CrossRefGoogle Scholar
  39. Hansen LD, Dipple GM, Gordon TM, Kellett DA (2005) Carbonated serpentinite (listwanite) at Atlin, British Columbia: a geological analogue to carbon dioxide sequestration. Can Miner 43:225–239CrossRefGoogle Scholar
  40. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16(3):309–343CrossRefGoogle Scholar
  41. Holland T, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Miner Petrol 145(4):492–501. doi:10.1007/s00410-003-0464-z CrossRefGoogle Scholar
  42. Huntington KW, Eiler JM, Affek HP, Guo W, Bonifacie M, Yeung LY, Thiagarajan N, Passey B, Tripati A, Daëron M, Came R (2009) Methods and limitations of ‘clumped’ CO2 isotope (Δ47) analysis by gas-source isotope ratio mass spectrometry. J Mass Spectrom 44(9):1318–1329. doi:10.1002/jms.1614 CrossRefGoogle Scholar
  43. Johannes W (1969) An experimental investigation of the system MgO–SiO2–H2O–CO2. Am J Sci 267(9):1083CrossRefGoogle Scholar
  44. Kelemen PB, Matter JM (2008) In situ carbonation of peridotite for CO2 storage. Proc Nat Acad Sci USA 105:17295–17300CrossRefGoogle Scholar
  45. Kelemen PB, Streit L, Mervine E, Matter JM, Eiler J, Shock E (2010) Oxygen and carbon isotope systematics during natural mineral carbonation in peridotite of the Samail Ophiolite, Oman. Geochim Cosmochim Acta 74(12):A504Google Scholar
  46. Kelemen PB, Matter J, Streit EE, Rudge JF, Curry WB, Blusztajn J (2011) Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO(2) capture and storage. Annu Rev Earth Planet Sci 39:545–576. doi:10.1146/annurev-earth-092010-152509 CrossRefGoogle Scholar
  47. Kelley DS, Karson JA, Blackman DK, Fruh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P (2001) An off-axis hydrothermal vent field near the mid-Atlantic ridge at 30 degrees N. Nature 412(6843):145–149CrossRefGoogle Scholar
  48. Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61(16):3461–3475. doi:10.1016/s0016-7037(97)00169-5 CrossRefGoogle Scholar
  49. Klein F, Bach W, Jons N, McCollom T, Moskowitz B, Berquo T (2009) Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15 degrees N on the mid-Atlantic ridge. Geochim Cosmochim Acta 73(22):6868–6893CrossRefGoogle Scholar
  50. Matter JM (2001) Geochemical evolution and hydrodynamics of groundwaters in the alluvial aquifer of the Dakhiliya area, Sultanate of Oman. Eidgenössischen Technischen Hochschule, ZurichGoogle Scholar
  51. Matter JM (2005) Recharge areas and geochemical evolution of groundwater in an alluvial aquifer system in the Sultanate of Oman. Hydrogeol J 14:203–224CrossRefGoogle Scholar
  52. McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73:856–875CrossRefGoogle Scholar
  53. McCollom TM, Lollar BS, Lacrampe-Couloume G, Seewald JS (2010) The influence of carbon source on abiotic organic synthesis and carbon isotope fractionation under hydrothermal conditions. Geochim Cosmochim Acta 74(9):2717–2740. doi:10.1016/j.gca.2010.02.008 CrossRefGoogle Scholar
  54. Neal C, Stanger G (1985) Past and present serpentinization of ultramafic rocks: an example from the Semail ophiolite nappe of northern Oman. In: Drewer JI (ed) The chemistry of weathering. D. Reidel, Holland, pp 249–275CrossRefGoogle Scholar
  55. O’Connor WK, Dahlin DC, Rush GE, Gerdemann SJ, Nilsen DN (2004) Final report: aqueous mineral carbonation, DOE/ARC-TR-04-002. Office of Process Development, Albany Research Center, Office of Fossil Energy, US DOE, Albany, ORGoogle Scholar
  56. O’Hanley DS (1996) Serpentinite: records of tectonic and petrological history. Oxford University, New YorkGoogle Scholar
  57. O’Hanley DS, Dyar MD (1993) The composition of lizardite 1T and, the formation of magnetite in serpentinites. Am Miner 78(3–4):391–404Google Scholar
  58. Passey BH, Levin NE, Cerling TE, Brown FH, Eiler JM (2010) High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc Natl Acad Sci USA 107(25):11245–11249. doi:10.1073/pnas.1001824107 CrossRefGoogle Scholar
  59. Paukert AP, Matter JM, Kelemen PB, Shock EL, Havig JR (2012) Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman. Chem Geol (submitted)Google Scholar
  60. Reusch DN (2011) New Caledonian carbon sinks at the onset of Antarctic glaciation. Geology 39(9):807–810. doi:10.1130/g31981.1 CrossRefGoogle Scholar
  61. Rosenbaum JM (1997) Gaseous, liquid, and supercritical fluid H2O and CO2: oxygen isotope fractionation behavior. Geochim Cosmochim Acta 61(23):4993–5003. doi:10.1016/s0016-7037(97)00362-1 CrossRefGoogle Scholar
  62. Schauble EA, Ghosh P, Eiler JM (2006) Preferential formation of 13C–18O bonds in carbonate minerals, estimated using first-principles lattice dynamics. Geochim Cosmochim Acta 70(10):2510–2529. doi:10.1016/j.gca.2006.02.011 CrossRefGoogle Scholar
  63. Schuiling RD (1964) Serpentinization as a possible cause of high heat-flow values in and near the oceanic ridges. Nature 201:807–808CrossRefGoogle Scholar
  64. Schulte M, Blake D, Hoehler T, McCollom TM (2006) Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 6:364–376CrossRefGoogle Scholar
  65. Seifritz W (1990) CO2 disposal by means of silicates. Nature 345(6275):486CrossRefGoogle Scholar
  66. Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK (2004) H-2-rich fluids from serpentinization: geochemical and biotic implications. Proc Natl Acad Sci USA 101(35):12818–12823CrossRefGoogle Scholar
  67. Snow JE, Dick HJB (1995) Pervasive magnesium loss by marine weathering of peridotite. Geochim Cosmochim Acta 59:4219–4235CrossRefGoogle Scholar
  68. Spear FS (1993) Metamorphic phase equilibria and pressure–temperature–time paths. Mineralogical Society of America, Washington, DCGoogle Scholar
  69. Stanger G, Neal C (1994) The occurrence and chemistry of huntite from Oman. Chem Geol 112:247–254CrossRefGoogle Scholar
  70. Toft PB, Arkani-Hamed J, Haggerty SE (1990) The effects of serpentinization on density and magnetic susceptibility: a petrophysical model. Phys Earth Planet Inter 65(1–2):137–157CrossRefGoogle Scholar
  71. Trommsdorff V, Evans BW (1972) Progressive metamorphism of antigorite schists in the Bergell tonalite aureole (Italy). Am J Sci 272(5):423–437CrossRefGoogle Scholar
  72. Tsikouras B, Karipi S, Grammatikopoulos TA, Hatzipanagiotou K (2006) Listwaenite evolution in the ophiolite melange of Iti Mountain (continental Central Greece). Eur J Miner 18(2):243–255. doi:10.1127/0935-1221/2006/0018-0243 CrossRefGoogle Scholar
  73. Vance JA, Dungan MA (1977) Formation of peridotites by deserpentinization in Darrington and Sultan areas, Cascade Mountains, Washington. Geol Soc Am Bull 88(10):1497–1508CrossRefGoogle Scholar
  74. Vasconcelos C, McKenzie JA, Warthmann R, Bernasconi SM (2005) Calibration of the d18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 33:317–320CrossRefGoogle Scholar
  75. Veblen DR, Buseck PR (1979) Serpentine minerals: intergrowths and new combination structures. Science 206(4425):1398–1400CrossRefGoogle Scholar
  76. Wenner DB, Taylor HP (1971) Temperatures of serpentinization of ultramafic rocks based on O18/O16 fractionation between coexisting serpentine and magnetite. Contrib Miner Petrol 32(3):165CrossRefGoogle Scholar
  77. Wicks FJ, Plant AG (1979) Electron microprobe and X-ray microbeam studies of serpentine textures. Can Miner 17:785–830Google Scholar
  78. Wicks FJ, Whittaker EMJ (1977) Serpentine textures and serpentinization. Can Miner 15(4):459–488Google Scholar
  79. Wilson SA, Raudsepp M, Dipple GM (2006) Verifying and quantifying carbon fixation in minerals from serpentine-rich mine tailings using the Rietveld method with X-ray powder diffraction data. Am Miner 91:1331–1341CrossRefGoogle Scholar
  80. Zheng YF (2011) On the theoretical calculations of oxygen isotope fractionation factors for carbonate–water systems. Geochem J 45(4):341–354Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Lamont Doherty Earth ObservatoryColumbia UniversityPalisadesUSA
  2. 2.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations