Contributions to Mineralogy and Petrology

, Volume 164, Issue 5, pp 805–820 | Cite as

Osmium isotope systematics of historical lavas from Piton de la Fournaise (Réunion Island, Indian Ocean)

  • P. SchianoEmail author
  • K. David
  • I. Vlastélic
  • A. Gannoun
  • M. Klein
  • F. Nauret
  • P. Bonnand
Original Paper


Re–Os isotope and elemental data have been obtained for 20 historical picrites and basalts (1931–2006) from the Piton de la Fournaise volcano on Réunion Island and two old (>0.78 Ma) cumulates from a drill hole in the eastern part of the volcano. The 187Os/188Os ratios of the historical lava samples, selected to cover the MgO concentration and Pb isotopic ranges of Piton de la Fournaise lavas, range from 0.1311 to 0.1374. This result, together with previous results on 66-Ma-old lavas from the Deccan Traps (Allègre et al. in. Earth Planet Sci Lett, 170:197–204, 1999), supports the idea that the Os isotopic signature of the Réunion plume is relatively uniform and is at the less radiogenic end of the ocean island basalt spectrum. In detail, lavas erupted before 1992 seem to have higher 187Os/188Os than the lavas erupted after the 1992–1998 period of quiescence. Comparison of 187Os/188Os ratios with Pb, Sr and Nd isotopic data on the same set of samples shows no correlation between Os and Sr–Nd isotopes, whereas a broad positive relationship with Pb isotopes is observed, which is interpreted to reflect coupled fractionation of Re/Os and U–Th/Pb in the mantle due to the partitioning of Pb and Os into sulphides. Lavas inferred to be recording the Os isotopic signature of the Réunion plume source have higher 187Os/188Os ratios than the primitive mantle values. While this might be ascribed to melting of a lithologically heterogeneous source comprising recycled oceanic crust and/or continental sediment, the expected coupled Os–Sr–Nd–Pb isotopic variations are not observed. It is thus proposed that the mantle source for Piton de la Fournaise has inherently slightly radiogenic 187Os/188Os values that could reflect a mantle domain almost isolated from recycling processes.


Geochemistry Réunion Piton de la Fournaise Os isotopes Plume composition 



We would like to acknowledge the Thermo Electron Corp. and D. Auclair for their assistance with the Triton mass spectrometer, and J.L. Birck and A. Poirier for the mixed spike 185Re-190Os preparation. We are also grateful to Chantal Bosq for Sr and Nd analyses. Samples were provided by F. Albarède, P. Boivin, P. Bachèlery, T. Staudacher, and the volcanological observatory of Piton de la Fournaise. Constructive reviews by H. Becker and three anonymous reviewers led to an improved manuscript. J. Lassiter and L. Reisberg are also thanked for helpful comments on an earlier version of the manuscript. This is laboratory of excellence ClerVolc contribution n°23.

Supplementary material

410_2012_774_MOESM1_ESM.xls (60 kb)
Supplementary material 1 (XLS 60 kb)


  1. Albarède F, Tamagnan V (1988) Modelling the recent geochemical evolution of the Piton de la Fournaise volcano, Réunion Island, 1931–1986. J Petrol 29:997–1030Google Scholar
  2. Albarède F, Luais B, Fitton G, Semet M, Kaminski E, Upton BGJ, Bachèlery P, Cheminée J-L (1997) The geochemical regimes of Piton de la Fournaise volcano (Réunion) during the last 530 000 years. J Petrol 38:171–201CrossRefGoogle Scholar
  3. Allègre CJ, Luck J-M (1980) Osmium isotopes as petrogenetic and geological tracers. Earth Planet Sci Lett 48:148–154CrossRefGoogle Scholar
  4. Allègre CJ, Hamelin B, Provost A, Dupré B (1986a) Topology in isotopic multispace and origin of mantle chemical heterogeneities. Earth Planet Sci Lett 81:319–337CrossRefGoogle Scholar
  5. Allègre CJ, Dupré B, Lewin E (1986b) Thorium/Uranium ratio of the Earth. Chem Geol 56:219–227CrossRefGoogle Scholar
  6. Allègre CJ, Dupré B, Lewin E (1996) Three time-scales for the mantle. In: Basu A, Hart SR (eds) Earth processes: reading the isotopic code. Am Geophys Union, Washington, DC, pp 99–108CrossRefGoogle Scholar
  7. Allègre CJ, Birck J-L, Capmas F, Courtillot V (1999) Age of the Deccan traps using 187Re-187Os systematics. Earth Planet Sci Lett 170:197–204CrossRefGoogle Scholar
  8. Becker H, Shirey SB, Carlson RW (2001) Effects of melt percolation on the Re-Os systematics of peridotites from a Paleozoic convergent plate margin. Earth Planet Sci Lett 188:107–121CrossRefGoogle Scholar
  9. Bennett VC, Esat TM, Norman MD (1996) Two mantle-plume components in Hawaiian picrites inferred from correlated Os–Pb isotopes. Nature 381:221–224CrossRefGoogle Scholar
  10. Bennett VC, Norman MD, Garcia MO (2000) Rhenium and platinum group element abundances correlated with mantle source components in Hawaiian picrites: sulphides in the plume. Earth Planet Sci Lett 183:513–521CrossRefGoogle Scholar
  11. Birck J-L, Roy-Barman M, Capmas F (1997) Re-Os isotopic measurements at the femtomole level in natural samples. Geostand Newsl 20:9–27Google Scholar
  12. Boivin P, Bachèlery P (2009) Petrology of 1977 to 1998 eruptions of Piton de la Fournaise, La Réunion Island. J Volcan Geotherm Res 184:109–125CrossRefGoogle Scholar
  13. Bosch D, Blichert-Toft J, Moynier F, Nelson BK, Telouk Ph, Gillot PY, Albarède F (2008) Pb, Hf and Nd isotope compositions of the two Réunion volcanoes (Indian Ocean): a tale of two small-scale mantle “blobs”? Earth Planet Sci Lett 265:748–768CrossRefGoogle Scholar
  14. Brandon AD, Walker RJ (2005) The debate over core-mantle interaction. Earth Planet Sci Lett 232:211–225CrossRefGoogle Scholar
  15. Brandon AD, Walker RJ, Morgan JW, Norman MD, Prichard HM (1998) Coupled 186Os and 187Os evidence for core-mantle interaction. Science 280:1570–1573CrossRefGoogle Scholar
  16. Brandon AD, Graham DW, Waight T, Gautason B (2007) 186Os and 187Os enrichments and high-3He/4He sources in the Earth’s mantle: evidence from Icelandic picrites. Geochim Cosmochim Acta 71:4570–4591CrossRefGoogle Scholar
  17. Bryce JG, DePaolo DJ, Lassiter JC (2005) Geochemical structure of the Hawaiian plume: Sr, Nd and Os isotopes in the 2.8 km HSDP-2 section of Mauna Kea volcano. Geochem Geophys Geosystem. doi: 10.1029/2004GC000809
  18. Büchl A, Brügmann G, Batanova V, Münker C, Hofmann AW (2002) Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos ophiolite. Earth Planet Sci Lett 204:385–402CrossRefGoogle Scholar
  19. Burton KW, Gannoun A, Birck JL, Allègre CJ, Schiano P, Clocchiatti R, Alard O (2002) The compatibility of rhenium and osmium in natural olivine and their behaviour during mantle melting and basalt genesis. Earth Planet Sci Lett 198:63–76CrossRefGoogle Scholar
  20. Capobianco CJ, Hervig RL, Drake MJ (1994) Experiments on crystal/liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid solutions crystallized from silicate melt. Chem Geol 113:23–43CrossRefGoogle Scholar
  21. Chauvel C, Blichert-Toft J (2001) A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet Sci Lett 190:137–151CrossRefGoogle Scholar
  22. Class C, Goldstein SL (1997) Plume-lithosphere interactions in the ocean basins: constraints from the source mineralogy. Earth Planet Sci Lett 150:245–260CrossRefGoogle Scholar
  23. Class C, Goldstein SL, Shirey SB (2009) Osmium isotopes in Grande Comore lavas: a new extreme among a spectrum of EM-type mantle endmembers. Earth Planet Sci Lett 284:219–227CrossRefGoogle Scholar
  24. Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308CrossRefGoogle Scholar
  25. Creaser RA, Papanastassiou DA, Wasserburg GJ (1991) Negative thermal ion mass spectrometry of osmium, rhenium and iridium. Geochim Cosmochim Acta 55:397–401CrossRefGoogle Scholar
  26. Crocket JH (2000) PGE in fresh basalt, hydrothermal alteration products, and volcanic incrustations of Kilauea volcano, Hawaii. Geochim Cosmochim Acta 64:1791–1807CrossRefGoogle Scholar
  27. Dale CW, Gannoun A, Burton KW, Argles TW, Parkinson IJ (2007) Rhenium-osmium isotope and elemental behaviour during subduction of oceanic crust and the implications for mantle recycling. Earth Planet Sci Lett 253:211–225CrossRefGoogle Scholar
  28. Dale CW, Pearson DG, Starkey NA, Stuart FM, Ellam RM, Larsen LM (2009) Osmium isotopes in Baffin Island and West Greenland picrites: implications for the 187Os/188Os composition of the convecting mantle and the nature of high 3He/4He mantle. Earth Planet Sci Lett 278:267–277CrossRefGoogle Scholar
  29. Day JMD, Pearson DG, Macpherson CG, Lowry D, Carracedo J-C (2010) Evidence for distinct proportions of oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochim Cosmochim Acta 74:6565–6589CrossRefGoogle Scholar
  30. Duncan RA (1990) The volcanic record of the Réunion hotspot. In: Duncan RA, Backman J, Petreson LC (eds) Proceedings of the Ocean Drilling Program, scientific results, 115. Ocean Drilling Program, College Station, pp 43–51CrossRefGoogle Scholar
  31. Eisele J, Sharma M, Galer SJG, Blichert-Toft J, Devey CW, Hofmann AW (2002) The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet Sci Lett 196:197–212CrossRefGoogle Scholar
  32. Escrig S, Schiano P, Schilling J-G, Allègre CJ (2005a) Rhenium-osmium isotope systematics in MORB from the southern Mid-Atlantic ridge (40–50 S). Earth Planet Sci Lett 235:528–548CrossRefGoogle Scholar
  33. Escrig S, Doucelance R, Moreira M, Allègre CJ (2005b) Os isotope systematics in Fogo Island: evidence for lower continental crust fragments under the Cape Verde Southern Islands. Chem Geol 219:93–113CrossRefGoogle Scholar
  34. Fisk MR, Upton BGJ, Ford CE, White WM (1988) Geochemical and experimental study of the genesis of magmas of Reunion Island, Indian Ocean. J Geophys Res 93:4933–4950CrossRefGoogle Scholar
  35. Fisk MR, Duncan RA, Baxter AN, Greenough JD, Hargraves RB, Tatsumi Y (1989) Reunion hotspot magma chemistry over the past 65 m.y.: results from Leg 115 of the Ocean Drilling Program. Geology 17:934–937CrossRefGoogle Scholar
  36. Fretzdorff S, Haase KM (2002) Geochemistry and petrology of lavas from the submarine flanks of Réunion Island (western Indian Ocean): implications for magma genesis and the mantle source. Mineral Petrol 75:153–184CrossRefGoogle Scholar
  37. Gaffney AM, Nelson BK, Reisberg L, Eiler J (2005) Oxygen-osmium isotope systematics of West Maui lavas: a record of shallow-level magmatic processes. Earth Planet Sci Lett 239:122–139CrossRefGoogle Scholar
  38. Gannoun A, Burton KW, Parkinson IJ, Alard O, Schiano P, Thomas LE (2007) The scale and origin of the osmium isotope variations in mid-ocean ridge basalts. Earth Planet Sci Lett 259:541–556CrossRefGoogle Scholar
  39. Gillot PY, Nativel P, Condomines M (1990) Evolution volcano-structurale du Piton de la Fournaise depuis 0.53 Ma. In: Lenat J-F (ed) Le volcanisme de la Réunion. Centre de Recherches Volcanologiques, Clermont Ferrand, pp 243–256Google Scholar
  40. Graham D, Lupton J, Albarède F, Condomines M (1990) Extreme temporal homogeneity of helium isotopes at Piton de la Fournaise, Réunion Island. Nature 347:545–548CrossRefGoogle Scholar
  41. Hanyu T, Dunai TJ, Davies GR, Kaneoka I, Nohda S, Uto K (2001) Noble gas study of the Reunion hotspot: evidence for distinct less-degassed mantle sources. Earth Planet Sci Lett 193:83–98CrossRefGoogle Scholar
  42. Hanyu T, Tatsumi Y, Senda R, Miyazaki T, Chang Q, Hirahara Y, Takahashi T, Kawabata H, Suzuki K, Kimura J-I, Nakai S (2011) Geochemical characteristics and origin of the HIMU reservoir: a possible mantle plume source in the lower mantle. Geochem Geophys Geosyst. doi: 10.1029/2010GC003252 Google Scholar
  43. Hart SR, Gaetani GA (2006) Mantle Pb paradoxes: the sulfide solution. Contrib Mineral Petrol 152:295–308CrossRefGoogle Scholar
  44. Hauri EH (2002) Osmium isotopes and mantle convection. Phil Trans R Soc Lond A 360:2371–2382CrossRefGoogle Scholar
  45. Hauri EH, Hart SR (1993) Re-Os systematics of HIMU and EMII oceanic island basalts from Pacific Ocean. Earth Planet Sci Lett 114:353–371CrossRefGoogle Scholar
  46. Hauri EH, Hart SR (1997) Rhenium abundances and systematics in oceanic basalts. Chem Geol 139:185–205CrossRefGoogle Scholar
  47. Hauri EH, Kurz MD (1997) Melt migration and mantle chromatography, 2: a time-series Os isotope study of Mauna Loa volcano. Hawaii. Earth Planet Sci Lett 153:21–36CrossRefGoogle Scholar
  48. Hauri EH, Lassiter JC, DePaolo DJ (1996) Osmium isotope systematics of drilled lavas from Mauna Loa, Hawaii. J Geophys Res 101(5):11793–11806CrossRefGoogle Scholar
  49. Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Mineral Petrol 124:185–208CrossRefGoogle Scholar
  50. Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229CrossRefGoogle Scholar
  51. Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436CrossRefGoogle Scholar
  52. Jackson MG, Shirey SB (2011) Re-Os isotope systematics in Samoan shield lavas and the use of Os-isotopes in olivine phenocrysts to determine primary magmatic compositions. Earth Planet Sci Lett 312:91–101CrossRefGoogle Scholar
  53. Jamais M, Lassiter JC, Brügmann G (2008) PGE and Os-isotopic variations in lavas from Kohala Volcano, Hawaii: constraints on PGE behavior and melt/crust interaction. Chem Geol 250:16–28CrossRefGoogle Scholar
  54. Lambart S, Laporte D, Schiano P (2009) An experimental study of pyroxenite partial melt at 1 and 1.5 GPa: implications for the major-element composition of Mid-Ocean Ridge Basalts. Earth Planet Sci Lett 288:335–347CrossRefGoogle Scholar
  55. Lassiter JC (2003) Rhenium volatility in subaerial lavas: constraints from subaerial and submarine portions of the HSDP-2 Mauna Kea drillcore. Earth Planet Sci Lett 214:311–325CrossRefGoogle Scholar
  56. Lassiter JC, Hauri EH (1998) Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth Planet Sci Lett 164:483–496CrossRefGoogle Scholar
  57. Lassiter JC, Blichert-Toft J, Hauri EH, Barsczus HG (2003) Isotope and trace element variations in lavas from Raivavae and Rapa, Cook-Austral islands: constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia. Chem Geol 202:115–138CrossRefGoogle Scholar
  58. Luais B (2004) Temporal changes in Nd isotopic composition of Piton de la Fournaise magmatism (Réunion Island, Indian Ocean). Geochem Geophys Geosyst. doi: 10.1029/2002GC000502 Google Scholar
  59. Luguet A, Shirey SB, Lotrand J-P, Horan MF, Carlson RW (2007) Residual platinum-group minerals from highly depleted harzburgites of the lherz massif (France) and their role in HSE fractionation of the mantle. Geochim Cosmochim Acta 71:3082–3097CrossRefGoogle Scholar
  60. Luguet A, Nowell GM, Pearson DG (2008) 184Os/188Os and 186Os/188Os measurements by Negative Thermal Ionisation Mass Spectrometry (N-TIMS): effects of interfering element and mass fractionation corrections on data accuracy and precision. Chem Geol 248:342–362CrossRefGoogle Scholar
  61. Marcantonio F, Zindler A, Elliott T, Staudigel H (1995) Os isotope systematics of La Palma, Canary islands: evidence for recycled crust in the mantle source of HIMU ocean islands. Earth Planet Sci Lett 133:397–410CrossRefGoogle Scholar
  62. Meisel T, Walker RJ, Irving AJ, Lorand JP (2001) Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim Cosmochim Acta 65:1311–1323CrossRefGoogle Scholar
  63. Meisel T, Reisberg L, Moser J, Carignan J, Melcher F, Brügmann G (2003) Re-Os systematics of UB-N, a serpentinized peridotite reference material. Chem Geol 201:161–179CrossRefGoogle Scholar
  64. Millet MA, Doucelance R, Schiano P, David K, Bosq C (2008) Mantle plume heterogeneity versus shallow-level interactions: a case study, the São Nicolau Island, Cape Verde archipelago. J Volcan Geotherm Res 176:265–276CrossRefGoogle Scholar
  65. Nier AO (1937) The isotopic constitution of osmium. Phys Rev 52:885CrossRefGoogle Scholar
  66. Nowell GM, Luguet A, Pearson DG, Hortswood MSA (2008) Precise and accurate 186Os/188Os and 187Os/188Os measurements by multi-collector plasma ionisation mass spectrometry (MC-ICP-MS) part I: solution analyses. Chem Geol 248:363–393CrossRefGoogle Scholar
  67. Pearson DG, Woodland SJ (2000) Solvent extraction/anion exchange separation and determination of PGEs (Os, Ir, Pt, Pd and Ru) and Re-Os isotopes in geological samples by isotope dilution ICP-MS. Chem Geol 165:87–107CrossRefGoogle Scholar
  68. Pearson NJ, Alard O, Griffin WL, Jackson SE, O’Reilly SY (2002) In situ measurement of Re-Os isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry: analytical methods and preliminary results. Geochim Cosmochim Acta 66:1037–1050CrossRefGoogle Scholar
  69. Pietruszka A, Hauri EH, Blichert-Toft J (2009) Crustal contamination of mantle-derived magmas within Piton de la Fournaise volcano, Réunion Island. J Petrol 50:661–684CrossRefGoogle Scholar
  70. Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298:209–217CrossRefGoogle Scholar
  71. Pretorius W, Chipley D, Kyser K, Helmstaedt H (2003) Direct determination of trace levels of Os, Ir, Ru, Pt and Re in kimberlite and other geological materials using HR-ICP-MS, 2003. J Anal At Spectrom 18:302–309CrossRefGoogle Scholar
  72. Rançon JP, Lerebour P, Augé T (1989) The Grand Brûlé exploration drilling: new data on the deep framework of the Piton de la Fournaise volcano. Part 1: lithostratigraphic units and volcanostructural implications. J Volcano Geotherm Res 36:113–127CrossRefGoogle Scholar
  73. Reiners PW (2002) Temporal-compositional trends in intraplate basalt eruptions: implication for mantle heterogeneity and melting processes. Geochem Geophys Geosyst. doi: 10.1029/2001GC000250 Google Scholar
  74. Reisberg L, Zindler A, Marcantonio F, White WM, Wyman D, Weaver B (1993) Os isotope systematics in ocean island basalts. Earth Planet Sci Lett 120:149–167CrossRefGoogle Scholar
  75. Righter K, Hauri EH (1998) Compatibility of rhenium in garnet during mantle melting and magma genesis. Science 280:1737–1741CrossRefGoogle Scholar
  76. Roy-Barman M (1993) Mesure du rapport 187Os/186Os dans les basaltes et péridotites: contribution à la systématique 187Re–187Os dans le manteau. University Paris, Thesis 7Google Scholar
  77. Roy-Barman M, Allègre CJ (1995) 187Os/186Os in Oceanic Island Basalt: tracing oceanic crust recycling in the mantle. Earth Planet Sci Lett 129:145–161CrossRefGoogle Scholar
  78. Roy-Barman M, Wasserburg GJ, Papanastassiou DA, Chaussidon M (1998) Osmium isotopic composition and Re–Os concentrations in sulfide globules from basaltic glasses. Earth Planet Sci Lett 154:331–347CrossRefGoogle Scholar
  79. Scherstén A, Elliott T, Hawkesworth C, Norman M (2004) Tungsten isotope evidence that mantle plumes contain no contribution from the Earth’s core. Nature 427:234–237CrossRefGoogle Scholar
  80. Schiano P, Birck JL, Allègre CJ (1997) Osmium-strontium-neodymium-lead isotopic covariations in mid-ocean ridge basalt glasses and the heterogeneity of the upper mantle. Earth Planet Sci Lett 150:363–379CrossRefGoogle Scholar
  81. Schiano P, Burton KW, Dupré B, Birck J-L, Guille G, Allègre CJ (2001) Correlated Os-Pb-Nd-Sr isotopes in the Austral-Cook chain basalts: the nature of mantle components in plume sources. Earth Planet Sci Lett 186:527–537CrossRefGoogle Scholar
  82. Sen IS, Bizimis M, Sen G (2010) Geochemistry of sulfides in Hawaiian garnet pyroxenite xenoliths: implications for highly siderophile elements in the oceanic mantle. Chem Geol 273:180–193CrossRefGoogle Scholar
  83. Shirey SB, Walker RJ (1998) The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Ann Rev Earth Planet Sci 26:423–500CrossRefGoogle Scholar
  84. Sigmarsson O, Condomines M, Bachèlery P (2005) Magma residence time beneath the Piton de la Fournaise Volcano, Réunion Island, from U-series disequilibria. Earth Planet Sci Lett 234:223–234CrossRefGoogle Scholar
  85. Skovgaard AC, Storey M, Baker J, Blusztajn J, Hart SR (2001) Osmium–oxygen isotopic evidence for a recycled and strongly depleted component in the Iceland mantle plume. Earth Planet Sci Lett 194:259–275CrossRefGoogle Scholar
  86. Staudacher T, Sarda P, Allègre CJ (1990) Noble gas systematics of Réunion Island, Indian Ocean. Chem Geol 89:1–17CrossRefGoogle Scholar
  87. Stieltjes L, Moutou P (1989) A statistical and probabilistic study of the historic activity of Piton de la Fournaise, Reunion Island, Indian Ocean. J Volcan Geotherm Res 36:67–86CrossRefGoogle Scholar
  88. Vlastélic I, Staudacher T, Semet M (2005) Rapid change of lava composition from 1998 to 2002 at Piton de la Fournaise (Réunion) inferred from Pb isotopes and trace elements: evidence for variable crustal contamination. J Petrol 46:79–107CrossRefGoogle Scholar
  89. Vlastélic I, Lewin E, Staudacher T (2006) Th/U and other geochemical evidence for the Reunion plume sampling a less differentiated mantle domain. Earth Planet Sci Lett 248:364–378CrossRefGoogle Scholar
  90. Vlastélic I, Peltier A, Staudacher T (2007) Short-term (1998–2006) fluctuations of Pb isotopes at Piton de la Fournaise volcano (Reunion Island): origins and constraints on the size and shape of the magma reservoir. Chem Geol 244:202–220CrossRefGoogle Scholar
  91. Vlastélic I, Deniel C, Bosq C, Télouk Ph, Boivin P, Bachèlery P, Famin V, Staudacher T (2009) Pb isotope geochemistry of Piton de la Fournaise historical lavas. J Volcan Geotherm Res 184:63–78CrossRefGoogle Scholar
  92. Völkening J, Walczyk T, Heumann K (1991) Osmium isotope ratio measurements by negative thermal ionisation mass spectrometry. Int J Mass Spectrom Ion Process 105:147CrossRefGoogle Scholar
  93. Walczyk T, Heumann KG (1993) Iridium ratio measurements by negative thermal ionization mass spectrometry and atomic weight of iridium. Int J Mass Spectrom Ion Process 123:139–147CrossRefGoogle Scholar
  94. White WM (1985) Sources of oceanic basalts: radiogenic isotope evidence. Geology 13:115–118CrossRefGoogle Scholar
  95. White WM, Hofmann AW (1982) Sr and Nd isotopic geochemistry of oceanic basalts and mantle evolution. Nature 296:821–825CrossRefGoogle Scholar
  96. White WM, Cheatham MM, Duncan RA (1990) Isotope geochemistry of Leg 115 basalts and inferences on the history of the Reunion mantle plume. Proc ODP Sci Results 115:53–62Google Scholar
  97. Widom E, Shirey SB (1996) Os isotope systematics in the Azores; implications for mantle plume sources. Earth Planet Sci Lett 142:451–465CrossRefGoogle Scholar
  98. Workman RK, Hart SR, Jackson M, Regelous M, Farley KA, Blusztajn J, Kurz MD, Staudigel H (2004) Recycled metasomatized lithosphere as the origin of the enriched mantle II (EM2) end-member: evidence from the Samoan volcanic chain. Geochem Geophys Geosyst. doi: 10.1029/2003GC000623 Google Scholar
  99. Yang HJ, Frey FA, Weis D, Giret A, Pyle D, Michon G (1998) Petrogenesis of the flood basalts forming the northern Kerguelen Archipelago: implications for the Kerguelen Plume. J Petrol 39:711–748CrossRefGoogle Scholar
  100. Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci Lett 14:493–571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • P. Schiano
    • 1
    • 2
    • 3
    • 6
    Email author
  • K. David
    • 1
    • 2
    • 3
    • 4
  • I. Vlastélic
    • 1
    • 2
    • 3
  • A. Gannoun
    • 1
    • 2
    • 3
  • M. Klein
    • 1
    • 2
    • 3
  • F. Nauret
    • 1
    • 2
    • 3
  • P. Bonnand
    • 1
    • 2
    • 3
    • 5
  1. 1.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.CNRS, UMR 6524, LMVClermont-FerrandFrance
  3. 3.IRD, R 163, LMVClermont-FerrandFrance
  4. 4.SUBATECH, UMR 6457, École des Mines de Nantes, CNRS/IN2P3Université de NantesNantes cedex 3France
  5. 5.Department of Earth SciencesThe Open UniversityMilton KeynesUK
  6. 6.Laboratoire Magmas et VolcansUniversité Blaise PascalClermont-Ferrand CedexFrance

Personalised recommendations