Advertisement

Contributions to Mineralogy and Petrology

, Volume 164, Issue 5, pp 731–745 | Cite as

Redox state of deep off-craton lithospheric mantle: new data from garnet and spinel peridotites from Vitim, southern Siberia

  • A. G. Goncharov
  • D. A. IonovEmail author
Original Paper

Abstract

Oxygen fugacity (fO2) affects melting, metasomatism, speciation of C–O–H fluids and carbon-rich phases in the upper mantle. fO2 of deep off-craton mantle is poorly known because garnet-peridotite xenoliths are rare in alkali basalts. We examine the redox and thermal state of the lithospheric mantle between the Siberian and North China cratons using new Fe3+/ΣFe ratios in garnet and spinel obtained by Mössbauer spectroscopy, major element data and PT estimates for 22 peridotite xenoliths as well as published data for 15 xenoliths from Vitim, Russia. Shallow spinel-facies mantle is more oxidized than deep garnet peridotites (average, −0.1 vs. −2.5 ΔlogfO2(FMQ)). For intermediate garnet–spinel peridotites, fO2 estimates from spinel-based oxybarometers are 1.5–3.2 ΔlogfO2(FMQ) lower than those from garnet-based oxybarometers. These rocks may be out of phase and chemical inter-mineral equilibrium because the spinel–garnet reaction and concomitant changes in mineral chemistry do not keep up with PT changes (e.g., lithospheric heating by recent volcanism) due to slow diffusion of trivalent cations and because gar-, gar-spl and spl-facies rocks may coexist on centimeter–meter scale. The spinel-based fO2 estimates may not be correct while garnet-based fO2 values provide conditions before the heating. The T (780–1,100 °C) and fO2 ranges of the Vitim xenoliths overlap those of coarse garnet and spinel cratonic peridotites. However, because of a higher geothermal gradient, the deepest Vitim garnet peridotites are more reduced (by 0.5–2.0 ΔlogfO2(FMQ)) than cratonic garnet peridotites at similar depths, and the “water maximum” conditions (>80 % H2O) in the off-craton mantle exist in a more shallow and narrow depth range (60–85 km) than in cratonic roots (100–170 km). The base of the off-craton lithospheric mantle (≥90 km) at 2.5 GPa and 1,150 °C has fO2 of −3.0 ∆logfO2(FMQ), with dominant CH4 and H2O and minor H2 in the fluid. Melting near the base of off-craton mantle lithosphere may be induced by increasing water share in migrating fluids due to oxidation of methane.

Keywords

Oxygen fugacity Off-craton lithosphere Mantle xenolith Garnet-spinel transition Garnet peridotite Central Asia 

Notes

Acknowledgments

AGG thanks I. Ashchepkov for donating Vitim xenoliths, L.-S. Doucet for logistic and technical assistance in St Etienne and D. Frost for providing a program for computing fluid compositions, and acknowledges a CMIRA fellowship of the French Rhône-Alpes region in 2010–2011 and funding from the Russian Foundation of Fundamental Research (RFBR grants 10-05-01017 and 11-05-00346). DAI acknowledges PNP grants from the French CNRS in 2011 and 2012.

Supplementary material

410_2012_767_MOESM1_ESM.zip (54 kb)
Supplementary material 1 (ZIP 54 kb)

References

  1. Amthauer G, Annersten H, Hafner SS (1976) The Mossbauer spectrum of 57Fe in silicate garnets. Z Kristallogr 143:14–55Google Scholar
  2. Ashchepkov IV, Dobretsov NL, Kalmanovich MA (1989) Garnet peridotite xenoliths from alkalic picritoid and basanitoid of the Vitim Plateau. Trans (Doklady) USSR Acad Sci, Earth Sci Sect 302(5):156–159Google Scholar
  3. Ashchepkov IV, André L, Downes H, Belyatsky BA (2011) Pyroxenites and megacrysts from Vitim picrite-basalts (Russia): Polybaric fractionation of rising melts in the mantle? J Asian Earth Sci 42(1–2):14–37. doi: 10.1016/j.jseaes.2011.03.004 CrossRefGoogle Scholar
  4. Ballhaus C, Berry RF, Green DH (1990) Oxygen fugacity controls in the earth’s upper mantle. Nature 348:437–440CrossRefGoogle Scholar
  5. Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Miner Petrol 107(1):27–40CrossRefGoogle Scholar
  6. Belonoshko AB, Saxena SK (1992) A unified equation of state for fluids of C-H-O-N-S-Ar composition and their mixtures up to very hugh temperatures and pressures. Geochim Cosmochim Acta 56:3611–3626CrossRefGoogle Scholar
  7. Berry AJ, Yaxley GM, Woodland AB, Foran GJ (2010) A XANES calibration for determining the oxidation state of iron in mantle garnet. Chem Geol 278(1–2):31–37. doi: 10.1016/j.chemgeo.2010.08.019 CrossRefGoogle Scholar
  8. Blundy JD, Brodholt JP, Wood BJ (1991) Carbon-fluid equilibria and the oxidation state of the upper mantle. Nature 349:321–324CrossRefGoogle Scholar
  9. Brandon AD, Draper DS (1996) Constraints on the origin of the oxidation state of mantle overlying subduction zones: an example from Simcoe, Washington, USA. Geochim Cosmochim Acta 60(10):1739–1749CrossRefGoogle Scholar
  10. Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378Google Scholar
  11. Burdett JK, Price GD, Price SL (1982) Role of the crystal-field theory in determining the structures of spinels. J Am Chem Soc 104(1):92–95CrossRefGoogle Scholar
  12. Canil D, O’Neill HSC (1996) Distribution of ferric iron in some upper-mantle assemblages. J Petrol 37(3):609–635. doi: 10.1093/petrology/37.3.609 CrossRefGoogle Scholar
  13. Dalton JA, Wood BJ (1993) The partitioning of Fe and Mg between olivine and carbonate and the stability of carbonate under mantle conditions. Contrib Mineral Petrol 114:501–509CrossRefGoogle Scholar
  14. Foley SF (2011) A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time. J Petrol 52(7–8):1363–1391. doi: 10.1093/petrology/egq061 CrossRefGoogle Scholar
  15. Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Ann Rev Earth Planet Sci 36:389-420. doi: 10.1146/annurev.earth.36.031207.124322 Google Scholar
  16. Frost DJ, Wood BJ (1997) Experimental measurements of the fugacity of CO2 and graphite/diamond stability from 35 to 77 kbar at 925 to 1650°C. Geochim Cosmochim Acta 61(8):1565–1574. doi: 10.1016/s0016-7037(97)00035-5 CrossRefGoogle Scholar
  17. Glaser SM, Foley SF, Günther D (1999) Trace element compositions of minerals in garnet and spinel peridotite xenoliths from the Vitim volcanic field, Transbaikalia, eastern Siberia. Lithos 48(1–4):263–285CrossRefGoogle Scholar
  18. Glebovitsky VA, Nikitina LP, Saltykova AK, Pushkarev YD, Ovchinnikov NO, Babushkina MS, Ashchepkov IV (2007) Thermal and chemical heterogeneity of the upper mantle beneath the Baikal-Mongolia territory. Petrologia 15(1):58–89CrossRefGoogle Scholar
  19. Goncharov AG, Ionov DA, Doucet LS (2012) Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet Sci Lett: (in press)Google Scholar
  20. Gudmundsson G, Wood BJ (1995) Experimental tests of garnet peridotite oxygen barometry. Contrib Miner Petrol 119:56–67CrossRefGoogle Scholar
  21. Herzberg C (2004) Geodynamic information in peridotite petrology. J Petrol 45(12):2507–2530CrossRefGoogle Scholar
  22. Höfer HE, Brey GP (2007) The iron oxidation state of garnet by electron microprobe: Its determination with the flank method combined with major-element analysis. Am Miner 92(5–6):873–885. doi: 10.2138/am.2007.2390 CrossRefGoogle Scholar
  23. Holland TJB, Powell R (1998) An internally-consistent thermodynamic dataset for phases of petrological interest. J Metamorph Geol 16:309–344CrossRefGoogle Scholar
  24. Ionov D (2002) Mantle structure and rifting processes in the Baikal-Mongolia region: geophysical data and evidence from xenoliths in volcanic rocks. Tectonophysics 351(1–2):41–60CrossRefGoogle Scholar
  25. Ionov DA (2004) Chemical variations in peridotite xenoliths from Vitim, Siberia: inferences for REE and Hf behaviour in the garnet facies upper mantle. J Petrol 45(2):343–367CrossRefGoogle Scholar
  26. Ionov DA, Wood BJ (1992) The oxidation state of subcontinental mantle: oxygen thermobarometry of mantle xenoliths from central Asia. Contrib Miner Petrol 111:179–193CrossRefGoogle Scholar
  27. Ionov DA, Ashchepkov IV, Stosch HG, Witt-Eickschen G, Seck HA (1993) Garnet peridotite xenoliths from the Vitim volcanic field, Baikal region: the nature of the garnet-spinel peridotite transition zone in the continental mantle. J Petrol 34(pt. 6):1141–1175Google Scholar
  28. Ionov DA, Harmon RS, France-Lanord C, Greenwood PB, Ashchepkov IV (1994) Oxygen isotope composition of garnet and spinel peridotites in the continental mantle: evidence from the Vitim xenolith suite, southern Siberia. Geochim Cosmochim Acta 58(5):1463–1470CrossRefGoogle Scholar
  29. Ionov DA, O’Reilly SY, Griffin WL (1997) Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem Geol 141:153–184CrossRefGoogle Scholar
  30. Ionov DA, Ashchepkov I, Jagoutz E (2005a) The provenance of fertile off-craton lithospheric mantle: Sr-Nd isotope and chemical composition of garnet and spinel peridotite xenoliths from Vitim, Siberia. Chem Geol 217(1–2):41–75CrossRefGoogle Scholar
  31. Ionov DA, Blichert-Toft J, Weis D (2005b) Hf isotope compositions and HREE variations in off-craton garnet and spinel peridotite xenoliths from central Asia. Geochim Cosmochim Acta 69(9):2399–2418CrossRefGoogle Scholar
  32. Ionov DA, Doucet LS, Ashchepkov IV (2010) Composition of the lithospheric mantle in the Siberian craton: New constraints from fresh peridotites in the Udachnaya-East kimberlite. J Petrol 51(11):2177–2210CrossRefGoogle Scholar
  33. Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71(1):202–218. doi: 10.1016/j.gca.2006.06.1611 CrossRefGoogle Scholar
  34. Klemme S (2004) The influence of Cr on the garnet-spinel transition in the Earth’s mantle: experiments in the system MgO-Cr2O3-SiO2 and thermodynamic modelling. Lithos 77(1–4):639–646CrossRefGoogle Scholar
  35. Köhler TP, Brey GP (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 kb with applications. Geochim Cosmochim Acta 54:2375–2388CrossRefGoogle Scholar
  36. Lazarov M, Woodland AB, Brey GP (2009) Thermal state and redox conditions of the Kaapvaal mantle: A study of xenoliths from the Finsch mine, South Africa. Lithos 112:913–923CrossRefGoogle Scholar
  37. Li Z, Ping JY, Jin MZ, Liu ML (2002) Distribution of Fe 2+ and Fe3+ and next-nearest neighbour effects in natural chromites: comparison between results of QSD and Lorentzian doublet analysis. Phys Chem Miner 29:485–494CrossRefGoogle Scholar
  38. Litasov KD, Foley SF, Litasov YD (2000) Magmatic modification and metasomatism of the subcontinental mantle beneath the Vitim volcanic field (East Siberia): evidence from trace element data on pyroxenite and peridotite xenoliths from Miocene picrobasalt. Lithos 54:83–114CrossRefGoogle Scholar
  39. Luth RW, Virgo D, Boyd FR, Wood BJ (1990) Ferric iron in mantle-derived garnets: implications for thermobarometry and for oxidation state of the mantle. Contrib Miner Petrol 104:56–72CrossRefGoogle Scholar
  40. McCammon C, Kopylova MG (2004) A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib Miner Petrol 148(1):55–68CrossRefGoogle Scholar
  41. McDonough WF, S-s Sun (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  42. Nickel KG, Green DH (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet Sci Lett 73:158–170CrossRefGoogle Scholar
  43. Nikitina L, Goncharov A, Saltykova A, Babushkina M (2010) The redox state of the continental lithospheric mantle of the Baikal-Mongolia region. Geochem Int 48(1):15–40. doi: 10.1134/s0016702910010027 CrossRefGoogle Scholar
  44. O’Neill HSC, Wall VJ (1987) The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earths upper mantle. J Petrol 28:1169–1191Google Scholar
  45. Pearson DG, Irvine GJ, Ionov DA, Boyd FR, Dreibus GE (2004) Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem Geol 208(1–4):29–59CrossRefGoogle Scholar
  46. Petit C, Déverchère J (2006) Structure and evolution of the Baikal rift: a synthesis. Geochem Geophys Geosyst 7:Q11016. doi: 11010.11029/12006GC001265 CrossRefGoogle Scholar
  47. Pogge von Strandmann PAE, Elliott T, Marschall HR, Coath C, Lai Y-J, Jeffcoate A, Ionov DA (2011) Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim Cosmochim Acta 75(18):5247–5268CrossRefGoogle Scholar
  48. Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics 38:279–296CrossRefGoogle Scholar
  49. Sobolev NV, Lavrent’ev YG, Pokhilenko NP, Usova LV (1973) Chrome-rich garnets from the kimberlites of yakutia and their parageneses. Contrib Miner Petrol 40(1):39–52. doi: 10.1007/bf00371762 CrossRefGoogle Scholar
  50. Stagno V, Frost DJ (2010) Carbon speciation in the asthenosphere: experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages. Earth Planet Sci Lett 300(1–2):72–84. doi: 10.1016/j.epsl.2010.09.038 CrossRefGoogle Scholar
  51. Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile Iherzolite and garnet websterite. N Jahrb Miner-Abh 172(2–3):381–408Google Scholar
  52. Ulmer P, Luth R (1991) The graphite-COH fluid equilibrium in P, T, fO2 space. An experimental determination to 30 kbar and 1600°C. Contrib Miner Petrol 106(3):265–272. doi: 10.1007/bf00324556 Google Scholar
  53. Van Orman JA, Crispin KL (2010) Diffusion in Oxides. Rev Miner Geochem 72:757–825CrossRefGoogle Scholar
  54. Van Orman JA, Grove TL, Shimizu N, Layne GD (2002) Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa. Contrib Mineral Petrol 142(6):416–424CrossRefGoogle Scholar
  55. Walter M, Katsura T, Kubo A, Shinmei T, Nishikawa O, Ito E, Lesher C, Funakoshi K (2002) Spinel-garnet lherzolite transition in the system CaO-MgO-Al2O3-SiO2 revisited: an in situ X-ray study. Geochim Cosmochim Acta 66(12):2109–2121CrossRefGoogle Scholar
  56. Webb SAC, Wood BJ (1986) Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio. Contrib Mineral Petrol 92:471–480CrossRefGoogle Scholar
  57. Wood BJ (1990) An experimental test of the spinel peridotite oxygen barometer. J Geophys Res 97:15845–15851CrossRefGoogle Scholar
  58. Wood BJ, Virgo D (1989) Upper mantle oxidation state: Ferric iron contents of Iherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacities. Geochim Cosmochim Acta 53(6):1277–1291CrossRefGoogle Scholar
  59. Wood BJ, Bryndzya LT, Johnson KE (1990) Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248:337–344CrossRefGoogle Scholar
  60. Woodland AB, Koch M (2003) Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet Sci Lett 214(1–2):295–310CrossRefGoogle Scholar
  61. Woodland AB, Peltonen P (1999) Ferric iron contents of garnet and clinopyroxene and estimated oxygen fugacities of peridotite xenoliths from the Eastern Finland Kimberlite Province. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds), In: Proceedings of 7th International Kimberlite Conference, vol 2. RedRoof Design, Cape Town, pp 904–911Google Scholar
  62. Woodland A, Ross C (1994) A crystallographic and mössbauer spectroscopy study of Fe. Phys Chem Miner 21(3):117–132CrossRefGoogle Scholar
  63. Woodland AB, Kornprobst J, Tabit A (2006) Ferric iron in orogenic lherzolite massifs and controls of oxygen fugacity in the upper mantle. Lithos 89(1–2):222–241CrossRefGoogle Scholar
  64. Yaxley GM, Berry AJ, Kamenetsky VS, Woodland AB, Golovin AV (2012) An oxygen fugacity profile through the Siberian Craton—Fe K-edge XANES determinations of Fe3+/∑Fe in garnets in peridotite xenoliths from the Udachnaya East kimberlite. Lithos 140–141:142–151. doi: 10.1016/j.lithos.2012.01.016 CrossRefGoogle Scholar
  65. Zorin YA, Novoselova MR, Turutanov EK, Kozhevnikov VM (1990) Structure of the lithosphere of the Mongolian-Siberian mountainous province. J Geodynamics 11:327–342CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Université J. Monnet (member of PRES—Université de Lyon)Saint-ÉtienneFrance
  2. 2.UMR6524-CNRSSaint-ÉtienneFrance
  3. 3.Institute of Precambrian Geology and Geochronology RASSaint-PetersburgRussia

Personalised recommendations