Advertisement

Contributions to Mineralogy and Petrology

, Volume 164, Issue 1, pp 81–99 | Cite as

Evidence for a Caledonian amphibolite to eclogite facies pressure gradient in the Middle Allochthon Lindås Nappe, SW-Norway

  • C. RoffeisEmail author
  • F. Corfu
  • H. Austrheim
Original Paper

Abstract

The Proterozoic anorthosite–mangerite–charnockite complex dominating the Lindås Nappe in the Scandinavian Caledonides was locally eclogitized in the southwestern part of the nappe during the Caledonian orogeny, whereas only amphibolite facies assemblages are recorded in the rest of the nappe. Sveconorwegian granulites of anorthositic to jotunitic composition in the northernmost eclogite-free exposures of the nappe exhibit large garnet phenoblasts (ca. 900°C) that are fractured and partly replaced by a Caledonian symplectitic amphibolite facies assemblage (ca. 515°C). Metamorphic zircon attributed to this garnet breakdown is dated by ID-TIMS U–Pb at 430 ± 3 Ma, suggesting that the amphibolite facies overprint was coeval with the formation of eclogite 30 km further south, probably implying that the section across the nappe represents a Caledonian pressure gradient. The rocks also preserve a complex Sveconorwegian history including an age of 969 ± 6 Ma, which we interpret as dating magmatic emplacement of jotunitic–anorthositic portions of the complex, 936 ± 12 Ma reflecting the granulite facies metamorphism, and 908 ± 16 Ma, representing a late generation of zircon best explained as having formed by metasomatic processes. Caledonian shearing severely deformed zircon grains in an amphibolite facies shear zone, resetting their U–Pb systems, and forming new ones, hereby also demonstrating a case of resetting and recrystallization of low-U zircon. Our data, gained from diverse lithologies, illustrate several processes involved in making and resetting zircon as well as indicate the contemporaneous evolution and similar origin of the Lindås Nappe and the Jotun Nappe Complex.

Keywords

Caledonides ID-TIMS U–Pb geochronology Zircon deformation Granulite 

Notes

Acknowledgments

The paper benefitted from careful reviews by Bernard Bingen and Johannes Glodny. We also want to thank Muriel Erambert for support and help with the Electron Microprobe work.

References

  1. Andersen TB, Andresen A (1994) Stratigraphy, tectonostratigraphy and the accretion of outboard terranes in the Caledonides of Sunnhordland, W-Norway. Tectonophysics 321:71–84CrossRefGoogle Scholar
  2. Andresen A, Færseth R (1982) An evolutionary model for the southwest Norwegian Caledonides. Am J Sci 282:756–782CrossRefGoogle Scholar
  3. Austrheim H (1987) Eclogitization of lower crustal granulites by fluid migration through shear zones. Earth Planet Sci Lett 81:221–232CrossRefGoogle Scholar
  4. Austrheim H, Griffin WL (1985) Shear deformation and eclogite formation within granulite-facies anorthosites of the Bergen Arcs, western Norway. Chem Geol 50:267–281CrossRefGoogle Scholar
  5. Austrheim H, Corfu F (2009) Formation of planar deformation features (PDFs) in zircon during coseismic faulting and an evaluation of potential effects on U-Pb systematics. Chem Geol 261:24–30. doi: 10.1016/j.chemgeo.2008.09.012 CrossRefGoogle Scholar
  6. Austrheim H, Erambert M, Boundy TM (1996) Garnets recording deep crustal earthquakes. Earth Planet Sci Lett 139:223–238CrossRefGoogle Scholar
  7. Bingen B, Austrheim H, Whitehouse M (2001a) Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of western Norway and implications for zircon geochronology. J Petrol 42:355–375. doi: 10.1093/petrology/42.2.355 CrossRefGoogle Scholar
  8. Bingen B, Davis WJ, Austrheim H (2001b) Zircon U-Pb geochronology in the Bergen arc eclogites and their Proterozoic protoliths, and implications for the pre-Scandian evolution of the Caledonides in western Norway. Geol Soc Am Bull 113:640–649CrossRefGoogle Scholar
  9. Bingen B, Austrheim H, Whitehouse MJ, Davis WJ (2004) Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W-Norway. Contrib Mineral Petrol 147:671–683. doi: 10.1007/s00410-004-0585-z CrossRefGoogle Scholar
  10. Bingen B, Nordgulen O, Viola G (2008) A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norw J Geol 88:43–72Google Scholar
  11. Birtel S, Altenberger U, Passchier CW (1998) Polyphase structural and metamorphic evolution of the Rossland shear zone at Holsnøy Island, a ductile nappe boundary in the Middle Allochthon of the Norwegian Caledonides. Zbl Geol Palaeo 1:19–44Google Scholar
  12. Bjornerud MG, Austrheim H, Lund MG (2002) Processes leading to eclogitization (densification) of subducted and tectonically burried crust. J Geophys Res Solid Earth 107:B10. doi: 10.1029/2001JB000527 CrossRefGoogle Scholar
  13. Boundy TM, Essene EJ, Hall CM, Austrheim H, Halliday AN (1996) Rapid exhumation of lower crust during continent–continent collision and late extension: Evidence from Ar-40/Ar-39 incremental heating of hornblendes and muscovites, Caledonian orogen, western Norway. Geol Soc Am Bull 108:1425–1437CrossRefGoogle Scholar
  14. Boundy TM, Mezger K, Essene EJ (1997) Temporal and tectonic evolution of the granulite-eclogite association from the Bergen Arcs, western Norway. Lithos 39:159–178CrossRefGoogle Scholar
  15. Burton KW, Kohn MJ, Cohen AS, O’Nions RK (1995) The relative diffusion of Pb, Nd, Sr and O in garnet. Earth Planet Sci Lett 133:199–211CrossRefGoogle Scholar
  16. Camacho A, Lee JKW, Hensen BJ, Braun J (2005) Short-lived orogenic cycles and the eclogitization of cold crust by spasmodic hot fluids. Nature 435:1191–1196. doi: 10.1038/nature03643 CrossRefGoogle Scholar
  17. Cohen AS, O’Nions RK, Siegenthaler R, Griffin WL (1988) Chronology of the pressure-temperature history recorded by a granulite terrain. Contrib Mineral Petrol 98:303–311CrossRefGoogle Scholar
  18. Corfu F, Andersen TB (2002) U-Pb ages of the Dalsfjord Complex, SW Norway, and their bearing on the correlation of allochthonous crystalline segments of the Scandinavian Caledonides. Int J Earth Sci 91:955–963. doi: 10.1007/s00531-002-0298-3 CrossRefGoogle Scholar
  19. Corfu F, Heim M (2011) U-Pb geochronology of the Southern Scandinavian Caledonides: the Mesoproterozoic Espedalen anorthosite-gabbro-norite massif and associated rocks. Mineral Mag 75:695Google Scholar
  20. Dubinska E, Bylina P, Kozlowski A, Doerr W, Nejbert K, Schastok J, Kulicki C (2004) U-Pb dating of serpentinization: hydrothermal zircon from a metasomatic rodingite shell (Sudetic ophiolite, SW Poland). Chem Geol 203:183–203. doi: 10.1016/j.chemgeo.2003.10.005 CrossRefGoogle Scholar
  21. Erambert M, Austrheim H (1993) The effect of fluid and deformation on zoning and inclusion patterns in poly-metamorphic garnets. Contrib Mineral Petrol 115:204–214. doi: 10.1007/bf00321220 CrossRefGoogle Scholar
  22. Fossen H (1992) The role of extensional tectonics in the Caledonides of South Norway. J Struct Geol 14:1033–1046CrossRefGoogle Scholar
  23. Fossen H (2000) Extensional tectonics in the Caledonides: Synorogenic or postorogenic? Tectonics 19:213–224CrossRefGoogle Scholar
  24. Gee DG, Kumpulainen R, Roberts D, Stephens MB, Thon A, Zachrisson E (1985) Scandinavian Caledonides tectonostratigraphic map. In: Gee DG, Sturt BA (eds) The Caledonide Orogen-Scandinavia and related areas. Wiley, Chichester, p 1266Google Scholar
  25. Glodny J, Kuehn A, Austrheim H (2008) Geochronology of fluid-induced eclogite and amphibolite facies metamorphic reactions in a subduction-collision system, Bergen Arcs, Norway. Contrib Mineral Petrol 156:27–48. doi: 10.1007/s00410-007-0272-y CrossRefGoogle Scholar
  26. Goldschmidt V (1916) Geologisch-petrographische Studien im Hochgebirge des südlichen Norwegens. Uebersicht der Eruptivgesteine im kaledonischen Gebirge zwischen Stavanger und Trondhjem. In: Videnskapsselsk Skrift I, vol Mat-Naturv Kl 2, pp 1–140Google Scholar
  27. Griffin WL (1972) Formation of eclogites and the coronas in anorthosites, Bergen Arcs, Norway. Geol Soc Am Mem 135:37–63Google Scholar
  28. Harlov DE, Forster HJ (2002) High-grade fluid metasomatism on both a local and a regional scale: the Seward Peninsula, Alaska, and the Val Strona di Omegna, Ivrea-Verbano zone, northern Italy. part II: phosphate mineral chemistry. J Petrol 43:801–824. doi: 10.1093/petrology/43.5.801 CrossRefGoogle Scholar
  29. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and -238U. Phys Rev C Nucl Phys 4:1889–1906CrossRefGoogle Scholar
  30. Jamtveit B, Bucher-Nurminen K, Austrheim H (1990) Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen Arcs, Western Norway. Contrib Mineral Petrol 104:184–193CrossRefGoogle Scholar
  31. Jolivet L, Raimbourg H, Labrousse L, Avigad D, Leroy Y, Austrheim H, Andersen TB (2005) Softening trigerred by eclogitization, the first step toward exhumation during continental subduction. Earth Planet Sci Lett 237:532–547. doi: 10.1016/j.epsl.2005.06.047 CrossRefGoogle Scholar
  32. Kolderup CF, Kolderup NH (1940) Geology of the Bergen arc system. Bergens Museum Skrifter 20:1–137Google Scholar
  33. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  34. Krogh TE (1982) Improved accuracy of U-Pb zircon dating by selection of more concordant fractions using a high-gradient magnetic separation technique. Geochim Cosmochim Acta 46:631–635CrossRefGoogle Scholar
  35. Kuehn A, Glodny J, Iden K, Austrheim H (2000) Retention of Precambrian Rb/Sr phlogopite ages through Caledonian eclogite facies metamorphism, Bergen Arc Complex, W-Norway. Lithos 51:305–330CrossRefGoogle Scholar
  36. Kuehn A, Glodny J, Austrheim H, Raheim A (2002) The Caledonian tectono-metamorphic evolution of the Lindas Nappe: constraints from U-Pb, Sm-Nd and Rb-Sr ages of granitoid dykes. Norw J Geol 82:45–57Google Scholar
  37. Kylander-Clark ARC, Hacker BR, Johnson CM, Beard BL, Mahlen NJ (2009) Slow subduction of a thick ultrahigh-pressure terrane. Tectonics 28. doi: 10.1029/2007tc002251
  38. Ludwig KR (2009) Isoplot 4.1. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Spec Publ 4:76Google Scholar
  39. Lundmark AM, Corfu F (2008) Late-orogenic Sveconorwegian massif anorthosite in the Jotun Nappe Complex, SW Norway, and causes of repeated AMCG magmatism along the Baltoscandian margin. Contrib Mineral Petrol 155:147–163. doi: 10.1007/s00410-007-0233-5 CrossRefGoogle Scholar
  40. Lundmark AM, Corfu F, Spuergin S, Selbekk RS (2007) Proterozoic evolution and provenance of the high-grade Jotun Nappe Complex, SW Norway: U-Pb geochronology. Precambrian Res 159:133–154. doi: 10.1016/j.precamres.2006.12.015 CrossRefGoogle Scholar
  41. Mattinson JM (2005) Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220:47–66. doi: 10.1016/j.chemgeo.2005.03.011 CrossRefGoogle Scholar
  42. Milnes AG, Wennberg OP (1997) Tektonisk utvinkling av Bergensområdet (Tectonic evolution of the Bergen area). Geonytt 1–4Google Scholar
  43. Morrison DA, Davis DW, Wooden JL, Bogard DD, Maczuga DE, Phinney WC, Ashwal LD (1985) Age of the Mulcahy Lake Intrusion, Northwest Ontario, and implications for the evolution of greenstone-granite terrains. Earth Planet Sci Lett 73:306–316. doi: 10.1016/0012-821x(85)90079-2 CrossRefGoogle Scholar
  44. Moser DE, Cupelli CL, Barker IR, Flowers RM, Bowman JR, Wooden J, Hart JR (2011) New zircon shock phenomena and their use for dating and reconstruction of large impact structures revealed by electron nanobeam (EBSD, CL, EDS) and isotopic U-Pb and (U-Th)/He analysis of the Vredefort dome. Can J Earth Sci 48:117–139. doi: 10.1139/e11-011 CrossRefGoogle Scholar
  45. Ragnhildstveit J, Helliksen D (1997) Geological map of Norway, bedrock map Bergen. Norges Geologiske Undersøkelse, scale 1:250000Google Scholar
  46. Raimbourg H, Jolivet L, Leroy Y (2007) Consequences of progressive eclogitization on crustal exhumation, a mechanical study. Geophys J Intern 168:379–401. doi: 10.1111/j.1365-246X.2006.03130.x CrossRefGoogle Scholar
  47. Ramberg IB, Bryhni I, Nøttvedt A, Rangnes K (2008) The making of a land, geology of Norway. TrondheimGoogle Scholar
  48. Ravna EK (2000) The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration. J Metam Geol 18:211–219CrossRefGoogle Scholar
  49. Roberts D (2003) The Scandinavian Caledonides: event chronology, palaeogeographic settings and likely, modern analogues. Tectonophysics 365:283–299. doi: 10.1016/s0040-1951(03)00026-x CrossRefGoogle Scholar
  50. Scoates JS, Chamberlain KR (1997) Orogenic to post-orogenic origin for the 1.76 Ga Horse Creek anorthosite complex, Wyoming. USA J Geol 105:331–343CrossRefGoogle Scholar
  51. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a 2-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  52. Stephens MB, Gee DG (1985) A tectonic model for the evolution of the eugeoclinal terranes in the central Scandinavian Caledonides. In: Gee DG, Sturt, BA (ed) The Caledonide Orogen: Scandinavia and related Areas, vol 2. Wiley, Hoboken, pp 953–978Google Scholar
  53. Tomkins HS, Williams IS, Ellis DJ (2005) In situ U-Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway. J Metam Geol 23:201–215. doi: 10.1111/j.1525-1314.2005.00572.x CrossRefGoogle Scholar
  54. Torsvik TH, Smethurst MA, Meert JG, Van der Voo R, McKerrow WS, Brasier MD, Sturt BA, Walderhaug HJ (1996) Continental break-up and collision in the Neoproterozoic and Palaeozoic—a tale of Baltica and Laurentia. Earth-Sci Rev 40:229–258. doi: 10.1016/0012-8252(96)00008-6 CrossRefGoogle Scholar
  55. Wennberg OP, Milnes AG, Winsvold I (1998) The northern Bergen Arc Shear Zone—an oblique-lateral ramp in the Devonian extensional detachment system of western Norway. Norsk Geol Tidsskr 78:169–184Google Scholar
  56. Wennberg OP, Skjerlie KP, Dilek Y (2001) Field relationships and geochemistry of the Ostereide Dykes, Western Norway: implications for Caledonian tectonometamorphic evolution. Norsk Geol Tidsskr 81:305–320Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of OsloOsloNorway
  2. 2.Physics of Geological ProcessesUniversity of OsloOsloNorway

Personalised recommendations