Contributions to Mineralogy and Petrology

, Volume 163, Issue 6, pp 1011–1031 | Cite as

Trace element and Pb–B–Li isotope systematics of olivine-hosted melt inclusions: insights into source metasomatism beneath Stromboli (southern Italy)

  • Federica SchiaviEmail author
  • Katsura Kobayashi
  • Eizo Nakamura
  • Massimo Tiepolo
  • Riccardo Vannucci
Original Paper


We studied the elemental and isotopic (Pb, B and Li isotopes) composition of melt inclusions hosted in highly forsteritic (Fo83–91) olivines that were collected from San Bartolo lava and pumice (ST79p, ST82p and ST531p) samples erupted by Stromboli in historical times. The studied melt inclusions have primitive calcalkaline to shoshonitic basaltic compositions. They cover a compositional range far wider than that exhibited by the whole-rocks and differ in key trace element ratios. San Bartolo melt inclusions are characterized by lower incompatible trace element abundances, higher ratios between fluid-mobile (B, Pb, U and LILE) and less fluid-mobile (REE, Th, HFSE) elements and lower La/Yb ratios relative to the pumice-hosted melt inclusions and pumiceous melts erupted during paroxysmal events. Trace elements, along with different Pb, B and Li isotopic signatures, attest to source heterogeneity on the small scale and provide new insights into subducted components beneath Stromboli. Results of a mixing model suggest that metasomatism of the mantle source of pumice-hosted melt inclusions was driven by solute-rich high-pressure fluids (<20%) expelled from the deep portion of the slab. Heterogeneous Pb isotopic composition together with light δ11B (−8.6 to −13.7‰) and δ7Li (+2.3 to −1.7‰) indicates that high-pressure liquids were released in variable proportions from highly dehydrated metabasalts and metasediments. On the other hand, the elemental and isotopic (δ11B ~ −1.9 to −5.9‰) composition of San Bartolo melt inclusions is better explained by the addition of a prevalent aqueous component (~2 to 4%) escaped at shallower depths from sediments and altered basaltic crust in almost equivalent proportions, with a smaller contribution by high-pressure fluids. Owing to the high-angle dip of the subducted cold Ionian slab, aqueous fluids and high-pressure fluids would rise through the mantle wedge and locally superimpose on each other, thus giving origin to variously metasomatized mantle domains.


Stromboli Subduction Melt inclusions Trace elements Lead isotopes Light element isotopes 



We are indebted to A. Bertagnini and N. Métrich for providing samples and electron microprobe analyses, and for valuable discussions and suggestions. F.S. and R.V. are thankful to COE-21 (Japan) and the scientific and administrative staff of ISEI for providing the opportunity to conduct research in the PML laboratory. We gratefully acknowledge T. Akalu, A. Makishima, M. Marín-Cerón, L. Ottolini, M. Palenzona, M. Pompilio, C. Sakaguchi, R. Tanaka, and A. Zanetti for providing laboratory assistance, for carrying out XRF, ICP-QMS and SIMS-4f analyses, and for collaboration through scientific discussions. S. Aulbach and P. Tomascak are warmly acknowledged for their careful and constructive reviews, which considerably improved the early version of this paper. This research was supported by MIUR, CNR (Italy) and COE-21 (Japan) funds.

Supplementary material

410_2011_713_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (DOC 2,263 kb)
410_2011_713_MOESM2_ESM.xls (42 kb)
Supplementary material 2 (XLS 42 kb)
410_2011_713_MOESM3_ESM.xls (46 kb)
Supplementary material 3 (XLS 46 kb)
410_2011_713_MOESM4_ESM.xls (32 kb)
Supplementary material 4 (XLS 32 kb)


  1. Armienti P, Tonarini S, D’orazio M, Innocenti F (2004) Genesis and evolution of Mt. Etna alkaline lavas: Petrological and Sr-Nd-B isotope constraints. Per Min 73(Special Issue):29–52Google Scholar
  2. Bertagnini A, Métrich N, Landi P, Rosi M (2003) Stromboli volcano (Aeolian Archipelago, Italy): an open window on the deep feeding system of a steady state basaltic volcano. J Geophys Res 108:B72336. doi: 10.1029/2002JB002146 CrossRefGoogle Scholar
  3. Bertagnini A, Métrich N, Francalanci L, Landi P, Tommasini S, Conticelli S (2008) Volcanology and magma geochemistry of the present-day activity: constraints on the feeding system. In: Calvari S et al. (eds) The Stromboli volcano: an integrated study of the 2002–2003 eruption. Geophys Monogr Ser 182:19–37. AGU, WashingtonGoogle Scholar
  4. Bouman C, Elliott T, Vroon PZ (2004) Lithium inputs to subduction zones. Chem Geol 212:59–79CrossRefGoogle Scholar
  5. Brooker RA, James RH, Blundy JD (2004) Trace elements and Li isotope systematics in Zabargad peridotites: evidence of ancient subduction processes in the Red Sea mantle. Chem Geol 212:179–204CrossRefGoogle Scholar
  6. Cadoux A, Blichert-Toft J, Pinti DL, Albarède F (2007) A unique lower mantle source for Southern Italy volcanics. Earth Planet Sci Lett 259:227–238CrossRefGoogle Scholar
  7. Caggianelli A, Del Moro A, Paglionico A, Piccarreta G, Pinarelli L, Rottura A (1991) Lower crustal granite genesis connected with chemical fractionation in the continental crust of Calabria (Southern Italy). Eur J Mineral 3:159–180Google Scholar
  8. Calanchi N, Peccerillo A, Tranne C, Lucchini F, Rossi PL, Kempton P, Barbieri W, Woo TW (2002) Petrology and geochemistry of volcanic rocks from the island of Panarea: implications for mantle evolution beneath the Aeolian island arc (Southern Tyrrhenian Sea). J Volcanol Geotherm Res 115:367–395CrossRefGoogle Scholar
  9. Carter SR, Civetta L (1977) Genetic implications of the isotope and trace element variations in the eastern Sicilian volcanics. Earth Planet Sci Lett 36:168–180CrossRefGoogle Scholar
  10. Chan LH, Alt JC, Teagle DAH (2002) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP sites 504B and 896A. Earth Planet Sci Lett 201:187–201CrossRefGoogle Scholar
  11. Chan LH, Leeman W, Plank T (2006) Lithium isotopic composition of marine sediments. Geochem Geophys Geosyst 7(6). doi: 10.1029/2005GC001202
  12. Chaussidon M, Albarede F (1992) Secular boron isotope variations in the continental crust: an ion microprobe study. Earth Planet Sci Lett 108:229–241CrossRefGoogle Scholar
  13. Chaussidon M, Marty B (1995) Primitive boron isotope composition of the mantle. Science 269:383–386CrossRefGoogle Scholar
  14. Chauvel C, Goldstein SL, Hofmann AW (1995) Hydration and dehydration of oceanic crust controls Pb evolution in the mantle. Chem Geol 126:65–75CrossRefGoogle Scholar
  15. Chiarabba C, De Gori P, Speranza F (2008) The southern Tyrrhenian subduction zone: deep geometry, magmatism and Plio-Pleistocene evolution. Earth Planet Sci Lett 268:408–423CrossRefGoogle Scholar
  16. Clift PD, Rose EF, Shimizu N, Layne GD, Draut AE, Regelous M (2001) Tracing the evolving flux from the subducting plate in the Tonga-Kermadec arc system using boron in volcanic glass. Geochim Cosmochim Acta 65(19):3347–3364CrossRefGoogle Scholar
  17. Corsaro R, Cristofolini R (1993) Nuovi dati petrochimici ed isotopici sulla successione del Mongibello Recente (M. Etna). Boll Acc Gioenia Sci Nat 26:185–225Google Scholar
  18. D’Antonio M, Civetta L, Orsi G, Pappalardo L, Piochi M, Carandente A, de Vita S, Di Vito MA, Isaia R (1999) The present state of the magmatic system of the Campi Flegrei caldera based on a reconstruction of its behavior in the past 12 ka. J Volcanol Geotherm Res 91:247–268CrossRefGoogle Scholar
  19. D’Orazio M, Tonarini S, Innocenti F, Pompilio M (1997) Northern Valle del Bove volcanic succession (Mt. Etna, Sicily): petrography, geochemistry and Sr–Nd isotope data. Acta Vulcanol 9:73–86Google Scholar
  20. Danyushevsky LV, Della Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138:68–83CrossRefGoogle Scholar
  21. De Astis G, Peccerillo A, Kempton PD, La Volpe L, Wu TW (2000) Transition from calc-alkaline to potassium-rich magmatism in subduction environments: geochemical and Sr, Nd, Pb isotopic constraints from the island of Vulcano (Aeolian arc). Contrib Mineral Petrol 139:684–703CrossRefGoogle Scholar
  22. De Astis G, Kempton PD, Peccerillo A, Wu TW (2006) Trace element and isotopic variations from Mt. Vulture to Campanian volcanoes: constraints for slab detachment and mantle inflow beneath southern Italy. Contrib Mineral Petrol 151:331–351CrossRefGoogle Scholar
  23. Di Carlo I, Pichavant M, Rotolo S, Scaillet B (2006) Experimental crystallization of a high-K arc basalt: the golden pumice, Stromboli volcano (Italy). J Petrol 47:1317–1343CrossRefGoogle Scholar
  24. Edwards CMH, Morris JD, Thirlwall MF (1993) Separating mantle from slab signatures in arc lavas using B/Be and radiogenic isotope systematics. Nature 362:530–533CrossRefGoogle Scholar
  25. Ellam RM, Hawkesworth CJ, Menzies MA, Rogers NW (1989) The volcanism of Southern Italy: role of subduction and the relationship between potassic and sodic alkaline magmatism. J Geophys Res 94:4589–4601CrossRefGoogle Scholar
  26. Francalanci L, Manetti P, Peccerillo A (1989) Volcanological and magmatological evolution of Stromboli volcano (Aeolian Islands): the roles of fractional crystallization, magma mixing, crustal contamination and source heterogeneity. Bull Volcanol 51:355–378CrossRefGoogle Scholar
  27. Francalanci L, Taylor SR, McCulloch MT, Woodhead JD (1993) Geochemical and isotopic variations in the calc-alkaline rocks of Aeolian arc, southern Tyrrhenian Sea, Italy: constraints on magma genesis. Contrib Mineral Petrol 113(3):300–313CrossRefGoogle Scholar
  28. Francalanci L, Tommasini S, Conticelli S, Davies GR (1999) Sr isotope evidence for short magma residence time for the 20th century activity at Stromboli volcano, Italy. Earth Planet Sci Lett 167:61–69CrossRefGoogle Scholar
  29. Francalanci L, Avanzinelli R, Petrone CM, Santo A (2004) Petrochemical and magmatological characteristics of the Aeolian Arc volcanoes, southern Tyrrhenian Sea, Italy: inferences on shallow level processes and magma source variations. Per Mineral 73:75–104Google Scholar
  30. Francalanci L, Avanzinelli R, Tommasini S, Heuman A (2007) A west-east geochemical and isotopic traverse along the volcanism of the Aeolian Island arc, southern Tyrrhenian Sea, Italy: inferences on mantle source processes. In: Beccaluva L, Bianchini G, Wilson M (eds) Cenozoic volcanism in the Mediterranean area, GSA special papers 418:235–263. doi: 10.1130/2007.2418(12)
  31. Gasparini C, Iannaccone G, Scandone P, Scarpa R (1982) Seismotectonics of the Calabrian Arc. Tectonophysics 84:267–286CrossRefGoogle Scholar
  32. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212CrossRefGoogle Scholar
  33. Gioncada A, Mazzuoli R, Bisson M, Pareschi MT (2003) Petrology of volcanic products younger than 42 ka on the Lipari-Vulcano complex (Aeolian Islands, Italy): an example of volcanism controlled by tectonics. J Volcanol Geotherm Res 122:191–220CrossRefGoogle Scholar
  34. Hart SR (1984) A large-scale isotope anomaly in the southern hemisphere mantle. Nature 309:753–757CrossRefGoogle Scholar
  35. Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F (1993) Mantle and slab contributions in arc magmas. Annu Rev Earth Planet Sci 21:175–204CrossRefGoogle Scholar
  36. Hawkesworth CJ, Turner SP, McDermott F, Peate DW, van Calsteren P (1997) U–Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science 276:551–555CrossRefGoogle Scholar
  37. Hermann J, Spandler CJ (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49(4):717–740CrossRefGoogle Scholar
  38. Hornig-Kjarsgaard I, Keller J, Koberski U, Stadbauer E, Francalanci L, Lenhart R (1993) Geology, stratigraphy and volcanological evolution of the island of Stromboli, Aeolian Arc, Italy. Acta Vulcanol 3:21–68Google Scholar
  39. Ishikawa T, Nakamura E (1993) Boron isotope systematics of marine sediments. Earth Planet Sci Lett 117:567–580CrossRefGoogle Scholar
  40. Kawamoto T (2006) Hydrous phases and water transport in the subducting slab. In: Keppler H, Smyth JR (eds) Water in nominally anhydrous minerals, vol 62. Rev Mineral Geochem. Mineralogical Society of America, Washington, pp 273–289Google Scholar
  41. Keppler H (1996) Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380:237–240CrossRefGoogle Scholar
  42. Kessel R, Schmidt MW, Ulmer P, Pettke T (2005a) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727CrossRefGoogle Scholar
  43. Kessel R, Ulmer P, Pettke T, Schmidt MW, Thompson AB (2005b) Experimental determination of phase relations and second critical endpoint in K-free eclogite-H2O at 4 to 6 GPa and 700 to 1400°C. Earth Planet Sci Lett 237:873–892CrossRefGoogle Scholar
  44. Kobayashi K, Tanaka R, Moriguti T, Shimizu K, Nakamura E (2004) Lithium, boron and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume. Chem Geol 212:143–161CrossRefGoogle Scholar
  45. Laiolo M, Cigolini C (2006) Mafic and ultramafic xenoliths in San Bartolo lava field: new insights on the ascent and storage of Stromboli magmas. Bull Volcanol 68:653–670CrossRefGoogle Scholar
  46. Landi P, Corsaro RA, Francalanci L, Civetta L, Miraglia L, Pompilio M, Tesoro R (2009) Magma dynamics during the 2007 Stromboli eruption (Aeolian Islands, Italy): mineralogical, geochemical and isotopic data. J Volcanol Geotherm Res 182:255–268CrossRefGoogle Scholar
  47. Langmuir CH, Vocke RD, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37:380–392CrossRefGoogle Scholar
  48. Leeman WP, Tonarini S, Chan LH, Borg LE (2004) Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chem Geol 212:101–124CrossRefGoogle Scholar
  49. Maclennan J (2008) Lead isotope variability in olivine-hosted melt inclusions from Iceland. Geochim Cosmochim Acta 72:4159–4176CrossRefGoogle Scholar
  50. Makishima A, Nakamura E (2006) Determination of major, minor and trace elements in silicate samples by ICP-QMS and ICP-SFMS applying Isotope Dilution-Internal Standardisation (ID-IS) and Multi-Stage Internal Standardisation. Geostand Geoanal Res 30(3):245–271CrossRefGoogle Scholar
  51. Manning CE (2004) The chemistry of subduction-zone fluids. Earth Planet Sci Lett (Front) 223:1–16CrossRefGoogle Scholar
  52. Marschall HR, Altherr R, Rüpke L (2007a) Squeezing out the slab—modelling the release of Li, Be and B during progressive high-pressure metamorphism. Chem Geol 239:323–335CrossRefGoogle Scholar
  53. Marschall HR, Pogge von Strandmann PAE, Seitz HM, Elliott T, Niu Y (2007b) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262:563–580CrossRefGoogle Scholar
  54. Métrich N, Bertagnini A, Landi P, Rosi M (2001) Crystallization driven by decompression and water loss at Stromboli Volcano (Aeolian Islands, Italy). J Petrol 42(8):1471–1490CrossRefGoogle Scholar
  55. Métrich N, Bertagnini A, Di Muro A (2010) Conditions of magma storage, degassing and ascent at Stromboli: new insights into the volcano plumbing system with inferences on the eruptive dynamics. J Petrol 51(3):603–626CrossRefGoogle Scholar
  56. Moran AE, Sisson VB, Leeman WP (1992) Boron depletion during progressive metamorphism: implications for subduction processes. Earth Planet Sci Lett 111:331–349CrossRefGoogle Scholar
  57. Moriguti T, Nakamura E (1998) Across-arc variation of Li isotopes in arc lavas and implications for crust/mantle recycling at subduction zones. Earth Planet Sci Lett 163:167–174CrossRefGoogle Scholar
  58. Moriguti T, Shibata T, Nakamura E (2004) Lithium, boron and lead isotope and trace element systematics of quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab-derived fluid composition. Chem Geol 212:81–100CrossRefGoogle Scholar
  59. Mukasa SB, Shervais JW, Wilshire HG, Nielson JE (1991) Intrinsic Nd, Pb, and Sr isotopic heterogeneities exhibited by the Lherz Alpine Peridotite Massif, French Pyrenees. J Petrol (Special Lherzolites Issue):117–134Google Scholar
  60. Nakamura E, Kushiro I (1998) Trace element diffusion in jadeite and diopside melts at high pressures and its geochemical implication. Geochim Cosmochim Acta 62(18):3151–3160CrossRefGoogle Scholar
  61. Nakano T, Nakamura E (2001) Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Phys Earth Planet Inter 127:233–252CrossRefGoogle Scholar
  62. Ottolini L, Le Fèvre B, Vannucci R (2004) Direct assessment of mantle boron and lithium contents and distribution by SIMS analyses of peridotite minerals. Earth Planet Sci Lett 228:19–36CrossRefGoogle Scholar
  63. Palme H, O’Neill HC (2004) Cosmochemical estimates of mantle composition. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry, vol 2. Elsevier, Amsterdam, pp 1–38Google Scholar
  64. Panza GF, Peccerillo A, Aoudia A, Farina B (2007) Geophysical and petrological modelling of the structure and composition of the crust and upper mantle in complex geodynamic settings: the Tyrrhenian Sea and surroundings. Earth Sci Rev 80:1–46CrossRefGoogle Scholar
  65. Pasquale V, Verdoya M, Chiozzi P (2005) Thermal structure of the Ionian slab. Pure Appl Geophys 162:967–986CrossRefGoogle Scholar
  66. Peacock SM, Hervig RL (1999) Boron isotopic composition of subduction-zone metamorphic rocks. Chem Geol 160:281–290CrossRefGoogle Scholar
  67. Peccerillo A (2001) Geochemical similarities between the Vesuvius, Phlegraean Fields and Stromboli volcanoes: petrogenetic, geodynamic and volcanological implications. Min Petrol 73:93–105CrossRefGoogle Scholar
  68. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamorum area, Northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  69. Peccerillo A, Wu TW (1992) Evolution of calc-alkaline magmas in continental arc volcanoes: evidence from Alicudi, Aeolian arc (Southern Tyrrhenian Sea, Italy). J Petrol 33:1295–1315Google Scholar
  70. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394CrossRefGoogle Scholar
  71. Rehkamper M, Hofmann AW (1997) Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet Sci Lett 147:93–106CrossRefGoogle Scholar
  72. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289CrossRefGoogle Scholar
  73. Rose EF, Shimizu N, Layne GD, Grove TL (2001) Melt production beneath Mt. Shasta from boron data in primitive melt inclusions. Science 293:281–283CrossRefGoogle Scholar
  74. Rosenbaum JM, Wilson M, Downes H (1997) Multiple enrichment of the Carpathian-Pannonian mantle: Pb–Sr–Nd isotope and trace element constraints. J Geophys Res 102(B7):14947–14961CrossRefGoogle Scholar
  75. Rosi M, Bertagnini A, Landi P (2000) Onset of the persistent activity at Stromboli Volcano (Italy). Bull Volcanol 62:294–300CrossRefGoogle Scholar
  76. Rottura A, Del Moro A, Pinarelli L, Petrini R, Peccerillo A, Caggianelli A, Bargossi GM, Piccarreta G (1991) Relationships between intermediate and acidic rocks in orogenic granitoid suites: petrological, geochemical and isotopic (Sr, Nd, Pb) data from Capo Vaticano (southern Calabria, Italy). Chem Geol 92:153–176CrossRefGoogle Scholar
  77. Salvioli Mariani E, Renzulli A, Serri G, Holm PM, Toscani L (2005) Glass-bearing crustal xenoliths (buchites) erupted during the recent activity of Stromboli (Aeolian Islands). Lithos 81:255–277CrossRefGoogle Scholar
  78. Santo AP, Jacobsen SB, Baker J (2004) Evolution and genesis of calc-alkaline magmas at Filicudi volcano, Aeolian arc (southern Tyrrhenian Sea, Italy). Lithos 72:73–96CrossRefGoogle Scholar
  79. Schiavi F, Kobayashi K, Moriguti T, Nakamura E, Pompilio M, Tiepolo M, Vannucci R (2010) Degassing, crystallization and eruption dynamics at Stromboli: trace element and lithium isotopic evidence from 2003 ashes. Contrib Mineral Petrol 159:541–561CrossRefGoogle Scholar
  80. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379CrossRefGoogle Scholar
  81. Smith HJ, Spivack AJ, Staudigel H, Hart SR (1995) The boron isotopic composition of altered oceanic crust. Chem Geol 126:119–135CrossRefGoogle Scholar
  82. Speranza F, Pompilio M, Sagnotti L (2004) Paleomagnetism of spatter lavas from Stromboli volcano (Aeolian Islands, Italy): implications for the age of paroxysmal eruptions. Geophys Res Lett 31:L02607. doi: 10.1029/2003GL018944 CrossRefGoogle Scholar
  83. Speranza F, Pompilio M, D’Ajello Caracciolo F, Sagnotti L (2008) Holocene eruptive history of the Stromboli volcano: constraints from paleomagnetic dating. J Geophys Res 113:B09101. doi: 10.1029/2007JB005139 CrossRefGoogle Scholar
  84. Staudigel H, Davies GR, Hart SR, Marchant KM, Smith BM (1995) Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418. Earth Planet Sci Lett 130:169–185CrossRefGoogle Scholar
  85. Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst 6(5):Q05007. doi: 10.1029/2004GC000824
  86. Tatsumi Y (1989) Migration of fluid phases and genesis of basalt magmas in subduction zones. J Geophys Res 94:4697–4707CrossRefGoogle Scholar
  87. Teng FZ, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178CrossRefGoogle Scholar
  88. Tiepolo M, Bottazzi P, Palenzona M, Vannucci R (2003) A laser probe coupled with ICP-double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U–Pb dating of zircon. Can Mineral 41:259–272CrossRefGoogle Scholar
  89. Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG (2002) The control of lithium budgets in island arcs. Earth Planet Sci Lett 196:227–238CrossRefGoogle Scholar
  90. Tommasini S, Heumann A, Avanzinelli R, Francalanci L (2007) The fate of high-angle dipping slabs in the subduction factory: an integrated trace element and radiogenic isotope (U, Th, Sr, Nd, Pb) study of Stromboli volcano, Aeolian arc, Italy. J Petrol 48(12):2407–2430CrossRefGoogle Scholar
  91. Tonarini S, Armienti P, D’Orazio M, Innocenti F (2001a) Subduction-like fluids in the genesis of Mt. Etna magmas: evidence from boron isotopes and fluid mobile elements. Earth Planet Sci Lett 192:471–483CrossRefGoogle Scholar
  92. Tonarini S, Leeman WP, Ferrara G (2001b) Boron isotopic variations in lavas of the Aeolian volcanic arc, South Italy. J Volcanol Geotherm Res 110:155–170CrossRefGoogle Scholar
  93. Tonarini S, Leeman WP, Civetta L, D’Antonio M, Ferrara G, Necco A (2004) B/Nb and δ11B systematics in the Phlegrean Volcanic District, Italy. J Volcanol Geotherm Res 133:123–139CrossRefGoogle Scholar
  94. Turner S, Foden J (2001) U, Th and Ra disequilibria, Sr, Nd and Pb isotope and trace element variations in Sunda arc lavas: predominance of a subducted sediment component. Contrib Mineral Petrol 142:43–57CrossRefGoogle Scholar
  95. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72CrossRefGoogle Scholar
  96. Workman RK, Hart SR, Jackson M, Regelous M, Farley KA, Blusztajn J, Kurz M, Staudigel H (2004) Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: evidence from the Samoan Volcanic Chain. Geochem Geophys Geosyst 5(4):Q04008. doi: 10.1029/2003GC000623
  97. Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterranean-Carpathian region. Science 290. doi: 10.1126/science.290.5498.1910
  98. You CF, Spivack AJ, Smith JH, Gieskes JM (1993) Mobilization of boron in convergent margins: implications for the boron geochemical cycle. Geology 21:207–210CrossRefGoogle Scholar
  99. Zack T, John T (2007) An evaluation of reactive fluid flow and trace element mobility in subducting slabs. Chem Geol 239:199–216CrossRefGoogle Scholar
  100. Zack T, Tomascak PB, Rudnick RL, Dalpe C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290CrossRefGoogle Scholar
  101. Zangana NA, Downes H, Thirlwall MF, Hegner E (1997) Relationship between deformation, equilibration temperatures, REE and radiogenic isotopes in mantle xenoliths (Ray Pic, Massif Central, France): an example of plume-lithosphere interaction? Contrib Mineral Petrol 127:187–203CrossRefGoogle Scholar
  102. Zindler A, Hart S (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Federica Schiavi
    • 1
    Email author
  • Katsura Kobayashi
    • 2
  • Eizo Nakamura
    • 2
  • Massimo Tiepolo
    • 3
  • Riccardo Vannucci
    • 1
    • 3
  1. 1.Dipartimento di Scienze della Terra e dell’AmbienteUniversity of PaviaPaviaItaly
  2. 2.The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry (PML), Institute for Study of the Earth’s InteriorOkayama UniversityMisasa, Tottori-kenJapan
  3. 3.CNR, Institute for Geosciences and Earth ResourcesPaviaItaly

Personalised recommendations