Advertisement

Contributions to Mineralogy and Petrology

, Volume 163, Issue 6, pp 949–965 | Cite as

Magmatic evolution of the Cadamosto Seamount, Cape Verde: beyond the spatial extent of EM1

  • A. K. BarkerEmail author
  • V. R. Troll
  • R. M. Ellam
  • T. H. Hansteen
  • C. Harris
  • C. J. Stillman
  • A. Andersson
Original Paper

Abstract

The Cadamosto Seamount is an unusual volcanic centre from Cape Verde, characterised by dominantly evolved volcanics, in contrast to the typically mafic volcanic centres at Cape Verde that exhibit only minor volumes of evolved volcanics. The magmatic evolution of Cadamosto Seamount is investigated to quantify the role of magma-crust interaction and thus provide a perspective on evolved end-member volcanism of Cape Verde. The preservation of mantle source signatures by Nd–Pb isotopes despite extensive magmatic differentiation provides new insights into the spatial distribution of mantle heterogeneity in the Cape Verde archipelago. Magmatic differentiation from nephelinite to phonolite involves fractional crystallisation of clinopyroxene, titanite, apatite, biotite and feldspathoids, with extensive feldspathoid accumulation being recorded in some evolved samples. Clinopyroxene crystallisation pressures of 0.38–0.17 GPa for the nephelinites constrain this extensive fractional crystallisation to the oceanic lithosphere, where no crustal assimilants or rafts of subcontinental lithospheric mantle are available. In turn, magma-crust interaction has influenced the Sr, O and S isotopes of the groundmass and late crystallising feldspathoids, which formed at shallow crustal depths reflecting the availability of oceanic sediments and anhydrite precipitated in the ocean crust. The Nd–Pb isotopes have not been affected by these processes of magma-crust interaction and hence preserve the mantle source signature. The Cadamosto Seamount samples have high 206Pb/204Pb (>19.5), high εNd (+6 to +7) and negative Δ8/4Pb, showing affinity with the northern Cape Verde islands as opposed to the adjacent southern islands. Hence, the Cadamosto Seamount in the west is located spatially beyond the EM1-like component found further east. This heterogeneity is not encountered in the oceanic lithosphere beneath the Cadamosto Seamount despite greater extents of fractional crystallisation at oceanic lithospheric depths than the islands of Fogo and Santiago. Our data provide new evidence for the complex geometry of the chemically zoned Cape Verde mantle source.

Keywords

Ocean Islands Cape Verde Stable and radiogenic isotopes Thermobarometry Magma-crust interaction 

Notes

Acknowledgments

We are grateful for technical assistance with laboratory analyses provided by Hans Harryson, Uppsala University, Dagmar Rau, IFM-GEOMAR, Fayrooza Rawoot, University of Cape Town, Anne Kelly, Kathy Keefe and Vincent Gallagher at SUERC and Wendy Abdi and Paul Middlested, G.G. Hatch Isotope Laboratories, University of Ottawa. We would like to thank Jörg Geldmacher and two anonymous reviewers for their constructive reviews. We thank the Swedish National Research Council, Vetenskapsrådet for support via grant Dnr: 2009-4316 to Barker and Troll.

Supplementary material

410_2011_708_MOESM1_ESM.xls (346 kb)
Supplementary material 1 (XLS 345 kb)
410_2011_708_MOESM2_ESM.xls (60 kb)
Supplementary material 2 (XLS 60 kb)

References

  1. Abouchami W, Galer SJG, Koschinsky A (1999) Pb and Nd isotopes in NE Atlantic Fe-Mn crusts: Proxies for trace metal paleosources and paleocean circulation. Geochimicia et Cosmochimica Acta 63:1489–1505CrossRefGoogle Scholar
  2. Abouchami W, Hofmann AW, Galer SJG, Frey FA, Eisele J, Feigenson M (2005) Lead isotopes reveal bilateral asymmetry and vertical discontinuity in the Hawaiian mantle plume. Nature 434:851–856CrossRefGoogle Scholar
  3. Abratis M, Schmincke H-U, Hansteen TH (2002) Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. Int J Earth Sci (Geol Rundsch) 91:562–582. doi: 10.1007/s00531-002-0286-7 CrossRefGoogle Scholar
  4. Ali MY, Watts AB, Hill I (2003) A seismic reflection profile study of lithospheric flexure in the vicinity of the Cape Verde Islands. J Geophys Res 108(B5):2239–2263Google Scholar
  5. Alt JC, Anderson TF, Bonnell L (1989) The geochemistry of sulfur in a 1.3 km section of hydrothermally altered oceanic crust, DSDP Hole 504B. Geochim Cosmochim Acta 53:1011–1023CrossRefGoogle Scholar
  6. Alt JC, Shanks WC III, Jackson MC (1993) Cycling of sulfur in subduction zones: the geochemistry of sulfur in the Mariana Island Arc and back-arc trough. Earth Planet Sci Lett 119:477–494CrossRefGoogle Scholar
  7. Andersson UB (1997) Petrogenesis of some Proterozoic granitoid suites and associated basic rocks in Sweden (geochemistry and isotope geology). SGU Rapp Medd 91:216Google Scholar
  8. Barker AK, Coogan LA, Gillis KM, Weis D (2008) Strontium isotope constraints on fluid flow in the sheeted dike complex of fast spreading crust: pervasive fluid flow at Pito Deep. Geochem Geophys Geosyst. doi: 10.1029/2007GC001901
  9. Barker AK, Holm PM, Peate DW, Baker JA (2009) Geochemical stratigraphy of submarine lavas (3–5 Ma) from the Flamengos Valley, Santiago, Cape Verde. J Petrol 50:169–193. doi: 10.1093/petrology/egn081 CrossRefGoogle Scholar
  10. Barker AK, Holm PM, Peate DW, Baker JA (2010) A five million year record of compositional variations in mantle sources to magmatism on Santiago, southern Cape Verde archipelago. Contrib Mineral Petrol 160:133–154. doi: 10.1007/s00410-009-0470-x CrossRefGoogle Scholar
  11. Carracedo JC, Day S, Guillou H, Rodríguez Badiola E, Canas JA, Torrado P (1998) Hotspot volcanism close to a passive continental margin: the Canary Islands. Geol Mag 135:591–604. doi: 10.1017/S0016756898001447 CrossRefGoogle Scholar
  12. Chan L-H, Alt JC, Teagle DAH (2002) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet Sci Lett 201:187–201CrossRefGoogle Scholar
  13. Courtney RC, White RS (1986) Anomalous heat-flow and geoid across the Cape Verde Rise: evidence for dynamic support from a thermal plume in the mantle. Geophys J R Astron Soc 87:815–867CrossRefGoogle Scholar
  14. Crough ST (1978) Thermal origin of mid-plate hot-spot swells. Geophys J R Astron Soc 55:451–469CrossRefGoogle Scholar
  15. Davies GR, Norry MJ, Gerlach DC, Cliff RA (1989) A combined chemical and Pb-Sr-Nd isotope study of the Azores and Cape Verde hot-spots: the geodynamic implications. In: Saunders AD, Norry MJ (Eds) Magmatism in Ocean Basins. Geol Soc Lond Special Publ 42:231–255CrossRefGoogle Scholar
  16. de Hoog JCM, Taylor BE, van Bergen MJ (2001) Sulfur isotope systematics of basaltic lavas from Indonesia: implications for the sulfur cycle in subduction zones. Earth Planet Sci Lett 189:237–252CrossRefGoogle Scholar
  17. DePaolo DJ, Wasserburg GJ (1979) Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochim Cosmochim Acta 43:15–27Google Scholar
  18. Donoghue E, Troll VR, Harris C, O’Halloran A, Walter TR, Torrado FJP (2008) Low-temperature hydrothermal alteration of intra-caldera tuffs, Miocene Tejeda caldera, Gran Canaria, Canary Islands. J Volcanol Geotherm Res 176:551–564CrossRefGoogle Scholar
  19. Doucelance R, Escrig S, Moriera M, Gariepy C, Kurz M (2003) Pb-Sr-He isotope and trace element geochemistry of the Cape Verde Archipelago. Geochimicia et Cosmochimica Acta 67:3717–3733CrossRefGoogle Scholar
  20. Dyhr CT, Holm PM (2010) A volcanological and geochemical investigation of Boa Vista, Cape Verde Islands; 40Ar/39Ar geochronology and field constraints. J Volcanol Geotherm Res 189:19–32CrossRefGoogle Scholar
  21. Eisele J, Abouchami W, Galer SJG, Hofmann AW (2003) The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP-2 drill core. Geochem Geophys Geosyst 4:8710. doi: 10.1029/2002GC000339 CrossRefGoogle Scholar
  22. Ellam RM (2006) New constraints on the petrogenesis of the Nuanetsi picrite basalts from Pb and Hf isotope data. Earth Planet Sci Lett 245:153–161CrossRefGoogle Scholar
  23. Escrig S, Doucelance R, Moreira M, Allégre C (2005) Os isotope systematics in Fogo Island: evidence for lower continental crust fragments under the Cape Verde Southern Islands. Chem Geol 219:93–113CrossRefGoogle Scholar
  24. Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117:251–284CrossRefGoogle Scholar
  25. Fagereng A, Harris C, LaGrange M, Stevens G (2008) Stable isotope study of the Archaen rocks of the Vredefort impact structure, central Kaapvaal Craton, South Africa. Contrib Mineral Petrol 155:63–78CrossRefGoogle Scholar
  26. Geist DJ, White WM, McBirney AR (1988) Plume-asthenosphere mixing beneath the Galapagos Archipelago. Nature 333:657–660CrossRefGoogle Scholar
  27. Geldmacher J, Hoernle K, Klügel A, van den Bogaard P, Bindeman I (2008) Geochemistry of a new enriched mantle type locality in the northern hemisphere: implications for the origin of the EM-I source. Earth Planet Sci Lett 265:167–182CrossRefGoogle Scholar
  28. Gerlach DC, Cliff RA, Davies GR, Norry M, Hodgson N (1988) Magma sources of the Cape Verdes archipelago: isotopic and trace element constraints. Geochimicia et Cosmochimica Acta 52:2979–2992CrossRefGoogle Scholar
  29. Grassineau NV, Mattey DP, Lowry D (2001) Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry. Anal Chem 73:220–225CrossRefGoogle Scholar
  30. Grevemeyer I, Helffrich G, Faria B, Booth-Rea G, Schnabel M, Weinrebe RW (2010) Seismic activity at Cadamosto seamount near Fogo Island, Cape Verdes—formation of a new ocean island? Geophys J Int 180:552–558. doi: 10.1111/j.1365-246X.2009.04440.x CrossRefGoogle Scholar
  31. Gurenko AA, Chaussidon M, Schmincke H-U (2001) Magma ascent and contamination beneath one intraplate volcano: evidence from S and O isotopes in glass inclusions and their host clinopyroxenes from Miocene basaltic hyaloclastites southwest of Gran Canaria (Canary Islands). Geochim Cosmochim Acta 65:4359–4374CrossRefGoogle Scholar
  32. Hansteen T, Troll VR (2003) Oxygen isotope composition of xenoliths from the oceanic crust and volcanic edifice beneath Gran Canaria (Canary Islands): consequences for crustal contamination of ascending magmas. Chem Geol 193:181–193CrossRefGoogle Scholar
  33. Harris C, Vogeli J (2010) Oxygen isotope composition of garnet in the peninsula granite, Cape granite suite, South Africa: constraints on melting and emplacement mechanisms. S Afr J Geol 113:385–396Google Scholar
  34. Harris C, Smith HS, le Roex AP (2000) Oxygen isotope composition of phenocrysts from Tristan da Cunha and Gough Island lavas: variation with fractional crystallisation and evidence for assimilation. Contrib Mineral Petrol 138:164–175CrossRefGoogle Scholar
  35. Hart SR (1984) A large-scale isotopic anomaly in the southern hemisphere mantle. Nature 309:753–757CrossRefGoogle Scholar
  36. Hildner E, Klügel A, Hauff F (2011) Magma storage and ascent during the 1995 eruption of Fogo, Cape Verde archipelago. Contrib Mineral Petrol. doi:  10.1007/s00410-011-0623-6
  37. Hill IA (1985) Geophysical studies of the Cape Verde archipelago. RRS Charles Darwin Cruise Report 8-85. University of LeicesterGoogle Scholar
  38. Hoernle K (1998) Geochemistry of Jurassic oceanic crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation. J Petrol 39:859–880CrossRefGoogle Scholar
  39. Hoernle K, Tilton G, Schminke H-U (1991) Sr-Nd-Pb isotopic evolution of Gran Canaria: evidence for shallow enriched mantle beneath the Canary Islands. Earth Planet Sci Lett 106:44–63CrossRefGoogle Scholar
  40. Hoernle K, Werner R, Morgan JP, Garbe-Schönberg D, Bryce J, Mrazek J (2000) Existence of complex spatial zonation in the Galápagos plume for at least 14 m.y. Geology 28:435–438CrossRefGoogle Scholar
  41. Holm PM, Wilson JR, Christensen BP, Hansen L, Hansen SL, Hein KH, Mortensen AK, Pedersen R, Plesner S, Runge MK (2006) Sampling the Cape Verde mantle plume: evolution of melt compositions on Santo Antão, Cape Verde Islands. J Petrol 47:145–189CrossRefGoogle Scholar
  42. Hubberton HW (1983) Sulfur content and sulfur isotopes of basalts from the Costa Rica Rift (Hole 504B, DSDP Legs 69 and 70). In Initial Reports DSDP (eds J. Honnorez et al.,) 69:629–635. doi: 10.2973/dsdp.proc.69.136.1983 Google Scholar
  43. Ito E, White WM, Gopel C (1987) The O, Sr, Nd, and Pb isotope geochemistry of MORB. Chem Geol 62:157–176CrossRefGoogle Scholar
  44. Kawahata H, Kusakabe M, Kikuchi Y (1987) Strontium, oxygen, and hydrogen isotope geochemistry of hydrothermally altered and weathered rocks in DSDP Hole 504B, Costa Rica Rift. Earth Planet Sci Lett 85:343–355CrossRefGoogle Scholar
  45. Kokfelt TF, Holm PM, Hawkesworth CJ, Peate DW (1998) A lithospheric mantle source for the Cape Verde Island magmatism: trace element and isotopic evidence from the Island of Fogo. Mineral Mag 62A:801–802CrossRefGoogle Scholar
  46. Lodge A, Helffrich G (2006) Depleted swell root beneath the Cape Verde Islands. Geology 34:449–452CrossRefGoogle Scholar
  47. Madeira J, Mata J, Maurão C, da Silveira AB, Martins S, Ramalho R, Hoffmn DL (2010) Volcano-stratigraphy and structural evolution of Brava Island (Cape Verde) based on 40Ar/39Ar, U-Th and field constraints. J Volcanol Geotherm Res 196:219–235CrossRefGoogle Scholar
  48. Martins S, Mata J, Munhá J, Mendes MH, Maerschalk C, Caldeira R, Mattielli N (2009) Chemical and mineralogical evidence of the occurrence of mantle metasomatism by carbonate-rich melts in an oceanic environment (Santiago Island, Cape Verde). Mineral Petrol. doi:  10.1007/s00710-009-0078-x
  49. Melguen M (1978) Facies evolution, carbonate dissolution cycles in sediments from the eastern south Atlantic (DSDP Leg 40) since the early Cretaceous. Initial Reports DSDP, volume XL, Washington US Government Printing OfficeGoogle Scholar
  50. Meyer R, Nicoll GR, Hertogen J, Troll VR, Ellam RM, Emeleus CH (2009) Trace element and isotope constraints on crustal anatexis by upwelling mantle melts in the North Atlantic Igneous province: an example from the Isle of Rum, NW Scotland. Geol Mag 146:382–399CrossRefGoogle Scholar
  51. Millet M-A, Doucelance R, Schiano P, David K, Bosq C (2008) Mantle plume heterogeneity versus shallow-level interactions: a case study, the São Nicolau Island, Cape Verde archipelago. J Volcanol Geotherm Res 176:265–276. doi: 10.1016/j.jvolgeores.2008.04.003 CrossRefGoogle Scholar
  52. Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S-H (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 30:338–343CrossRefGoogle Scholar
  53. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Siefert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133Google Scholar
  54. O’Hara MJ (1998) Volcanic plumbing and the space problem- thermal and geochemical consequences of large-scale assimilation in ocean island development. J Petrol 39:1077–1089CrossRefGoogle Scholar
  55. Pedersen RB, Furnes H (2001) Nd- and Pb-isotopic variations through the upper oceanic crust in DSDP/ODP Hole 504B, Costa Rica Rift. Earth Planet Sci Lett 189:221–235CrossRefGoogle Scholar
  56. Pim J, Peirce C, Watts AB, Grevemeyer L, Krabbenhoeft A (2008) Crustal structure and origin of the Cape Verde Rise. Earth Planet Sci Lett 272:422–428CrossRefGoogle Scholar
  57. Putirka K (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120CrossRefGoogle Scholar
  58. Putirka K, Mikaelian H, Ryerson FJ, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, ID. Am Mineral 88:1542–1554Google Scholar
  59. Rees CE, Jenkins WJ, Monster J (1978) The sulphur isotopic composition of ocean water sulphate. Geochim Cosmochim Acta 42:377–381CrossRefGoogle Scholar
  60. Regelous M, Hofmann AW, Abouchami W, Galer SJG (2003) Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J Petrol 44:113–140CrossRefGoogle Scholar
  61. Sakai H, Casadevall TJ, Moore JG (1982) Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea Volcano, Hawaii. Geochim Cosmochim Acta 46:729–738CrossRefGoogle Scholar
  62. Sakai H, Des Marias DJ, Ueda A, Moore JG (1984) Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim Cosmochim Acta 48:2433–2441CrossRefGoogle Scholar
  63. Shanks WC III, Bischoff JL, Rosenbauer RJ (1981) Seawater sulfate reduction and sulfur isotope fractionation in basaltic systems: interaction of seawater with fayalite and magnetite at 200–350°C. Geochim Cosmochim Acta 45:1977–1995CrossRefGoogle Scholar
  64. Spera FJ, Bohrson WA (2001) Energy-constrained open-system magmatic processes I: general model and energy-constrained assimilation and fractional crystallisation (EC-AFC) formulation. J Petrol 42:999–1018CrossRefGoogle Scholar
  65. Taylor HP Jr, Sheppard SMF (1986) Igneous Rocks 1. Processes of isotopic fractionation and isotope systematics. In: Valley JW, Taylor HP Jr, and O’Neil JR (Eds) Stable isotopes in high temperature geological processes. Rev Mineral 16:227–271Google Scholar
  66. Thirlwall MF, Gee MAM, Taylor RN, Murton BJ (2004) Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochim Cosmochim Acta 68:361–386CrossRefGoogle Scholar
  67. Tiepolo M, Oberti R, Vannucci R (2002) Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chem Geol 191:105–119CrossRefGoogle Scholar
  68. Ueda A, Sakai H (1984) Sulfur isotope study of Quaternary volcanic rocks from the Japanese Islands Arc. Geochim Cosmochim Acta 48:1837–1848CrossRefGoogle Scholar
  69. Venneman TW, Smith HS (1990) The rate and temperature of reaction of ClF3 with silicate minerals, and their relevance to oxygen isotope analysis. Chem Geol (Isotope Geosci Sect) 86:83–88CrossRefGoogle Scholar
  70. Von Damm KL (2000) Chemistry of hydrothermal vent fluids from 9–10°N, East Pacific Rise: “Time zero”, the immediate posteruptive period. J Geophys Res 105:11203–11222CrossRefGoogle Scholar
  71. Wallace P, Carmichael ISE (1992) Sulfur in basaltic magmas. Geochim Cosmochim Acta 56:1863–1874CrossRefGoogle Scholar
  72. Weaver BL (1990) Geochemistry of highly-undersaturated ocean island basalt suites from the South Atlantic Ocean: Fernando de Noronha and Trindade islands. Contrib Mineral Petrol 105:502–515CrossRefGoogle Scholar
  73. Zhao Z-F, Zheng Y-F (2003) Calculation of oxygen isotope fractionation in magmatic rocks. Chem Geol 193:59–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • A. K. Barker
    • 1
    Email author
  • V. R. Troll
    • 1
  • R. M. Ellam
    • 2
  • T. H. Hansteen
    • 3
  • C. Harris
    • 4
  • C. J. Stillman
    • 5
  • A. Andersson
    • 1
  1. 1.Centre of Experimental Mineralogy, Petrology and Geochemistry (CEMPEG), Department of Earth SciencesUppsala UniversityUppsalaSweden
  2. 2.Scottish Universities Environmental Research Centre (SUERC)East KilbrideScotland, UK
  3. 3.IFM-GEOMAR, Leibniz-Institute of Marine SciencesKielGermany
  4. 4.Department of Geological SciencesUniversity of Cape TownRondebosch, Cape TownSouth Africa
  5. 5.Department of GeologyUniversity of DublinDublin 2Ireland

Personalised recommendations