Contributions to Mineralogy and Petrology

, Volume 163, Issue 5, pp 745–768 | Cite as

Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids

  • Anne-Sophie Bouvier
  • Takayuki Ushikubo
  • Noriko T. Kita
  • Aaron J. Cavosie
  • Reinhard Kozdon
  • John W. Valley
Original Paper


We report δ7Li, Li abundance ([Li]), and other trace elements measured by ion probe in igneous zircons from TTG (tonalite, trondhjemite, and granodiorite) and sanukitoid plutons from the Superior Province (Canada) in order to characterize Li in zircons from typical Archean continental crust. These data are compared with detrital zircons from the Jack Hills (Western Australia) with U–Pb ages greater than 3.9 Ga for which parent rock type is not known. Most of the TTG and sanukitoid zircon domains preserve typical igneous REE patterns and CL zoning. [Li] ranges from 0.5 to 79 ppm, typical of [Li] in continental zircons. Atomic ratios of (Y + REE)/(Li + P) average 1.0 ± 0.7 (2SD) for zircons with magmatic composition preserved, supporting the hypothesis that Li is interstitial and charge compensates substitution of trivalent cations. This substitution results in a relatively slow rate of Li diffusion. The δ7Li and trace element data constrain the genesis of TTGs and sanukitoids. [Li] in zircons from granitoids is significantly higher than from zircons in primitive magmas in oceanic crust. TTG zircons have δ7Li (3 ± 8‰) and δ18O in the range of primitive mantle-derived magmas. Sanukitoid zircons have average δ7Li (7 ± 8‰) and δ18O higher than those of TTGs supporting genesis by melting of fluid-metasomatized mantle wedge. The Li systematics in sanukitoid and TTG zircons indicate that high [Li] in pre-3.9-Ga Jack Hills detrital zircons is a primary igneous composition and suggests the growth in proto-continental crust in magmas similar to Archean granitoids.


Zircon Trace elements Lithium isotopes SIMS Jack Hills TTG Sanukitoid 



The authors thank Jim Kern for maintaining the ion microprobe, John Fournelle for assistance on the SEM, and Brian Hess for expertise in sample preparation. Don Davis and Elizabeth King are thanked for zircon separates from their studies. This study was funded by NSF-EAR (0838058) and DOE (93ER14389). The WiscSIMS Lab is partially funded by NSF-EAR (0319230, 0516725, 0744079, and 1053466).

Supplementary material

410_2011_697_MOESM1_ESM.xls (1.7 mb)
Supplementary material 1 (XLS 1743 kb)
410_2011_697_MOESM2_ESM.tif (8.5 mb)
Supplementary material 2 (TIFF 8672 kb)


  1. Aines RD, Rossman GR (1986) Relationships between radiation damage and trace water in zircon, quartz, and topaz. Am Mineral 71(9–10):1186–1193Google Scholar
  2. Ballard J, Palin M, Campbell I (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Petrol 144(3):347–364. doi: 10.1007/s00410-002-0402-5 Google Scholar
  3. Barker F (1979) Trondhjemite: definition, environment and hypotheses of origin. In: Barker F (ed) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, pp 1–12Google Scholar
  4. Barth AP, Wooden JL (2010) Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem Geol 277(1–2):149–159Google Scholar
  5. Beakhouse GP, McNutt RH (1991) Contrasting types of Late Archean plutonic rocks in northwestern Ontario: implications for crustal evolution in the Superior Province. Precambrian Res 49:141–165Google Scholar
  6. Belousova EA, Griffin WL, Pearson NJ (1998) Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons. Mineral Mag 62:355–366Google Scholar
  7. Belousova EA, Griffin WL, O’Reilly SY (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. J Petrol 47(2):329–353. doi: 10.1093/petrology/egi077 Google Scholar
  8. Bowman JR, Moser DE, Valley JW, Kita NT, Mazdab F (2011) U-Pb age, δ18O and trace element zoning in deep crustal zircon from the Kapuskasing Uplift; guidelines for interpreting Archean zircon records of high temperature crustal evolution and lithosphere-fluid interactions. Contr Min Pet (accepted)Google Scholar
  9. Bryant CJ, Chappell BW, Bennett VC, McCulloch MT (2004) Lithium isotopic compositions of the New England Batholith: correlations with inferred source rock compositions. Earth Env Sci Trans R Soc Edinb 95(1–2):199–214. doi: 10.1017/S0263593300001012 Google Scholar
  10. Caruba R, Iacconi P (1983) Les zircons des pegmatites de Narssârssuk (Groënland) — L’eau et les groupements OH dans les zircons métamictes. Chem Geol 38(1–2):75–92. doi: 10.1016/0009-2541(83)90046-3
  11. Cavosie AJ, Wilde SA, Liu D, Weiblen PW, Valley JW (2004) Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precambrian Res 135:251–279Google Scholar
  12. Cavosie AJ, Valley JW, Wilde SA, EIMF (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet Sci Lett 235:663–681Google Scholar
  13. Cavosie AJ, Valley JW, Wilde SA, EIMF (2006) Correlated microanalysis of zircon: Trace element, δ18O, and U-Th-Pb isotopic constraints on the igneous origin of complex > 3900 Ma detrital grains. Geochim Cosmochim Acta 70:5601–5616Google Scholar
  14. Cavosie AJ, Kita NT, Valley JW (2009) Primitive oxygen-isotope ratio recorded in magmatic zircon from the Mid-Atlantic Ridge. Am Mineral 94(7):926–934. doi: 10.2138/am.2009.2982 Google Scholar
  15. Chan L-H, Edmond JM (1988) Variation of lithium isotope composition in the marine environment: a preliminary report. Geochim Cosmochim Acta 52:1711–1717Google Scholar
  16. Chan LH, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160Google Scholar
  17. Chan L-H, Edmond JM, Thompson G (1993) A lithium isotope study of hot springs and metabasalts from mid-ocean ridge hydrothermal systems. J Geophys Res 98. doi: 10.1029/92jb00840
  18. Chan L-H, Alt JC, Teagle DAH (2002a) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet Sci Lett 201(1):187–201Google Scholar
  19. Chan LH, Leeman WP, You CF (2002b) Lithium isotopic composition of Central American volcanic arc lavas: implications for modification of subarc mantle by slab-derived fluids: correction. Chem Geol 182:293–300Google Scholar
  20. Cherniak DJ, Watson EB (2003) Diffusion in zircon. In: Hanchar JM, Hoskin WO (eds) Zircon, vol Rev Min Geoch, pp 113–139Google Scholar
  21. Cherniak D, Watson E (2010) Li diffusion in zircon. Contrib Mineral Petrol 160(3):383–390. doi: 10.1007/s00410-009-0483-5 Google Scholar
  22. Cherniak DJ, Hanchar JM, Watson EB (1997) Rare-earth diffusion in zircon. Chem Geol 134:289–301Google Scholar
  23. Condie K (2005) TTGs and adakites: are they both slab melts? Lithos 80:33–44Google Scholar
  24. Crowley JL, Myers JS, Sylvester PJ, Cox RA (2005) Detrital zircon from the Jack Hills and Mount Narryer, Western Australia: evidence for diverse 14.0 Ga source rocks. J Geol 113:239–263Google Scholar
  25. Davis WD, Williams IS, Krogh TE (2003) Historical development of zircon geochronology. In: Hanchar JM, Hoskin PWO (eds) Zircon, vol Rev Min Geoch, pp 145–182Google Scholar
  26. Davis DW, Amelin Y, Nowell GM, Parrish RR (2005) Hf isotopes in zircon from the western Superior Province, Canada: Implication for the Archean crustal development and evolution of the depleted mantle reservoir. Precambrian Res 140:132–156Google Scholar
  27. Dohmen R, Kasemann SA, Coogan L, Chakraborty S (2010) Diffusion of Li in olivine. Part I: experimental observations and a multi species diffusion model. Geochim Cosmochim Acta 74(1):274–292Google Scholar
  28. Drummond MS, Defant MJ (1990) A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95:21503–21521Google Scholar
  29. Elliott T, Thomas A, Jeffcoate A, Niu Y (2006) Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443(7111):565–568. doi: Google Scholar
  30. Ferry J, Watson E (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154(4):429–437. doi: 10.1007/s00410-007-0201-0 Google Scholar
  31. Finch JR, Hanchar JM, Hoskin PWO, Burns PC (2001) Rare-earth elements in synthetic zircon: part 2. A single crystal X-ray study of xenotime substitution. Am Mineral 86:681–689Google Scholar
  32. Frondel C (1953) Hydroxyl substitution in thorite and zircon.Google Scholar
  33. Fu B, Page F, Cavosie A, Fournelle J, Kita N, Lackey J, Wilde S, Valley J (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156(2):197–215. doi: 10.1007/s00410-008-0281-5 Google Scholar
  34. Geisler T, Schleicher H (2000a) Improved U-Th-total Pb dating of zircons by electron microprobe using a new background modeling method and Ca as a chemical indicator of fluid-induced U-Th-Pb discordance in zircon. Chem Geol 163:269–285Google Scholar
  35. Geisler T, Schleicher H (2000b) Improved U-Th-total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon. Chem Geol 163(1–4):269–285Google Scholar
  36. Geisler T, Pidgeon RT, Kurtz R, Van Bronswijk W, Schleicher H (2003a) Experimental hydrothermal alteration of partially metamict zircon. Am Mineral 88:1496–1513Google Scholar
  37. Geisler T, Rashwan AA, Rahn M, Poller U, Zwingmann H, Pidgeon RT, Schleicher H (2003b) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral Mag 67:485–508Google Scholar
  38. Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghøj K, Schwartz JJ (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35(7):643–646. doi: 10.1130/g23603a.1 Google Scholar
  39. Grimes C, John B, Cheadle M, Mazdab F, Wooden J, Swapp S, Schwartz J (2009) On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib Mineral Petrol 158(6):757–783. doi: 10.1007/s00410-009-0409-2 Google Scholar
  40. Grimes C, Ushikubo T, John B, Valley JW (2011) Uniformly mantle-like δ18O in zircons from oceanic plagiogranites and gabbros. Contrib Mineral Petrol 161(1):13–33. doi: 10.1007/s00410-010-0519-x Google Scholar
  41. Halden NM, Hawthorne FC, Campbell JL, Teesdale WJ, Maxwell JA, Higuchi D (1993) Chemical characterization of oscillatory zoning and overgrowths in zircon using 3 MeV μ-PIXE. Can Mineral 31:637–647Google Scholar
  42. Hanchar JM, Finch JR, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AN (2001) Rare earth element in synthetic zircon. Part 1: synthesis, and rare earth element and phosphorus doping. Am Mineral 86:667–680Google Scholar
  43. Harrison TM, Schmitt AK (2007) High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet Sci Lett 261(1–2):9–19Google Scholar
  44. Hinton RW, Upton BGJ (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim Cosmochim Acta 55:3287–3302Google Scholar
  45. Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648Google Scholar
  46. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon, vol 53. Rev Min Geoch, pp 27–55Google Scholar
  47. Hoskin PWO, Kinny PD, Wyborn D, Chappell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an interpreted approach. J Petrol 41:1365–1396Google Scholar
  48. Huang X-L, Niu Y, Xu Y-G, Yang Q-J, Zhong J-W (2010) Geochemistry of TTG and TTG-like gneisses from Lushan-Taihua complex in the southern North China Craton: implications for late Archean crustal accretion. Precambrian Res 182(1–2):43–56Google Scholar
  49. Huh Y, Chan L-H, Edmond JM (2001) Lithium isotopes as a probe of weathering processes: Orinoco River. Earth Planet Sci Lett 194(1–2):189–199Google Scholar
  50. Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218Google Scholar
  51. Kasemann S, Jeffcoate A, Elliott T (2005) Lithium isotope composition of basalt glass reference material. Anal Chem 77:5251–5257Google Scholar
  52. King EM, Valley JW, Davis DW, Edwards GR (1998) Oxygen isotope ratios of Archean plutonic zircons from granite-greenstone belts of the Superior Province: indicator of magmatic source. Precambrian Res 92:365–387Google Scholar
  53. Kisakürek B, Widdowson M, James RH (2004) Behaviour of Li isotopes during continental weathering: the Bidar laterite profile, India. Chem Geol 212(1–2):27–44Google Scholar
  54. Lancaster PJ, Fu B, Page FZ, Kita NT, Bickford ME, Hill BM, McLelland JM, Valley JW (2009) Genesis of metapelitic migmatites in the Adirondack Mts., New York. J Meta Geol 27:41–54Google Scholar
  55. Li X-H, Li Q-L, Liu Y, Tang G-Q (2011) Further characterization of M257 zircon standard: a working reference for SIMS analysis of Li isotopes. J Anal At Spectrom 26(2):352–358Google Scholar
  56. Lundstrom CC, Chaussidon M, Hsui AT, Kelemen P, Zimmerman M (2005) Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69:735–751Google Scholar
  57. Maas R, Kinny PD, Williams IS, Froude DO, Compston W (1992) The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim Cosmochim Acta 56:1281–1300Google Scholar
  58. Magna T, Wiechert U, Halliday AN (2006) New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet Sci Lett 243(3–4):336–353. doi: 10.1016/j.epsl.2006.01.005 Google Scholar
  59. Magna T, Janousek V, Kohút M, Oberli F, Wiechert U (2010) Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites. Chem Geol 274(1–2):94–107Google Scholar
  60. Marks MAW, Rudnick RL, McCammon C, Vennemann T, Markl G (2007) Arrested kinetic Li isotope fractionation at the margin of the Ilímaussaq complex, South Greenland: evidence for open-system processes during final cooling of peralkaline igneous rocks. Chem Geol 246(3–4):207–230. doi: 10.1016/j.chemgeo.2007.10.001 Google Scholar
  61. Marschall H, Pogge von Strandmann PAE, Seitz H-M, Elliott T, Niu Y (2007) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262(3–4):563–580Google Scholar
  62. Martin H, Smithies RH, Rapp R, Moyen J-F, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications fro crustal evolution. Lithos 79:1–24Google Scholar
  63. Martin H, Moyen J-F, Rapp R (2009) The sanukitoid series: magmatism at the Archaean/Proterozoic transition. Earth Environ Sci Trans R Soc Edinb 100(Special Issue 1–2):15–33. doi: 10.1017/S1755691009016120 Google Scholar
  64. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253Google Scholar
  65. Millot R, Guerrot C, Vigier N (2004) Accurate and high-precision measurement of lithium isotopes in two reference materials by MC-ICP-MS. Geostand Geoanal Res 28(1):153–159. doi: 10.1111/j.1751-908X.2004.tb01052.x Google Scholar
  66. Moriguti T, Nakamura E (1998) Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth Planet Sci Lett 163(1–4):167–174Google Scholar
  67. Moyen J-F, Martin H, Jayananda M (1997) Origine du granite fini-Archéen de Closepet (Inde du Sud): apports de la modélisation géochimique du comportement des éléments en traces. C R Acad Sci Paris 325:659–664Google Scholar
  68. Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay damage in zircon. Am Mineral 76:1510–1532Google Scholar
  69. Page FZ, Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen V, Basei MAS, Valley JW (2007) Zircons from kimberlites: new insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim Cosmochim Acta 71:3887–3903Google Scholar
  70. Pearce NJG, Westgate JA, Perkins WT (1996) Developments in the analysis of volcanic glass shards by laser ablation ICP-MS: quantitative and single internal standard-multielement methods. Quat Int 34–36:213–227Google Scholar
  71. Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference material. Geostand Newslett 21:115–144Google Scholar
  72. Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochim Cosmochim Acta 65:4215–4229Google Scholar
  73. Pidgeon RT, Nemchin AA, Hitchen GJ (1998) Internal structures of zircons from Archean granites from the Darling Range batholith: implications for zircon stability and the interpretation of zircon U-Pb ages. Contrib Mineral Petrol 132:288–299Google Scholar
  74. Pistiner JS, Henderson GM (2003) Lithium-isotope fractionation during continental weathering processes. Earth Planet Sci Lett 214:327–339Google Scholar
  75. Rayner N, Stern RA, Carr SD (2005) Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. Contrib Mineral Petrol 148(6):721–734Google Scholar
  76. Richter FM, Davis AM, DePaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923Google Scholar
  77. Romans PA, Brown LL, White JC (1975) An electron microprobe study of yttrium, rare earth, and phosphorus distribution in zoned and ordinary zircons. Am Mineral 60:475–480Google Scholar
  78. Rudnick RL, Ionov DA (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: product of recent melt/fluid–rock reaction. Earth Planet Sci Lett 256:278–293Google Scholar
  79. Rudnick RL, Tomascak PB, Njo HB, Gardner LR (2004) Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chem Geol 212:45–57Google Scholar
  80. Seitz H-M, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chem Geol 212(1–2):163–177. doi: 10.1016/j.chemgeo.2004.08.009 Google Scholar
  81. Seyfried WE Jr, Chen X, Chan L-H (1998) Trace element mobility and lithium isotope exchange during hydrothermal alteration of seafloor weathered basalt: an experimental study at 350°C, 500 bars. Geochim Cosmochim Acta 62(6):949–960Google Scholar
  82. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767Google Scholar
  83. Shirey SB, Hanson GN (1984) Mantle-derived Archean monzodiorites and trachyandesites. Nature 310:222–224Google Scholar
  84. Silver LT, Deutsch S (1963) Uranium-lead isotopic variations in zircons: a case study. J Geol 71:721–758Google Scholar
  85. Smithies RH (2000) The Archean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet Sci Lett 182:115–125Google Scholar
  86. Smithies RH, Champion DC (1999) High-Mg diorite from the Archaean Pilbara Craton: anorogenic magmas derived from a subduction-modified mantle. Geol Surv West Aust Annu Rev 1998–1999:45–59Google Scholar
  87. Speer JA (1982) Zircon. In: Orthosilicates, vol 5. Rev Min, pp 67–112Google Scholar
  88. Stern RA (1989) Petrogenesis of the Archaean sanukitoid suite. State University, Stony BrookGoogle Scholar
  89. Stern RA, Hanson GN (1991) Archean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. J Petrol 32:201–238Google Scholar
  90. Stevenson R, Henry P, Gariépy C (1999) Assimilation–fractional crystallization origin of Archean Sanukitoid Suites: Western Superior Province, Canada. Precambrian Res 96:83–99Google Scholar
  91. Stevenson RK, Henry P, Gariépy C (2009) Isotopic and geochemical evidence for differentiation and crustal contamination from granitoids of the Berens river subprovince, Superior Province, Canada. Precambrian Res 168(1–2):123–133Google Scholar
  92. Teng F-Z, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178Google Scholar
  93. Teng F-Z, McDonough WF, Rudnick RL, Walker RJ (2006a) Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet Sci Lett 243(3–4):701–710Google Scholar
  94. Teng F-Z, McDonough WF, Rudnick RL, Walker RJ, Sirbescu M-LC (2006b) Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. Am Mineral 91(10):1488–1498. doi: 10.2138/am.2006.2083 Google Scholar
  95. Teng F-Z, Rudnick RL, McDonough WF, Gao S, Tomascak PB, Liu Y (2008) Lithium isotopic composition and concentration of the deep continental crust. Chem Geol 255:47–59Google Scholar
  96. Teng F-Z, Rudnick RL, McDonough WF, Wu F-Y (2009) Lithium isotopic systematics of A-type granites and their mafic enclaves: further constraints on the Li isotopic composition of the continental crust. Chem Geol 262(3–4):370–379Google Scholar
  97. Tomascak PB (2004) Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. Rev Mineral Geochem 55(1):153–195. doi: 10.2138/gsrmg.55.1.153 Google Scholar
  98. Tomascak PB, Tera F, Helz RT, Walker RJ (1999) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63(6):907–910Google Scholar
  99. Tomascak PB, Langmuir CH, le Roux PJ, Shirey SB (2008) Lithium isotopes in global mid-ocean ridge basalts. Geochim Cosmochim Acta 72(6):1626–1637Google Scholar
  100. Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB, Young ED (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem Geophys Geosyst 8. doi: 10.1029/2006gc001449
  101. Ushikubo T, Kita NT, Cavosie AJ, Wilde SA, Rudnick RL, Valley JW (2008) Lithium in Jack Hills zircons: evidence for extensive weathering of Earth’s earliest crust. Earth Planet Sci Lett 272:666–676Google Scholar
  102. Utsunomiya S, Valley JW, Cavosie AJ, Wilde SA, Ewing RC (2007) Radiation damage and alteration of zircon from a 3.3 Ga porphyritic granite from the Jack Hills, Western Australia. Chem Geol 236(1–2):92–111Google Scholar
  103. Valley JW (2003) Oxygen isotopes in zircon. Rev Mineral Geochem 53(1):343–385. doi: 10.2113/0530343 Google Scholar
  104. Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11Google Scholar
  105. Valley JW, Lackey J-S, Cavosie AJ, Clechenko C, Spicuzza MJ, Basei M, Bindeman I, Ferreira V, Sial AN, King E, Peck WH, Sinha A, Wei C (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150(6):561–580. doi: 10.1007/s00410-005-0025-8 Google Scholar
  106. Watson EB, Baxter EF (2007) Diffusion in solid-Earth systems. Earth Planet Sci Lett 253(3–4):307–327Google Scholar
  107. Watson EB, Cherniak DJ (1997) Oxygen diffusion in zircon. Earth Planet Sci Lett 148(3–4):527–544Google Scholar
  108. Whitehouse MJ, Kamber BS (2003) A rare earth element study of complex zircons from early Archaean Amîtsoq gneisses, Godthåbsfjord, south-west Greenland. Precambrian Res 126:363–377Google Scholar
  109. Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley JW, Whitehouse MJ et al (2004) Further characterization of the 91500 zircon crystal. Geostandards Geoanalytical Res 28:9–39Google Scholar
  110. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409(6817):175–178Google Scholar
  111. Williams HR, Stott GM, Thurston PC, Sutcliffe RH, Bennett G, Easton RM, Armstrong DK (1991) Tectonic evolution of Ontario: summary and synthesis. In: Geology of ontario, vol Special Volume 4 part 2. Ontario Geological Survey, Ontario, Canada, pp 1255–1332Google Scholar
  112. Woodhead JA, Rossman GR, Silver LT (1991) The metamictization of zircon; radiation dose-dependent structural characteristics. Am Mineral 76(1–2):74–82Google Scholar
  113. Wunder B, Meixner A, Romer RL, Heinrich W (2006) T-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120Google Scholar
  114. Xiong X, Keppler H, Audetat A, Gudfinnsson G, Sun W, Song M, Xiao W, Yuan L (2009) Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. Am Mineral 94(8–9):1175–1186. doi: 10.2138/am.2009.3158 Google Scholar
  115. You CF, Chan LH (1996) Precise determination of lithium isotopic composition in low concentration natural samples. Geochim Cosmochim Acta 60:909–915Google Scholar
  116. Zhang XY, Cherniak DJ, Watson EB (2006) Oxygen diffusion in titanite: lattice diffusion and fast-path diffusion in single crystals. Chem Geol 235(1–2):105–123Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Anne-Sophie Bouvier
    • 1
    • 3
  • Takayuki Ushikubo
    • 1
  • Noriko T. Kita
    • 1
  • Aaron J. Cavosie
    • 2
  • Reinhard Kozdon
    • 1
  • John W. Valley
    • 1
  1. 1.WiscSIMS, Department of GeoscienceUniversity of WisconsinMadisonUSA
  2. 2.Department of GeologyUniversity of Puerto RicoMayagüezUSA
  3. 3.Swedish Museum of Natural HistoryStockholmSweden

Personalised recommendations